

BHARATI VIDYAPEETH'S

INSTITUTE OF COMPUTER APPLICATIONS & MANAGEMENT (BVICAM)

(Affiliated to Guru Gobind Singh Indraprastha University, Approved by AICTE, New Delhi) A-4, Paschim Vihar, Rohtak Road, New Delhi-110063, Visit us at: http://www.bvicam.in/

LESSON PLAN

Course: MCA-201 – Design and Analysis of Algorithms			
MCA – 3 rd Semester	No. of Theory Hours per Week: 04		

Course Outcomes (COs):

CO #	Detailed Statement of the CO
CO1	Demonstrate P and NP complexity classes of the problem. (BTL2)
CO2	Apply the concepts of asymptotic notations to analyze the complexities of various algorithms. (BTL4)
CO3	Analyze and evaluate the searching, sorting and tree-based algorithms. (BTL5)
CO4	Design efficient solutions using various algorithms for given problems. (BTL6)
CO5	Develop innovative solutions for real-world problems using different paradigms. (BTL6)

Recommended Books:

Books	S. No.	Details of the Books			
Text	1.	T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction			
Books		to Algorithms", PHI, 2nd Edition, 2006. [TB1]			
	2.	S. Dasgupta, C. Papadimitriou and U.Vazirani, "Algorithms", McGraw Hill Higher Education, 1st Edition, 2017. [TB2]			
	3.	J. Kleinberg and E. Tardos, "Algorithm Design", Pearson Education, 2nd Edition, 2009. [TB3]			
Reference	1.	S. Horowitz, "Fundamentals of Computer Algorithms", University			
Books		Press, 2nd Edition, 2008. [RB1]			
	2.	R. Panneerselvam, "Design and Analysis of Algorithms", PHI, 2nd Edition, 2016. [RB2]			
	3.	T. H. Cormen, "Algorithms Unlocked", MIT Press, 1st Edition, 2013 [RB3]			
	4.	R. Neapolitan and K. Naimipour, "Foundations of Algorithms", Jones & Bartlett Publishers, 4th Edition, 2010. [RB4]			
	5.	A. Levitin, "Introduction to the Design and Analysis of Algorithms", Pearson Education, 3rd Edition, 2012. [RB4]			

Lesson Plan for Theory:

Lecture No.	Topics/Concepts to be Covered	Reference of the Book and its Chapter			
	UNIT - I				
1.	Algorithm Specification	TB1 [Chapters 1-5]; TB2 [Chapters 0-2]; TB3 [Chapters 2, 5, 13]			
2.	Performance Analysis: Space and Time Complexity				
3.	Performance Analysis: Space and Time Complexity				
4.	Performance Analysis: Space and Time Complexity				
5.	Performance Analysis: Space and Time Complexity				
6.	Correctness of Algorithms				
7.	Growth of Functions				
8.	Asymptotic Notations and Types				
9.	Concept of Randomized Algorithms				
10.	Recurrences: Substitution, Iteration				
11.	Master and Recurrence Tree method				
	UNIT – II				
12.	Problem Solving,	TB1 [Chapters 7-9, 13,			
13.	Comparative Analysis of different Sorting and	21 28, 32];			
	Searching Techniques	TB2 [Chapter 2]; TB3			
14.	Strassen's Matrix Multiplication Method	[Chapter 5]			
15.	Sorting in linear time: Counting Sort, Bucket Sort and Radix Sort				
16.	String Matching Concept: Naive String-Matching Algorithm				
17.	String Matching with Finite Automata				
18.	Knuth Morris Pratt Algorithm				
19.	The Rabin-Karp Algorithm				
20.	Red Black Trees, Disjoint Set and their Implementation				
21.	Medians and Order Statistics				
22.	Medians and Order Statistics				
	UNIT – III				
23.	Greedy Algorithms: General Concept	TB1 [Chapters 15-16 &			
24.	Applications, Activity Selection Problem	23-25]; TB2 [Chapters 4-6];			
25.	Fractional Knapsack problem				

Lecture No.	Topics/Concepts to be Covered	Reference of the Book and its Chapter	
26.	Job Sequencing with Deadlines	TB3 [Chapters 4, 6]	
27.	Huffman Coding, Analysis and Correctness of Prim's, Kruskal Algorithm and Dijkstra Algorithm		
28.	Dynamic Programming: General Concept, Matrix-Chain Multiplication Problem, Longest Common Subsequence Problem		
29.	Bellman-Ford Algorithm		
30.	Analysis and Correctness of Floyd-Warshall Algorithm		
31.	Optimal Binary Search Trees		
32.	0/1 Knapsack Problem		
33.	Network Flow Problem		
	UNIT - IV		
34.	Backtracking: n-Queen's Problem	TB1 [Chapters 34, 35];	
35.	Hamiltonian Circuit Problem, Subset-Sum Problem	TB2 [Chapters 8, 9];	
36.	Graph Coloring Problem. Branch and Bound: Assignment Problem, Travelling Salesman Problem	TB3 [Chapter 8]	
37.	Introduction to Computability, Polynomial-time Verification		
38.	NP-Completeness. Complexity Classes: Reducibility		
39.	NP-Completeness Proof, NP-Complete & NP-Hard, Problem Classification-P, NP, NPC, NP-Hard		
40.	Circuit Satisfiability		
41.	3SAT, Vertex Cover		
42.	Clique, Cook's Theorem		

Course: MCA-261 – Design and Analysis of Algorithms Lab MCA – 2nd Semester No. of Practical Hours per Week: 02

Course/Lab Outcomes (COs):

COs fo	COs for Practical (MCA-261)				
CO1	Apply logical thinking to build solutions for given problems (BTL3)				
CO2	Evaluate correctness & efficiency of algorithms using inductive proofs and invariants. (BTL5)				
CO3	Design and perform parameter-based analysis of the searching, sorting and tree-based algorithms. (BTL6)				
CO4	Create and test optimal solutions for various problems. (BTL6)				

Lesson Plan for Practical:

Week No.	Lab No.	Topics/Concepts to be Covered	Reference of Lab Manual
110.	110.		
1.	1.	Basics of Algorithms	P1-P4, P10
2.	2.	Divide and Conquer Paradigm	P4, P5, P14
3.	3.	Sorting	P6, P9
4.	4.	String Matching Concept	P7, P18, P19
5.	5.	Greedy Algorithms	P8
6.	6.	Dynamic Programming	P11
7.	7.	Backtracking	P12, P13
8.	8.	Travelling Salesman Problem	P17
9.	9.	Graph Coloring Problem	P15, P16
10.	10.	Dynamic Programming	P21
11.	11.	Dynamic Programming	P22
12.	12.	Revision of all concepts	-

Testing Schedule:

Nature of Test	February	March	April	May
Surprise Test (ST)	ST in 3 rd week	ST in 2 nd week	-	-
Mid Term Test (MT)	-		MT in 1st week	-
Class Test (CT)	CT in 4 th week		-	-
Supplementary Test (Sp. T)	-	-	-	Sp. T in 3 rd week
Assignment Submission Schedule	Assignment-1 is to be submitted One Week after completion of Unit-1 and Unit-2. Assignment-2 is to be submitted One Week after completion of Unit-3. Assignment-3 is to be submitted One Week after completion of Unit-4.			