
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.1

Pre-requisite based Study Material

for

Data and File Structures

(MCA-102)

by

Dr. Sunil Pratap Singh
(Assistant Professor, BVICAM, New Delhi)

April, 2021

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.2

Algorithm

• Algorithm: An algorithm is a finite set of instructions which, if followed,

accomplish a particular task. Every algorithm should have following

properties:

o It must be correct. In other words, it must compute the desired function,

converting each input to the correct output.

o It is composed of a series of concrete steps. Concrete means that the action

described by that step is completely understood — and doable — by the person

or machine that must perform the algorithm.

o There can be no ambiguity as to which step will be performed next.

o It must be composed of a finite number of steps.

o It must terminate. In other words, it may not go into an infinite loop.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.3

Analysis of Algorithms

• “Analysis of Algorithms” is concerned primarily with determining the

memory (space) and time requirements (complexity) of an algorithm.

• The most important factor affecting running time is normally size of the

input.

• For a given input size n, we often express the time T to run the

algorithm as a function of n, written as T(n).

• It is always assumed that T(n) is a non-negative value.

• “Growth Rate” for an algorithm is the rate at which the cost of the

algorithm grows as the size of its input grows.

• T(n) describes the growth rate for the running time of the algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.4

Growth Rate of Algorithms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.5

Costs for Growth Rates

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.6

Common Growth Rate Functions

• 1 (constant): growth is independent of the problem size n.

• Log n (logarithmic): growth increases slowly compared to the problem

size (binary search)

• n (linear): directly proportional to the size of the problem.

• n * log n (n log n): typical of some divide and conquer approaches

• n2 (quadratic): typical in nested loops

• n3 (cubic): more nested loops

• 2n (exponential): growth is extremely rapid

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.7

Best, Worst, and Average Cases

• Consider an example of Sequential Search algorithm:

 Algorithm begins at the first position in the array and looks at each value in

turn until K (searched item) is found.

 Once K is found, the algorithm stops.

 There is a wide range of possible running times for the sequential search

algorithm.

 The first integer in the array could have value K, and so only one integer is

examined. In this case the running time is short. This is the best case for this

algorithm.

 Alternatively, if the last position in the array contains K, then the running time

is relatively long, because the algorithm must examine n values. This is the

worst case for this algorithm, because sequential search never looks at more

than n values.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.8

Best, Worst, and Average Cases

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.9

Best, Worst, and Average Cases

• Should we study the best case?

 Normally we are not interested in the best case, because this might

happen only rarely and generally is too optimistic for a fair

characterization of the algorithm’s running time.

 In other words, analysis based on the best case is not likely to be

representative of the behavior of the algorithm.

 However, there are rare instances where a best-case analysis is useful —

in particular, when the best case has high probability of occurring.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.10

Best, Worst, and Average Cases

• Should we study the worst case?

 The advantage to analyzing the worst case is that we know for certain that

the algorithm must perform at least that well.

 This is especially important for real-time applications, such as for the

computers that monitor an air traffic control system.

 Here, it would not be acceptable to use an algorithm that can handle n

airplanes quickly enough most of the time, but which fails to perform

quickly enough when all n airplanes are coming from the same direction.

 For other applications — particularly when we wish to aggregate the cost

of running the program many times on many different inputs — worst-

case analysis might not be a representative measure of the algorithm’s

performance.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.11

Best, Worst, and Average Cases

• Should we study the average case?

 Often we prefer to know the average-case running time.

 This means that we would like to know the typical behavior of the

algorithm on inputs of size n.

 Unfortunately, average-case analysis is not always possible.

 Average-case analysis first requires that we understand how the actual

inputs to the program are distributed with respect to the set of all possible

inputs to the program.

 For example, it was stated previously that the sequential search algorithm

on average examines half of the array values. This is only true if the

element with value K is equally likely to appear in any position in the array.

If this assumption is not correct, then the algorithm does not necessarily

examine half of the array values in the average case.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.12

Best, Worst, and Average Cases

• Summary

 For real-time applications we are likely to prefer a worst-case analysis of

an algorithm.

