
MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV 1

UNIT-IV

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV 2

In this unit, we’ll cover the following:

• Advanced Python

• NumPy Library

• Pandas Library

• Data Visualization

• GUI Programming

Overview of the Unit

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

List comprehension is an elegant way to define and create a list in python.

We can create lists just like mathematical statements and in one line only.

The syntax of list comprehension is easier to grasp. A list comprehension

generally consists of these parts :

• Output expression,

• Input sequence,

• A variable representing a member of the input sequence and

• An optional predicate part.

General syntax is:

Lst = [expression(i) for i in another_list if filter(i)]

List Comprehensions in

Python

3

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example -1:

Lst = [x**2 for x in range(1,11) if x% 2 == 1]

In the above example,

• x ** 2 is the expression.

• range (1, 11) is input sequence or another list.

• x is the variable.

• if x % 2 == 1 is predicate part.

This is the power of list comprehension. It can identify when it receives a

string or a tuple and work on it like a list.

Nested IF with List Comprehension

num_list = [y for y in range(100) if y%2==0 if y%5==0]

print(num_list)

List Comprehension

4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example -2 :

Suppose, we want to separate the letters of the word ‘human’ and add the

letters as items of a list. The first thing that comes in mind would be

using for loop.

h_letters = []

for letter in ‘human’:

h_letters.append(letter)

print(h_letters)

Python has an easier way to solve this issue using List

Comprehension.

h_letters = [letter for letter in ‘human’]

print(h_letters)

List Comprehension

5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

In example-2, we can see that ‘human’ is a string, not a list. This is the

power of list comprehension. It can identify when it receives a string or a

tuple and work on it like a list.

You can do that using loops.

However, not every loop can be rewritten as list comprehension. But as

you learn and get comfortable with list comprehensions, you will find

yourself replacing more and more loops with this elegant syntax.

List Comprehension

6

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/list

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Advantages of List Comprehension

• More time efficient and space efficient than loops.

• Require fewer lines of code.

• Transforms iterative statement into a formula.

Key Points to Remember

• we should avoid writing very long list comprehensions in one line to

ensure that code is user-friendly.

• Every list comprehension can be rewritten in for loop, but every for loop

can’t be rewritten in the form of list comprehension.

Advantages of List

Comprehension

7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The advantage of the lambda function can be seen when it is used in

combination with the map() function. map() is a function which takes two

arguments:

r = map(func, seq)

• The first argument func is the name of a function and the second a

sequence (e.g. a list) seq. map() applies the function func to all the

elements of the sequence seq.

• Before Python3, map() used to return a list, where each element of the

result list was the result of the function func applied on the

corresponding element of the list or tuple "seq". With Python 3, map()

returns an iterator.

map() Function

8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• The map() function executes a specified function for each item in an

iterable. The item is sent to the function as a parameter.

Example

Calculate the length of each word in the tuple:

Def myFunc(s):

return(len(s))

X = map(myFunc,(‘Apple’,’Banana’,’kiwi’))

Print(list(X))

X = list(map(lambda s: len(s) ,('Apple','Banana','kiwi')))

print(X)

X=[len(s) for s in ('Apple','Banana','kiwi')]

print(X)

map() Function

9

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

filter(func, seq)

• It offers an elegant way to filter out all the elements of a

sequence "seq", for which the function func returns True. i.e. an

item will be produced by the iterator result of filter(func, seq) if

item is included in the sequence "seq" and if func(item) returns

True.

• In other words: The function filter(f,l) needs a function f as its

first argument. f has to return a Boolean value, i.e. either True or

False. This function will be applied to every element of the list l.

Only if f returns True will the element be produced by the

iterator, which is the return value of filter(function, sequence).

filter() Function

10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

In the following example, we filter out first the odd and then the even

elements of the sequence of the first 11 Fibonacci numbers:

fibonacci = [0,1,1,2,3,5,8,13,21,34,55]

odd_num = list(filter(lambda x: x%2, fibonacci))

Print(odd_num)

even_num = list(filter(lambda x: x%2==0, fibonacci))

Print(even_num)

odd_num = [x for x in fibonacci if x%2]

even_num = [x for x in fibonacci if x%2==0]

filter() Function

11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The reduce(fun,seq) function is used to apply a particular function

passed in its argument to all of the list elements mentioned in the

sequence passed along. This function is defined in “functools” module.

It performs a rolling-computation as specified by the passed function to

the neighboring elements, by taking a function and an iterable as

arguments, and returns the final computed value.

Working :

1. At first step, first two elements of sequence are picked and the result

is obtained.

2. Next step is to apply the same function to the previously attained

result and the number just succeeding the second element and the

result is again stored.

3. This process continues till no more elements are left in the container.

4. The final returned result is returned and printed on console.

reduce() Function

12

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example:

from functools import reduce

Returns the sum of two elements

def sumTwo(a,b):

return a+b

result = reduce(sumTwo, [1, 2, 3, 4])

print(result)

from functools import reduce

Returns the sum of all the elements using `reduce`

result = reduce((lambda a, b: a + b), [1, 2, 3, 4])

print(result)

reduce() Function

13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• List Comprehension is used to create lists, Lambdas are functions that

can process like other functions and thus return values or list.

• Lambda function process is the same as other functions and returns

the value of the list. The Lambda function itself cannot be used to

iterate through a list. It return a list with the help of map() and list()

functions.

list(map(lambda argument: manipulate(argument), iterable))

• List comprehension performance is better than lambda because filter()

in lambda is slower than list comprehension.

Comparison of Lambda

and List Comprehension

14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• NumPy, which stands for Numerical Python, is a library consisting of

multidimensional array objects and a collection of routines for

processing those arrays.

• NumPy is a general-purpose array-processing package. It provides a

high-performance multidimensional array object, and tools for working

with these arrays : the n-dimensional array. This is simple yet

powerful data structure.

• In Python we have lists that serve the purpose of arrays, but they are

slow to process. NumPy aims to provide an array object that is up to

50x faster than traditional Python lists.

• The array object in NumPy is called ndarray it provides a lot of

supporting functions that make working with ndarray very easy.

• Arrays are very frequently used in data science, where speed and

resources are very important.