 Otherwise, we often desire an average-case analysis if we know enough

about the distribution of our input to compute the average case. If not,

then we must resort to worst-case analysis.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.13

Methods of Estimating/Representing Time Complexity

• Operation Counts

• Step Counts

• Counting Cache Misses

• Asymptotic Notations

• Recurrence Equations

• … … …

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.14

Step Counts

• To determine the step count of an algorithm,

 determine the number of steps per execution (s/e) of each statement

 determine total number of times (i.e., frequency) each statement is

executed

 combine s/e and frequency to give the total contribution of each

statement to the total step count

 add the contributions of all statements to obtain the step count for the

entire algorithm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.15

Step Counts: Example

Algorithm Sum (a,n) s/e Frequency Total Steps

{ 0 0 0

 sum = 0; 1 1 1

 for(i=1; i<=n; i++) 1 n+1 n+1

 sum = sum + a[i]; 1 n n

 return sum; 1 1 1

} 0 0 0

Total 2n+3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.16

Step Counts: Example

Algorithm MatrixAdd (a,b,c,m,n) s/e Frequency Total Steps

{

 for(i=1; i<=m; i++)

 {

 for(j=1; i<=n; j++)

 {

 c[i][j]=a[i][j]+b[i][j];

 }

 }

}

Total

2mn+2m+1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.17

Step Counts: Example

Note that if n ≤ 1 then the step count is just 2 and 4n+1 otherwise.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.18

Asymptotic Analysis/Notations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.19

Big-oh (O) Notation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.20

Big-oh Notation (O): Examples

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.21

Omega (Ω) Notation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.22

Theta (Θ) Notation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.23

Space Complexity

• The Space Complexity is the total amount of memory space used by an

algorithm/program including the space of input values for execution.

• Memory Usage while Execution:

 Instruction Space: The amount of memory used to save the compiled

version of instructions.

 Environmental Stack: When an algorithm (function) is called inside

another algorithm (function). In such a situation, the current variables are

pushed onto the system stack, where they wait for further execution and

then the call to the inside algorithm (function) is made.

 Data Space: The amount of space used by the variables and constants.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.24

Space Complexity

• While calculating the Space Complexity of any algorithm, usually the

Data Space is considered and the Instruction Space and Environmental

Stack are neglected.

• Space Complexity = Space used by Input Values + Auxiliary Space

 Auxiliary Space is the extra space or the temporary space used by

the algorithm during it's execution.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.25

Calculation of Space Complexity: Examples

• Space = 6 Bytes (3 variables -> 2 bytes for each)

• The Space Complexity for the above-given program is O(1), or constant.

void main() {

 int a = 5, b = 5, c;

 c = a + b;

 printf("%d", c);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.26

Calculation of Space Complexity: Examples

• Space = 2n+6 Bytes (3 variables and 1 array of size n)

• The Space Complexity for the above-given program is O(n), or linear.

void main() {

 int n, i, sum = 0;

 scanf("%d", &n);

 int arr[n];

 for(i = 0; i < n; i++) {

 scanf("%d", &arr[i]);

 sum = sum + arr[i];

 }

 printf("%d", sum);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.27

Calculation of Space Complexity: Examples

• Space = ?

• Growth Rate = ?

void matrixAdd(int a[], int b[], int c[], int n)

{

 for (int i = 0; i < n; ++i)

 {

 c[i] = a[i] + b[j]

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.28

Introduction to Pointer

• A pointer is a derived data type in C.

• It is built from one of the fundamental data types available in C.

• Pointers contain memory addresses as their values.

• Since these memory addresses are the locations in the computer

memory, pointers can be used to access and manipulate data stored in

the memory.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.29

Computer’s Memory Organization

• The computer’s memory is a sequential

collection of storage cells.

• Each cell, commonly known as a byte,

has a number called address associated

with it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.30

Understanding Pointer

• Whenever we declare a variable, the system allocates, somewhere in

the memory, an appropriate location to hold the value of the variable.