NumPy Library

15

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• It is the fundamental package for scientific computing with Python. It

contains various features including these important ones:

• A powerful N-dimensional array object

• Sophisticated (broadcasting) functions

• Tools for integrating C/C++ and Fortran code

• Useful linear algebra, Fourier transform, and random number

capabilities

Besides its obvious scientific uses, NumPy can also be used as an

efficient multi-dimensional container of generic data.

Arbitrary data-types can be defined using Numpy which allows NumPy to

seamlessly and speedily integrate with a wide variety of databases.

NumPy Library

continued ….

16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• NumPy arrays are stored at one continuous place in memory unlike

lists, so processes can access and manipulate them very efficiently.

• This behavior is called locality of reference in computer science.

• This is the main reason why NumPy is faster than lists. Also it is

optimized to work with latest CPU architectures.

NumPy is a Python library and is written partially in Python, but most of

the parts that require fast computation are written in C or C++.

Why is NumPy Faster

Than Lists?

17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

NumPy’s main object is the homogeneous multidimensional array.

• It is a table of elements (usually numbers), all of the same type,

indexed by a tuple of positive integers.

• In NumPy dimensions are called axes. The number of axes is rank.

• NumPy’s array class is called ndarray. It is also known by the

alias array.

• Items in the collection can be accessed using a zero-based index.

• Every item in an ndarray takes the same size of block in the memory.

Example:

import numpy

arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

Arrays in NumPy

18

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

There are various ways to create arrays in NumPy.

• we can pass a list, tuple or any array-like object into the array()

method, and it will be converted into an ndarray.

General Syntax :

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

Array creation:

19

1 object It represents the collection object. It can be a list, tuple, dictionary, set, etc.

2 dtype We can change the data type of the array elements by changing this option to the
specified type. The default is none.

3 copy It is optional. By default, it is true which means the object is copied.

4 order There can be 3 possible values assigned to this option. It can be C (column order), R
(row order), or A (any)

5 subok The returned array will be base class array by default. We can change this to make the
subclasses passes through by setting this option to true.

6 ndmin It represents the minimum dimensions of the resultant array.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example:

import numpy as np

arr = np.array([[1, 2, 3],

[4, 2, 5]])

print("Array is of type: ", type(arr))

print("No. of dimensions: ", arr.ndim)

print("Shape of array: ", arr.shape)

print("Size of array: ", arr.size)

print("Array stores elements of type: ", arr.dtype)

Array creation:

20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Data Types &

Description

21

Sr.No. Data Types & Description

1. bool_ Boolean (True or False) stored as a byte

2. int_ Default integer type (same as C long; normally either int64 or int32)

3. Intc Identical to C int (normally int32 or int64)

4. int8 Byte (-128 to 127), int16 Integer (-32768 to 32767), int32 Integer (-2147483648 to

2147483647), int64 Integer (-9223372036854775808 to 9223372036854775807)

5. uint8 Unsigned integer (0 to 255), uint16 Unsigned integer (0 to 65535), uint32 Unsigned

integer (0 to 4294967295), uint64 Unsigned integer (0 to 18446744073709551615)

6. float_ Shorthand for float64, float16 Half precision float: sign bit, 5 bits exponent, 10 bits

mantissa. float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa, float64

Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

7. complex_ Shorthand for complex128, complex64 Complex number, represented by two

32-bit floats (real and imaginary components), complex128 Complex number, represented

by two 64-bit floats (real and imaginary components)

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Each built-in data type has a character code that uniquely identifies it.

• 'b' − boolean

• 'i' − (signed) integer

• 'u' − unsigned integer

• 'f' − floating-point

• 'c' − complex-floating point

• 'm' − timedelta

• 'M' − datetime

• 'O' − (Python) objects

• 'S', 'a' − (byte-)string

• 'U' − Unicode

• 'V' − raw data (void)

Try This :

import numpy as np

student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])

a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)

print a

Data Types &

Description

22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

0-D Arrays

• 0-D arrays, or Scalars, are the elements in an array. Each value in an

array is a 0-D array.

import numpy as np

arr = np.array(42)

print(arr)

1-D Arrays

• An array that has 0-D arrays as its elements is called uni-dimensional

or 1-D array.

• These are the most common and basic arrays.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

Dimensions in Arrays

23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

2-D Arrays

• An array that has 1-D arrays as its elements is called a 2-D array.

• These are often used to represent matrix or 2nd order tensors.

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

3-D arrays

• An array that has 2-D arrays (matrices) as its elements is called 3-D

array.

• These are often used to represent a 3rd order tensor.

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(arr)

Dimensions in Arrays

24

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Often, the elements of an array are originally unknown, but its size is known. Hence,

NumPy offers several functions to create arrays with initial placeholder content. These

minimize the necessity of growing arrays, an expensive operation.

For example: np.zeros, np.ones, np.full, np.empty, etc.

c = np.zeros((3, 4))

print ("\nAn array initialized with all zeros:\n", c)

d = np.full((3, 3), 6, dtype = 'complex')

print ("\nAn array initialized with all 6s Array type is complex:\n", d)

• To create sequences of numbers, NumPy provides a function analogous to range that

returns arrays instead of lists.

– arange: returns evenly spaced values within a given interval. step size is specified.

– linspace: returns evenly spaced values within a given interval. num no. of elements

are returned.

f = np.arange(0, 30, 5)

g = np.linspace(0, 5, 10)

Array Creation Contitues …

25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Reshaping array: We can use reshape method to reshape an array.

Consider an array with shape (a1, a2, a3, …, aN). We can reshape and

convert it into another array with shape (b1, b2, b3, …, bM). The only

required condition is:

a1 x a2 x a3 … x aN = b1 x b2 x b3 … x bM . (i.e original size of array

remains unchanged.)

arr = np.array([[1, 2, 3, 4],

[5, 2, 4, 2],

[1, 2, 0, 1]])

newarr = arr.reshape(2, 2, 3)

print ("\nOriginal array:\n", arr)

print ("Reshaped array:\n", newarr)

Array Creation Contitues …

26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Flatten array: We can use flatten method to get a copy of array

collapsed into one dimension. It accepts order argument. Default

value is ‘C’ (for row-major order). Use ‘F’ for column major order.

arr = np.array([[1, 2, 3], [4, 5, 6]])

flarr = arr.flatten()

print ("\nOriginal array:\n", arr)

print ("Fattened array:\n", flarr)

Array Creation Contitues …

27

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

It creates an uninitialized array of specified shape and dtype. It uses the

following constructor −

numpy.empty(shape, dtype = float, order = 'C')

The constructor takes the following parameters.

import numpy as np

x = np.empty([3,2], dtype = int)

print x

numpy.empty

28

Sr.No. Parameter & Description

1 Shape Shape of an empty array in int or tuple of int

2 Dtype Desired output data type. Optional

3 Order 'C' for C-style row-major array, 'F' for FORTRAN style column-major array

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Contents of ndarray object can be accessed and modified by indexing

or slicing, just like Python's in-built container objects.