• Consider the following statement:

int quantity = 179;

 This statement instructs the system to find a location for the integer variable

quantity and puts the value 179 in that location.

 Assume that the system has chosen the address location 5000 for quantity.

Note that the address of
a variable is the address
of the first bye occupied
by that variable.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.31

Understanding Pointer (contd…)

• During execution of the program, the system always associates the

name quantity with the address 5000.

 This is something similar to having a house number as well as a house

name.

 We may have access to the value 179 by using either the name quantity or

the address 5000.

• Variables that hold memory addresses are called pointer variables.

 A pointer variable is, therefore, a variable that contains an address, which

is a location of another variable in memory.

 Since a pointer is a variable, its value is also stored in the memory in

another location.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.32

Understanding Pointer (contd…)

• Suppose, we assign the address of quantity to a variable P:

• The link between the variables P and quantity can be visualized as:

 Since the value of the variable P is the address of the variable quantity, we

may access the value of quantity by using the value of P and therefore, we

say that the variable P ‘points’ to the variable quantity. Thus, P gets the

name ‘pointer’.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.33

Understanding Pointer (contd…)

• Pointers are built on the three underlying concepts as illustrated below:

 Memory addresses within a computer are referred to as pointer constants.

We cannot change them; we can only use them to store data values.

 We cannot save the value of a memory address directly. We can only

obtain the value through the variable stored there using the address

operator (&). The value thus obtained is known as pointer value.

 Variable that contains a pointer value is called a pointer variable.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.34

Accessing the Address of a Variable

• The address of a variable is determined with the help of & (address of)

operator.

P = &quantity;

 The & operator can be used only with a simple variable or an array

element.

 &125 (Pointing at Constant) ----> Correct or Incorrect?

 &x (Pointing at Array Name x[10]) ----> Correct or Incorrect?

 &(x+y) (Pointing at Expression) ----> Correct or Incorrect?

 &x[0] (Pointing at Array Element 0) ----> Correct or Incorrect?

 &x[i+3] (Pointing at Array Element i+3) ----> Correct or Incorrect?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.35

Program to Print the Addresses of Variables

void main()

{

 char a;

 int x;

 float p;

 a = ‘A’;

 x = 125;

 p = 10.25;

 printf(‚%c is stored at address %u.\n‛, a, &a);

 printf(‚%d is stored at address %u.\n‛, x, &x);

 printf(‚%f is stored at address %u.\n‛, p, &p);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.36

Declaring a Pointer Variable

• The declaration of a pointer variable takes the following form:

dataType *pointerName;

 This tells the compiler three things about the variable pointerName:

o The asterisk (*) tells that the variable pointerName is a pointer variable.

o pointerName needs a memory location.

o pointerName points to a variable of type dataType.

• Pointer Declaration Style:

• int* p;

• int *p;

• int * p;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.37

Initialization of Pointer Variables

• Once a pointer variable has been declared we can use the assignment

operator to initialize the variable. Examples:

• We could also define a pointer variable with an initial value of NULL or 0 (zero).

int quantity;

int *p; //Declaration

p = *quantity; //Initialization

//We can also combine the initialization with the declaration.

int *p = &quantity;

//It is also possible to combine the declaration of data variable, the declaration of pointer

variable and the initialization of the pointer variable in one step.

int x, *p = &x; //Three in One

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.38

Pointer Flexibility

• We can make the same pointer to point to different data variables in

different statements:

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.39

Pointer Flexibility (contd…)

• We can also use different pointers to point to the same data variable:

int x;

int *p1 = &x;

int *p2 = &x;

int *p3 = &x;

.

.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.40

Accessing a Variable through its Pointer

• To access the value of the variable using the pointer, we use unary

operator * (asterisk), usually known as the indirection operator.

int quantity, *p, n;

quantity = 179;

p = &quantity;

n = *p;

//p = &quantity; n = *p; are equivalent to n = *&quantity; which in

turn is equivalent to n = quantity;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.41

Chain of Pointers

• It is possible to make a pointer to point to another pointer, thus

creating a chain of pointers as shown:

 Here, the pointer variable p2 contains the address of the pointer variable

p1, which points to the location that contains the desired value. This is

known as multiple indirections.