• Items in ndarray object follows zero-based index. Three types of

indexing methods are available − field access, basic

slicing and advanced indexing.

• Basic slicing is an extension of Python's basic concept of slicing to n

dimensions. A Python slice object is constructed by giving start, stop,

and step parameters to the built-in slice function. This slice object is

passed to the array to extract a part of array.

import numpy as np

a = np.arange(10)

s = slice(2,7,2)

print(a)

print a[s]

NumPy - Indexing & Slicing

29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The same result can also be obtained by giving the slicing parameters

separated by a colon : (start:stop:step) directly to the ndarray object.

import numpy as np

a = np.arange(10)

b = a[2:7:2]

print b

• If only one parameter is put, a single item corresponding to the index

will be returned.

• If a : is inserted in front of it, all items from that index onwards will be

extracted.

• If two parameters (with : between them) is used, items between the two

indexes (not including the stop index) with default step one are sliced.

Try This: a[5:8]=12

print (a)

NumPy - Indexing & Slicing

30

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

With higher dimensional arrays, you have many more options. In a two-

dimensional array, the elements at each index are no longer scalars but

rather one-dimensional arrays:

arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(arr2d[2])

We can pass a comma-separated list of indices to select individual

elements.

print(arr2d[0][2])

Or

print(arr2d[0,2])

NumPy - Indexing & Slicing

31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

In multidimensional arrays, if you omit later indices, the returned object will

be a lower-dimensional ndarray consisting of all the data along the higher

dimensions. So in the 2X2X3 array:

arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

print(arr3d)

print(arr3d[0])

print(arr3d[1,0])

• Arr3d[0] is a 2X3 array

• Similarly, arr3d[1,0] gives you all of the values whose indices start with

(1,0) forming a 1-dimensional array

NumPy - Indexing & Slicing

32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Scalar Addition

Scalars can be added and subtracted from arrays and arrays can be

added and subtracted from each other:

import numpy as np

a = np.array([1, 2, 3])

b = a + 2

print(b)

Array Operations

33

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Scalar Multiplication

NumPy arrays can be multiplied and divided by scalar integers and floats:

a = np.array([1,2,3])

b = 3*a

print(b)

a = np.array([10,20,30])

b = a/2

print(b)

Array Operations

34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Arrays enable you to perform mathematical operations on whole blocks of

data using similar syntax to the equivalent operations between scalar

elements.

Operations between differently sized arrays is called broadcasting. Input

arrays for performing arithmetic operations such as add(), subtract(),

multiply(), and divide() must be either of the same shape or should

conform to array broadcasting rules.

Example : Array-Operations.py

Element-wise Operations

35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Element-wise Operations
(Unary functions)

36

Function Description

abs, fabs
Compute the absolute value element-wise for integer, floating point, or complex values.
Use fabs as a faster alternative for non-complex-valued data

sqrt Compute the square root of each element. Equivalent to arr ** 0.5

square Compute the square of each element. Equivalent to arr ** 2

exp Compute the exponent ex of each element

log, log10, log2, log1p Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

sign Compute the sign of each element: 1 (positive), 0 (zero), or -1 (negative)

ceil
Compute the ceiling of each element, i.e. the smallest integer greater than or equal to
each element

floor
Compute the floor of each element, i.e. the largest integer less than or equal to each
element

rint Round elements to the nearest integer, preserving the dtype

modf Return fractional and integral parts of array as separate array

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example:

import numpy as np

arr = np.arange(10)

print(arr)

print(np.sqrt(arr))

print(np.exp(arr))

Element-wise Operations
(Unary functions)

37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Element-wise Operations
(Binary universal functions)

38

Function Description

add Add corresponding elements in arrays

subtract Subtract elements in second array from first array

multiply Multiply array elements

divide, floor_divide Divide or floor divide (truncating the remainder)

power
Raise elements in first array to powers indicated in second
array

maximum, fmax Element-wise maximum. fmax ignores NaN

minimum, fmin Element-wise minimum. fmin ignores NaN

mod Element-wise modulus (remainder of division)

greater, greater_equal, less, less_equal, equal,
not_equal

Perform element-wise comparison, yielding boolean array.
Equivalent to infix operators >, >=, <, <=, ==, !=

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

numpy.reciprocal()

This function returns the reciprocal of argument, element-wise. For

elements with absolute values larger than 1, the result is always 0

because of the way in which Python handles integer division. For integer

0, an overflow warning is issued.

import numpy as np

a = np.array([0.25, 1.33, 1, 0, 100])

print(a)

print ('\n')

print (np.reciprocal(a))

b = np.array([100], dtype = int)

print(b)

print(np.reciprocal(b))

Array Operations

39

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

numpy.power()

This function treats elements in the first input array as base and returns it

raised to the power of the corresponding element in the second input

array.

import numpy as np

a = np.array([10,100,1000])

print(a)

print (np.power(a,2))

print ('\n')

b = np.array([1,2,3])

print(b)

print ('\n')

print (np.power(a,b))

Array Operations

40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

numpy.mod()

• This function returns the remainder of division of the corresponding

elements in the input array. The function numpy.remainder() also

produces the same result.

import numpy as np

a = np.array([10,20,30])

b = np.array([3,5,7])

print ('First array:',a,'\n')

print ('Second array:',b,'\n')

print ('Applying mod() function:',np.mod(a,b),'\n')

print ('Applying remainder() function:',np.remainder(a,b),'\n')

Array Operations

41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

In the Python numpy module, we have many aggregate functions or

statistical functions to work with a single-dimensional or multi-dimensional

array.

The Python numpy aggregate functions are sum, min, max, mean,

average, product, median, standard deviation, variance, argmin, argmax,

percentile etc.

Example: Array-Aggregate-Functions.py

Aggregate and Statistical

Functions in Numpy

42

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Some of the aggregate and statistical functions are given below:

• np.sum(m): Used to find out the sum of the given array.