 A variable that is a pointer to a pointer must be declared using additional

indirection operator symbols in front of the name. Example:

int **p2;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.42

Pointer Expressions

• Like other variables, pointer variables can be used in expressions.

• For example, if p1 and p2 are properly declared and initialized pointers,

then the following statements are valid:

Valid Expressions

y = *p1 * *p2;

sum = sum + *p1;

z = 5* – *p2/ *p1;

*p2 = *p2 + 10;

p1 + 4;

p2 – 2;

p1 – p2;

p1++;

p1 > p2; p1 = = p2; p1 != p2;

Invalid Expressions

p1 / p2;

p1 * p2;

p1 / 3;

p1 + p2;

//Division, Multiplication, and Addition

of two pointers variables is illegal.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.43

Rules of Pointer Operations

• A pointer variable can be assigned the address of another variable.

• A pointer variable can be assigned the values of another pointer variable.

• A pointer variable can be initialized with NULL or zero value.

• A pointer variable can be pre-fixed or post-fixed with increment or decrement

operators.

• An integer value may be added or subtracted from a pointer variable.

• When two pointers point to the same array, one pointer variable can be

subtracted from another.

• When two pointers point to the objects of the same data types, they can be

compared using relational operators.

• A pointer variable cannot be multiplied by a constant.

• Two pointer variables cannot be added.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.44

Pointers and Arrays

• When an array is declared, the compiler allocates a base address and

sufficient amount of storage to contain all the elements of the array in

contiguous memory locations.

• The base address is the location of the first element (index 0) of the array.

• Suppose we declare an array x as follows: int x[5] = {1, 2, 3, 4, 5};

• If we declare p as an integer pointer, then we can make the pointer p to point

to the array x by the following assignment: p = x;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.45

Pointers and Arrays (contd…)

• p = x; is equivalent to p = &x[0];

• Now, we can access every value of x using p++ to move from one

element to another. The relationship between p and x is shown as:

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

The address of an element is calculated using its index and the scale factor of the

data type.

address of x[3] = base address + (3 x scale factor of int)

 = 1000 + (3 x 2) = 1006

When handling arrays, instead of using

array indexing, we can use pointers to

access array elements. Note that

*(p+3) gives the value of x[3].

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.46

Pointers and Arrays (contd…)

• Pointers can be used to manipulate two-dimensional arrays as well.

• As we know that in a one-dimensional array x, the expression

*(p+i)represents the element x[i].

• Similarly, an element in a two-dimensional array can be represented by

the pointer expression as *(*(p+i)j).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.47

Pointers as Function Arguments

void main()

{

 int x;

 x = 20;

 change(&x); //Call by Reference or Addres

 printf(‚%d\n‛,x);

}

void change(int *p)

{

 *p = *p + 10;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.48

Functions Returning Pointers

void main ()

{

 int a = 10, b = 20, *p;

 p = larger(&a, &b); //Function Call

 printf (‚%d‛, *p);

}

int *larger (int *x, int *y)

{

 if (*x>*y)

 return (x); // Address of a

 else

 return (y); //Address of b

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.49

Structure

• Structure is a mechanism for packing data of different types.

• Structure is a convenient tool for handling a group of logically related

data items.

• Examples:

 Time: Seconds, Minutes, Hours

 Date: Day, Month, Year

 Book: Author, Title, Price, Year

 Address: Door No, Street, City, State

 Student: Name, Roll, Course, Year

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.50

Structure

• Defining a Structure:

• Example:

struct Tag_Name

{

 dataType member1;

 dataType member2;

 … … … .