• np.prod(m): Used to find out the product(multiplication) of the values of m.

• np.mean(m): It returns the mean of the input array m.

• np.std(m): It returns the standard deviation of the given input array m.

• np.var(m): Used to find out the variance of the data given in the form of array

m.

• np.min(m): It returns the minimum value among the elements of the given

array m.

• np.max(m): It returns the maximum value among the elements of the given

array m.

• np.argmin(m): It returns the index of the minimum value among the

elements of the array m.

• np.argmax(m): It returns the index of the maximum value among the

elements of the array m.

• np.median(m): It returns the median of the elements of the array m.

Aggregate and Statistical

Functions in Numpy

43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Numpy.hstack is a function in Python that is used to horizontally stack

sequences (column-wise) of input arrays in order to make a single array.

With hstack() function, you can append data horizontally. It is a very

convenient function in NumPy.

Example:

import numpy as np

x = np.array((3,5,7))

y = np.array((5,7,9))

print(np.hstack((x,y)))

x = np.array([[3], [5], [7]])

y = np.array([[5], [7], [9]])

print(np.hstack((x,y)))

Insert Row / Column in

Array

44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Try for following outputs:

[[3 1 5 2]

[5 3 7 4]

[7 5 9 6]]

[[3 1 5]

[5 2 7]

[7 3 9]]

Insert Row / Column in

Array

45

https://codespeedy.com/python-program-to-find-the-smallest-number-in-a-numpy-array/
https://www.guru99.com/numpy-tutorial.html

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The vstack() function is used to stack arrays in sequence vertically (row

wise).

Example :

x = np.array([3, 5, 7])

y = np.array([5, 7, 9])

print(np.vstack((x,y)))

x = np.array([[3], [5], [7]])

y = np.array([[5], [7], [9]])

print(np.vstack((x,y)))

Insert Row / Column in

Array

46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

You can add a NumPy array element by using the append() method of the

NumPy module.

The syntax of append is as follows:

numpy.append(array, value, axis)

• The values will be appended at the end of the array and a new ndarray

will be returned with new and old values.

• The axis is an optional integer along which define how the array is

going to be displayed. If the axis is not specified, the array structure will

be flattened as you will see later.

a = np.array([1, 2, 3])

newArray = np.append (a, [10, 11, 12])

print(newArray)

Append Row / Column in

Array

47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Add a column

• We can use the append() method of NumPy to insert a column.

• Consider the example below where we created a 2-dimensional array

and inserted two columns:

a = np.array([[1, 2, 3], [4, 5, 6]])

b = np.array([[400], [800]])

newArray = np.append(a, b, axis=1)

print(newArray)

Append Row / Column in

Array

48

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Append a row

• In this section, we will be using the append() method to add a row to

the array. It’s as simple as appending an element to the array. Consider

the following example:

a = np.array([[1, 2, 3], [4, 5, 6]])

newArray = np.append(a, [[50, 60, 70]], axis = 0)

print(newArray)

Append Row / Column in

Array

49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

In NumPy, we can also use the insert() method to insert an element or

column. The difference between the insert() and the append() method is

that we can specify at which index we want to add an element when using

the insert() method but the append() method adds a value to the end of

the array.

Consider the example below:

a = np.array([1, 2, 3])

newArray = np.insert(a, 1, 90)

print(newArray)

Here the insert() method adds the element at index 1. Remember the

array index starts from 0.

Append Row / Column in

Array

50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Check if NumPy array is empty

We can use the size method which returns the total number of elements in

the array.

a = np.array([1, 2, 3])

if(a.size == 0):

print("The given Array is empty")

else:

print("The array = ", a)

Check with

a = np.array([])

Few Useful Methods

51

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Find the index of a value

To find the index of value, we can use the where() method of the NumPy

module

a = np.array([1, 2, 3, 4, 5])

print("5 is found at index: ", np.where(a == 5))

The where() method will also return the datatype. If you want to just get the

index, use the following code:

a = np.array([1, 2, 3, 4, 5])

index = np.where(a == 5)

print("5 is found at index: ", index[0])

Few Useful Methods

52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

NumPy array to CSV

To export the array to a CSV file, we can use the savetxt() method of the

NumPy module as illustrated in the example below:

a = np.array([1, 2, 3, 4, 5])

np.savetxt("D:/Python Programming/Scripts/myArray.csv", a)

This code will generate a CSV file in the location where our Python code

file is stored. You can also specify the path.

Sort NumPy array

• You can sort NumPy array using the sort() method of the NumPy

module:

• The sort() function takes an optional axis (an integer) which is -1 by

default. The axis specifies which axis we want to sort the array. -1

means the array will be sorted according to the last axis.

print("Sorted array = ", np.sort(a))

Few Useful Methods

53

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

pandas is a fast, powerful, flexible and easy to use open source data

analysis and manipulation tool, built on top of the Python programming

language.

• Pandas is a Python library used for working with data sets.

• It has functions for analyzing, cleaning, exploring, and manipulating

data.

• The name "Pandas" has a reference to both "Panel Data", and "Python

Data Analysis" and was created by Wes McKinney in 2008.

import pandas as pd

df = pd.read_csv('D:/Python Programming/Scripts/myArray.csv')

print(df.to_string())

Pandas Library

54

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

A DataFrame is a 2-dimensional data structure that can store data of

different types (including characters, integers, floating point values,

categorical data and more) in columns. It is similar to a spreadsheet, a

SQL table Column

Row

The table has 3 columns, each of them with a column label. The column

labels are respectively Name, Age and Gender.

The column Name consists of textual data with each value a string, the

column Age are numbers and the column Gender is textual data.

Data -Frames

55

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

df = pd.DataFrame(

{

"Name": [

"Braund, Mr. Owen Harris",

"Allen, Mr. William Henry",

"Bonnell, Miss. Elizabeth",

],

"Age": [22, 35, 58],

“Gender": ["male", "male", "female"],

}

)

print(df)

Data -Frames

56

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Locate Row

Pandas use the loc attribute to return one or more specified row(s)

print(df.loc[0])

This returns a Pandas Series.

print(df.loc[[0, 1]])

When using [], the result is a Pandas DataFrame.

Data -Frames

57

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Named Indexes

With the index argument, you can name your own indexes.

data = {

"calories": [420, 380, 390],

"duration": [50, 40, 45]

}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

print(df)

Locate Named Indexes

Use the named index in the loc attribute to return the specified row(s).

print(df.loc["day2"])

Data -Frames

58

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• A Pandas Series is like a column in a table.

• It is a one-dimensional array holding data of any type.

• A pandas Series has no column labels, as it is just a single column of

a DataFrame. A Series does have row labels.

• If nothing else is specified, the values are labeled with their index

number. First value has index 0, second value has index 1 etc.

• This label can be used to access a specified value.

• With the index argument, we can give labels.

a = [1, 7, 2]

myvar = pd.Series(a, index = ["x", "y", "z"])

print(myvar)

Series

59

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

When selecting a single column of a pandas DataFrame, the result is a

pandas Series. To select the column, use the column label in between

square brackets [].

Example :

df["Age"]

Or

ages = pd.Series([22, 35, 58], name="Age")

print(ages)

Series

60

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Key/Value Objects as Series

You can also use a key/value object, like a dictionary, when creating a

Series.

import pandas as pd

calories = {"day1": 420, "day2": 380, "day3": 390}

myvar = pd.Series(calories)

print(myvar)

The keys of the dictionary become the labels.

To select only some of the items in the dictionary, use the index argument

and specify only the items you want to include in the Series.

import pandas as pd

calories = {"day1": 420, "day2": 380, "day3": 390}

myvar = pd.Series(calories, index = ["day1", "day2"])

print(myvar)

Series

61

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

We can equate data preparation with the framework of the KDD Process -

- specifically the first 3 major steps -- which re selection, preprocessing,

and transformation.

1. Loading data

The first step for data preparation is to get some data. If you have a .csv

file, you can easily load it up in your system using the read_csv() function

in pandas. We can work with Data-frames and Series as well.

df = pd.read_csv('D:/Python Programming/Scripts/myArray.csv')

Data Preparation and Pre-

Processing

62

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

2. Missing Data

– Handling Missing Data

Missing data can arise in the dataset due to multiple reasons: the data for the

specific field was not added by the user/data collection application, data was

lost while transferring manually, a programming error, etc.

For numerical data, pandas uses a floating point value NaN (Not a Number) to

represent missing data. It is a unique value defined under the

library Numpy so we will need to import it as well. NaN is the default missing

value marker for reasons of computational speed and convenience. This is a

sentinel value, in the sense that it is a dummy data or flag value that can be

easily detected and worked with using functions in pandas.

data = pd.Series([0, 1, 2, 3, 4, 5, np.nan, 6, 7, 8])

data.isnull()

We used the function isnull() which returns a boolean true or false value.

True, when the data at that particular index is actually missing or NaN. The

opposite of this is the notnull() function.

Data Preparation and Pre-

Processing

63

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Furthermore, we can use the dropna() function to filter out missing data and to

remove the null (missing) value and see only the non-null values. However, the

NaN value is not really deleted and can still be found in the original dataset.

What you can do to really "drop" or delete the NaN value is either store the new

dataset (without NaN) so that the original data Series is not tampered or apply a

drop inplace. The inplace argument has a default value of false.

not_null_data = data.dropna()

print(not_null_data)

data.dropna(inplace = True)

print(data)

Data Preparation and Pre-

Processing

64

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Now we try it on Data-frames:

data_dim =

pd.DataFrame([[1,2,3,np.nan],[4,5,np.nan,np.nan],[7,np.nan,np.nan,np.nan],[np.nan

,np.nan,np.nan,np.nan]])

print(data_dim)

Now let's say we only want to drop rows or columns that are all null or

only those that contain a certain amount of null values.

Try data_dim.dropna() : It will not work and the real dataset is not

tampered.

Now, try data_dim.dropna(how = 'all')

Also try data_dim.dropna(axis = 1, thresh = 2)

Data Preparation and Pre-

Processing

65

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

– Filling in Missing Data

To replace or rather "fill in" the null data, you can use the fillna() function.

For example, let's try to use the same dataset as above and try to fill in the

NaN values with 0.

data_dim_fill = data_dim.fillna(0)

print(data_dim_fill)

And like with dropna() you can also do many other things depending on

the kind of argument you pass. Also a reminder that passing the

inplace=true argument will make the change to the original dataset.

We can pass a dictionary to use different values for each column:

data_dim_fill = data_dim.fillna({0: 0, 1: 8, 2: 9, 3: 10})

print(data_dim_fill)

Data Preparation and Pre-

Processing

66

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Indexing in pandas means simply selecting particular rows and

columns of data from a DataFrame.

• Indexing could mean selecting all the rows and some of the columns,

some of the rows and all of the columns, or some of each of the rows

and columns.

• Indexing can also be known as Subset Selection.

• The Python and NumPy indexing operators "[]" and attribute operator

"." provide quick and easy access to Pandas data structures across a

wide range of use cases.

• But, since the type of the data to be accessed isn’t known in advance,

directly using standard operators has some optimization limits.

• We take advantage of some optimized pandas data access methods

like .loc(), .iloc(), .ix().

DataFrame Indexing

67

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

loc() Method: (Label Based)

• Pandas provide various methods to have purely label based indexing.

When slicing, the start bound is also included. Integers are valid labels,

but they refer to the label and not the position.

.loc() has multiple access methods like −

• A single scalar label

• A list of labels

• A slice object

• A Boolean array

loc takes two single/list/range operator separated by ','. The first one

indicates the row and the second one indicates columns.

DataFrame Indexing

68

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example:

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(6, 4),

index = ['a','b','c','d','e','f'], columns = ['A', 'B', 'C','D'])

print (df.loc['a':'d'])

print (df.loc['a':'c','D'])

print (df.loc['a':'f','A':'B'])

DataFrame Indexing

69

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

.iloc() method:

• Pandas provide various methods in order to get purely integer based

indexing. Like python and numpy, these are 0-based indexing.

• It is primarily integer position based from 0 to length – 1 of the axis

The various access methods are as follows −

• An Integer

• A list of integers

• A range of values

DataFrame Indexing

70

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example:

import pandas as pd

import numpy as np

df1 = pd.DataFrame(np.random.randn(8, 3),columns = ['A', 'B', 'C'])

print (df1.iloc[:8])

print (df1.iloc[:4])

print (df1.iloc[2:4, 1:3])

DataFrame Indexing

71

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

.ix() method:

• Besides pure label based and integer based, Pandas provides a hybrid

method for selections and subsetting the object using the .ix() operator.