};

struct Book

{

 char title[20];

 int year;

 float price;

};

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.51

Structure

• Declaring Structure Variable:

OR

struct Book

{

 char title[20];

 int year;

 float price;

};

struct Book b1, b2;

struct

{

 char title[20];

 int year;

 float price;

} Book b1, b2;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.52

Structure

• Type-Defined Structure:

typedef struct

{

 char title[20];

 int year;

 float price;

}Book;

Book b1, b2;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.53

Structure

• Structure Initialization:

struct book

{

 char title[20];

 int year;

 float price;

};

struct book b1 = {‚Data Structure‛, 2015, 199.90};

struct book b2 = {‚Java Programming‛, 2017, 395.50};

struct book b3 = {‚Software Engineering‛, 2017};

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.54

Structure

• Copying and Comparing Structure Variables:

 If b1 and b2 belong to same structure, then the following is valid:

 However, the following statements are not permitted.

b1 = b2;

b1 == b2;

b1 != b2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.55

Structure

• Accessing Structure Members (Using Dot Notation):

 The line between a structure Member and a Variable is established using

the member operator ‘.’ which is also known as ‘dot operator’ or ‘period

operator’.

 Examples:

 struct book b;

b.title = ‚C Programming‛;

b.page = 160;

scanf(‚%d‛,&b.page);

printf(‚%d‛,b.page);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.56

Structure

• Accessing Structure Members (Using Selection Notation):

 When the structure variables are declared as Pointer Variables, the line

between a structure Member and a Variable is established using the ‘->’

operator.

 Examples:

struct book b1, *b;

b = &b1;

b->title = ‚C Programming‛;

b->page = 160;

scanf(‚%d‛,&b->page);

printf(‚%d‛,b->page);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.57

Structure

• Arrays of Structure:

 Examples:

 struct book b[2];

b[1].page = 160;

scanf(‚%d‛, &b[1].page);

printf(‚%d‛, b[1].page);

b[2].page = 170;

scanf(‚%d‛, &b[2].page);

printf(‚%d‛, b[2].page);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.58

Structure

• Self-Referential Structure:

 Structure that include an element that is a pointer to another structure of

the same type.

 This type of structure is useful in creating complex data structure such as

linked list, tree, graph.

 Example:

typedef struct node

{

 int info;

 struct node *next;

}NODE;

NODE *start;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.59

Structure

• Structure and Function:

 Structure variables can be passed as arguments to function.

 Example:

struct book update(struct book b1)
{
 b1.price = b1.price + 10.0;
 return (b1);
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.60

Dynamic Memory Management

• The program instructions and global and static variables are stored in a region

known as permanent storage area.

• Local Variables are stored in another area, called Stack.

• The memory space available between stack and permanent storage area is

available for dynamic allocation during execution of program.

• This free memory area is called Heap.

• The size of heap keeps changing due to creation and death of variables that

are local to function and blocks.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.61

Memory Management Functions

• malloc() stdlib.h

 The name malloc stands for "memory allocation".

 The function malloc() reserves a block of memory of specified size and

return a pointer of type void which can be casted into pointer of any form.

 Syntax:

 Example:

 If the space is insufficient, allocation fails and returns NULL pointer.

ptr = (cast_type *) malloc (byte_size);

ptr = (int *) malloc (100*sizeof(int));

b = (Book *) malloc (sizeof(Book));

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.62

Memory Management Functions

• calloc()

 The name calloc stands for "contiguous allocation".

 calloc() allocates multiple blocks of memory each of same size.

 Syntax:

 Example:

ptr = (cast_type *) calloc(n,element_size)

ptr = (int *) calloc(20, sizeof(int));

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.63

Memory Management Functions

• free()

 Dynamically allocated memory created with either calloc() or malloc()

doesn't get freed on its own.

 free() releases the space.

 Syntax:

free(ptr);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.64

Memory Management Functions

• realloc()

 If the previously allocated memory is insufficient or more than required,

we can change the previously allocated memory size using realloc().

 Syntax:

ptr = realloc(ptr, newsize);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh P.65

Other Readings / Suggestions

• For basic understanding of array, structure, pointer, and file handling

concepts in “C Programming”, students are advised to go through

following course website:

 https://spoken-tutorial.org/tutorial-

search/?search_foss=C+and+Cpp&search_language=English