• The .ix indexer is deprecated in all the version after 0.20.0, in favor of

the more strict .iloc and .loc indexers.

df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])

print (df.ix[:,'A'])

DataFrame Indexing

72

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Select Data Using Columns

In addition to location-based and label-based indexing, you can also

select data from pandas dataframes by selecting entire columns using the

column names.

dataframe[“column”]

Above command provides the data from the column as a pandas series,

which is a one-dimensional array. A pandas series is useful for selecting

columns for plotting using matplotlib.

You can also specify that you want an output that is also a pandas

dataframe.

dataframe[[“column”]]

which includes a second set of brackets [], to indicate that the output

should be a pandas dataframe.

DataFrame Indexing

73

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

You can also select all data from multiple columns in a pandas dataframe

using:

dataframe[[“column1”, “column2”]]

Since the results of your selection are also a pandas dataframe, you can

assign the results to a new pandas dataframe.

Try This:

Use avg-precip-months.csv

create a new pandas dataframe that only contains the months and

seasons column effectively dropping the precip values.

DataFrame Indexing

74

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Filter Data Using Specific Values

In addition to location-based and label-based indexing, you can select or

filter data based on specific values within a column using:

dataframe[dataframe[“column1”]==value]

This will return all rows containing that value within the specified column.

Again, you can also save the output to a new dataframe by setting it equal

to the output of the filter.

You can also filter using a comparison operator on numeric values.

Try This :

Select all rows that have a season value of summer.

DataFrame Indexing

75

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The query() Method

• Python is a great language for doing data analysis, primarily because

of the fantastic ecosystem of data-centric Python packages. Pandas is

one of those packages that makes importing and analyzing data much

easier.

• Analyzing data requires a lot of filtering operations. Pandas provide

many methods to filter a Data frame and dataframe.query() is one of

them.

• DataFrame objects have a query() method that allows selection using

an expression. You can get the value of the frame where column b has

values between the values of columns a and c.

The query() Method

76

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Syntax: DataFrame.query(expr, inplace=False, **kwargs)

• Parameters:

expr: Expression in string form to filter data.

inplace: Make changes in the original data frame if True

kwargs: Other keyword arguments.

• Return type: Filtered Data frame

Note: dataframe.query() method only works if the column name doesn’t

have any empty spaces. So before applying the method, spaces in

column names are replaced with ‘_’

The query() Method

77

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example #1: Single condition filtering (Employee.csv)

In this example, the data is filtered on the basis of single condition. Before

applying the query() method, the spaces in column names have been

replaced with ‘_’.

import pandas as pd

import numpy as np

making data frame from csv file

data1 = pd.read_csv('D:/Python Programming/Scripts/employees.csv')

replacing blank spaces with '_'

data1.columns =[column.replace(" ", "_") for column in data1.columns]

filtering with query method

data1.query('Senior_Management == True', inplace = True)

display

print(data1)

The query() Method

78

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Example #2: Multiple condition filtering

making data frame from csv file

data = pd.read_csv('D:/Python Programming/Scripts/employees.csv')

replacing blank spaces with '_'

data.columns =[column.replace(" ", "_") for column in data.columns]

filtering with query method

data.query('Senior_Management == True and Gender =="Male" and

Team =="Marketing" and First_Name =="Johnny"', inplace = True)

display

print(data)

The query() Method

79

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Data visualization is the discipline of trying to understand data by placing

it in a visual context so that patterns, trends and correlations that might

not otherwise be detected can be exposed.

Data Visualization is the presentation of data in graphical format. It helps

people understand the significance of data by summarizing and

presenting huge amount of data in a simple and easy-to-understand

format and helps communicate information clearly and effectively.

Data visualization in python is perhaps one of the most utilized features

for data science with python in today’s day and age. The libraries in

python come with lots of different features that enable users to make

highly customized, elegant, and interactive plots.

Data Visualization

80

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Useful packages for visualizations in python

• Matplotlib

• Matplotlib is a visualization library in Python for 2D plots of arrays.

Matplotlib is written in Python and makes use of the NumPy library.

Matplotlib comes with a wide variety of plots like line, bar, scatter,

histogram, etc. which can help us, deep-dive, into understanding

trends, patterns, correlations. It was introduced by John Hunter in

2002.

• Seaborn

• Seaborn is a dataset-oriented library for making statistical

representations in Python. It is developed atop matplotlib and to create

different visualizations. It is integrated with pandas data structures. The

library internally performs the required mapping and aggregation to

create informative visuals It is recommended to use a Jupyter/IPython

interface in matplotlib mode.

Data Visualization

81

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Bokeh

• Bokeh is an interactive visualization library for modern web browsers. It

is suitable for large or streaming data assets and can be used to

develop interactive plots and dashboards. There is a wide array of

intuitive graphs in the library which can be leveraged to develop

solutions. It works closely with PyData tools. The library is well-suited

for creating customized visuals according to required use-cases.

• Altair

• Altair is a declarative statistical visualization library for Python. Altair’s

API is user-friendly and consistent and built atop Vega-Lite JSON

specification. Declarative library indicates that while creating any

visuals, we need to define the links between the data columns to the

channels (x-axis, y-axis, size, color). With the help of Altair, it is

possible to create informative visuals with minimal code.

Data Visualization

82

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• plotly

• plotly.py is an interactive, open-source, high-level, declarative, and

browser-based visualization library for Python. It holds an array of

useful visualization which includes scientific charts, 3D graphs,

statistical charts, financial charts among others. Plotly graphs can be

viewed in Jupyter notebooks, standalone HTML files, or hosted online.

• ggplot

• ggplot is a Python implementation of the grammar of graphics. The

Grammar of Graphics refers to the mapping of data to aesthetic

attributes (colour, shape, size) and geometric objects (points, lines,

bars). The basic building blocks according to the grammar of graphics

are data, geom (geometric objects), stats (statistical transformations),

scale, coordinate system, and facet.

Data Visualization

83

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Histogram

The histogram represents the frequency of occurrence of specific

phenomena which lie within a specific range of values and arranged in

consecutive and fixed intervals.

• Bar Charts

A bar chart can be created using the bar method. The bar-chart isn’t

automatically calculating the frequency of a category so we are going

to use pandas value_counts function to do this. The bar-chart is useful

for categorical data that doesn’t have a lot of different categories

(less than 30) because else it can get quite messy.

Example: Test-plot.py

Types of Charts for Analyzing &

Presenting Data

84

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Pie Chart :

A pie chart shows a static number and how categories represent part of

a whole the composition of something. A pie chart represents numbers

in percentages, and the total sum of all segments needs to equal

100%.

• Scatter plot :

• A scatter chart shows the relationship between two different variables

and it can reveal the distribution trends. It should be used when there

are many different data points, and you want to highlight similarities in

the data set. This is useful when looking for outliers and for

understanding the distribution of your data.

Example: Piechart.py

Types of Charts for Analyzing &

Presenting Data

85

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

import matplotlib.pyplot as plt

import numpy as np

y = np.array([35, 25, 25, 15])

plt.pie(y)

plt.show()

• As you can see the pie chart draws one piece (called a wedge) for

each value in the array (in this case [35, 25, 25, 15]).

• By default the plotting of the first wedge starts from the x-axis and

move counterclockwise:

Creating Pie Charts

86

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Labels

mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels)

plt.show()

Explode

• Maybe you want one of the wedges to stand out? The explode()

parameter allows you to do that.

• The explode() parameter, if specified, and not None, must be an array

with one value for each wedge.

• Each value represents how far from the center each wedge is

displayed:

myexplode = [0.2, 0, 0, 0]

plt.pie(y, labels = mylabels, explode = myexplode, shadow=true)

plt.show()

Creating Pie Charts

87

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Color

You can set the color of each wedge with the colors parameter.

The colors parameter, if specified, must be an array with one value for

each wedge:

mycolors = ["black", "hotpink", "b", "#4CAF50"]

plt.pie(y, labels = mylabels, colors = mycolors)

plt.show()

Legend

To add a list of explanation for each wedge, use the legend() function:

y = np.array([35, 25, 25, 15])

mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels)

plt.legend()

plt.show()

Colors and legends

88

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Legend With Header

To add a header to the legend, add the title parameter to the legend():

y = np.array([35, 25, 25, 15])

mylabels = ["Apples", "Bananas", "Cherries", "Dates"]

plt.pie(y, labels = mylabels)

plt.legend(title = "Four Fruits:")

plt.show()

Change Figure Size in Matplotlib

plt.figure(figsize=(width, height))

plt.figure(figsize=(3, 3))

Legend With Header

89

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([0, 6])

ypoints = np.array([0, 250])

plt.plot(xpoints, ypoints)

plt.plot(xpoints, ypoints, marker= 'o')

plt.show()

Other possible markers are - *, . , x, X, +, P, s (Square), D (Diamond), v

(Triangle Down), ^ (Triangle up), < (Triangle left), > (Triangle right), _

(Hline), | (Vline)

Plot() Method

90

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Line Reference

ypoints = np.array([3, 8, 1, 10])

plt.plot(ypoints, 'o:r')

plt.show()

Plot() Method

91

Line Syntax Description

'-' Solid line

':' Dotted line

'--' Dashed line

'-.' Dashed/dotted line

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Color Reference

Plot() Method

92

Color Syntax Description

'r' Red

'g' Green

'b' Blue

'c' Cyan

'm' Magenta

'y' Yellow

'k' Black

'w' White

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([1, 2, 6, 8])

ypoints = np.array([3, 8, 1, 10])

plt.plot(xpoints, ypoints)

plt.show()

If we do not specify the points in the x-axis, they will get the default values

0, 1, 2, 3, (etc. depending on the length of the y-points.

Marker Size - plt.plot(ypoints, marker = 'o', ms = 20)

Plot() Method

93

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Line Width - plt.plot(ypoints, linewidth = '20.5')

Multiple Lines

import matplotlib.pyplot as plt

import numpy as np

y1 = np.array([3, 8, 1, 10])

y2 = np.array([6, 2, 7, 11])

plt.plot(y1)

plt.plot(y2)

plt.show()

Multiple Lines in one figure

94

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Create Labels for a Plot

import numpy as np

import matplotlib.pyplot as plt

x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])

y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])

plt.plot(x, y)

plt.xlabel("Average Pulse")

plt.ylabel("Calorie Burnage")

plt.show()

Create Labels for a Plot

95

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Create a Title for a Plot

plt.title("Sports Watch Data“, loc=‘left’)

Set Font Properties for Title and Labels

font1 = {'family':'serif','color':'blue','size':20}

font2 = {'family':'serif','color':'darkred','size':15}

plt.title("Sports Watch Data", fontdict = font1)

plt.xlabel("Average Pulse", fontdict = font2)

plt.ylabel("Calorie Burnage", fontdict = font2)

plt.plot(x, y)

plt.show()

Create a Title for a Plot

96

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Display Multiple Plots

import matplotlib.pyplot as plt

import numpy as np

#plot 1:

x = np.array([0, 1, 2, 3])

y = np.array([3, 8, 1, 10])

plt.subplot(1, 2, 1)

plt.plot(x,y)

#plot 2:

x = np.array([0, 1, 2, 3])

y = np.array([10, 20, 30, 40])

plt.subplot(1, 2, 2)

plt.plot(x,y)

plt.show()

Display Multiple Plots

97

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The subplots() Function

• The subplot() function takes three arguments that describes the layout

of the figure.

• The layout is organized in rows and columns, which are represented by

the first and second argument.

• The third argument represents the index of the current plot.

plt.subplot(1, 2, 1)

#the figuree has 1 row, 2 columns, and this plot is the first plot.

plt.subplot(1, 2, 2)

#the figure has 1 row, 2 columns, and this plot is the second plot.

Try This: If we want a figure with 2 rows an 1 column

Display subplots

98

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

import matplotlib.pyplot as plt

import numpy as np

#plot 1:

x = np.array([0, 1, 2, 3])

y = np.array([3, 8, 1, 10])

plt.subplot(1, 2, 1)

plt.plot(x,y)

plt.title("SALES")

#plot 2:

x = np.array([0, 1, 2, 3])

y = np.array([10, 20, 30, 40])

plt.subplot(1, 2, 2)

plt.plot(x,y)

plt.title("INCOME")

plt.show()

Example:

99

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Most of the programs we have done till now are text-based programming.

But many applications need GUI (Graphical User Interface).

Python provides several different options for writing GUI based programs.

These are listed below:

• Tkinter: It is easiest to start with. Tkinter is Python's standard GUI

(graphical user interface) package. It is the most commonly used toolkit

for GUI programming in Python.

• JPython: It is the Python platform for Java that is providing Python

scripts seamless access o Java class Libraries for the local machine.

• wxPython: It is an open-source, cross-platform GUI toolkit written in

C++. It is one of the alternatives to Tkinter, which is bundled with

Python.

There are many other interfaces available for GUI. But these are the most

commonly used ones.

GUI Programming

100

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

It is the standard GUI toolkit for Python. Fredrik Lundh wrote it. For

modern Tk binding, Tkinter is implemented as a Python wrapper for the Tcl

Interpreter embedded within the interpreter of Python. Tk provides the

following widgets:

• Button canvas

• combo-box frame

• Level check-button

• Entry level-frame

• Menu list - box

• menu button message

• tk_optoinMenu progress-bar

• radio button scroll bar

• Separator tree-view, and many more.

Tkinter

101

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Steps to create GUI program using Tkinter:

• Import the module Tkinter

• Build a GUI application (as a window)

• Add those widgets that are discussed above

• Enter the primary, i.e., the main event's loop for taking action when the

user triggered the event.

• Importing tkinter is same as importing any other module in the Python

code. Note that the name of the module in Python 2.x is ‘Tkinter’ and in

Python 3.x it is ‘tkinter’.

Tkinter

102

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

There are two main methods used which the user needs to remember

while creating the Python application with GUI.

1. Tk(screenName=None, baseName=None, className=’Tk’, useT

k=1): To create a main window, tkinter offers a method

‘Tk(screenName=None, baseName=None, className=’Tk’, useTk=

1)’. To change the name of the window, you can change the

className to the desired one.

2. mainloop(): There is a method known by the name mainloop() is

used when your application is ready to run. mainloop() is an infinite

loop used to run the application, wait for an event to occur and

process the event as long as the window is not closed.

import tkinter

m = tkinter.Tk()

m.mainloop()

Main Methods of GUI

Application

103

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

tkinter also offers access to the geometric configuration of the widgets

which can organize the widgets in the parent windows. There are mainly

three geometry manager classes class.

• pack() method:It organizes the widgets in blocks before placing in the

parent widget.

• grid() method:It organizes the widgets in grid (table-like structure)

before placing in the parent widget.

• place() method:It organizes the widgets by placing them on specific

positions directed by the programmer.

There are a number of widgets which you can put in your tkinter

application.

Geometric Manager Classes

104

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

This geometry manager organizes widgets in a table-like structure in the

parent widget.

widget.grid(grid_options)

Here is the list of possible options −

• column − The column to put widget in; default 0 (leftmost column).

• columnspan − How many columns widgetoccupies; default 1.

• ipadx, ipady − How many pixels to pad widget, horizontally and vertically, inside widget's

borders.

• padx, pady − How many pixels to pad widget, horizontally and vertically, outside v's

borders.

• row − The row to put widget in; default the first row that is still empty.

• rowspan − How many rowswidget occupies; default 1.

• sticky − What to do if the cell is larger than widget. By default, with sticky='', widget is

centered in its cell. sticky may be the string concatenation of zero or more of N, E, S, W,

NE, NW, SE, and SW, compass directions indicating the sides and corners of the cell to

which widget sticks.

Tkinter grid() Method

105

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

To add a button in your application, this widget is used.

The general syntax is:

w=Button(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the format of the

Buttons. Number of options can be passed as parameters separated by

commas. Some of them are listed below.

• activebackground: to set the background color when button is under the cursor.

• activeforeground: to set the foreground color when button is under the cursor.

• bg: to set he normal background color.

• command: to call a function.

• font: to set the font on the button label.

• image: to set the image on the button.

• width: to set the width of the button.

• height: to set the height of the button.

Button

106

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

import tkinter as tk

r = tk.Tk()

r.title('Counting Seconds')

button = tk.Button(r, text='Stop', width=25, command=r.destroy)

button.pack()

r.mainloop()

Button (Example)

107

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

It is used to draw pictures and other complex layout like graphics, text and

widgets. The general syntax is:

w = Canvas(master, option=value)

There are number of options which are used to change the format of the

widget. Number of options can be passed as parameters separated by

commas. Some of them are listed below.

• bd: to set the border width in pixels.

• bg: to set the normal background color.

• cursor: to set the cursor used in the canvas.

• highlightcolor: to set the color shown in the focus highlight.

• width: to set the width of the widget.

• height: to set the height of the widget.

Canvas

108

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

import tkinter as tk

master = tk.Tk()

w = tk.Canvas(master, width=40, height=60)

w.pack()

canvas_height=20

canvas_width=200

y = int(canvas_height / 2)

w.create_line(0, y, canvas_width, y)

w.mainloop()

Canvas (Example)

109

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

To select any number of options by displaying a number of options to a

user as toggle buttons.

import tkinter

from tkinter import *

top = tkinter.Tk()

CheckVar1 = IntVar()

CheckVar2 = IntVar()

tkinter.Checkbutton(top, text = "Machine Learning",variable =

CheckVar1,onvalue = 1, offvalue=0).grid(row=0,sticky=W)

tkinter.Checkbutton(top, text = "Deep Learning", variable =

CheckVar2, onvalue = 0, offvalue =1).grid(row=1,sticky=W)

top.mainloop()

CheckButton

110

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Entry:It is used to input the single line text entry from the user.. For multi-

line text input, Text widget is used.

There are number of options which are used to change the format of the

widget. Number of options can be passed as parameters separated by

commas. Some of them are listed below.

• bd: to set the border width in pixels.

• bg: to set the normal background color.

• cursor: to set the cursor used.

• command: to call a function.

• highlightcolor: to set the color shown in the focus highlight.

• width: to set the width of the button.

• height: to set the height of the button.

Entry

111

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

from tkinter import *

master = Tk()

Label(master, text='First Name').grid(row=0)

Label(master, text='Last Name').grid(row=1)

e1 = Entry(master)

e2 = Entry(master)

e1.grid(row=0, column=1)

e2.grid(row=1, column=1)

mainloop()

Entry (Example)

112

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Frame: It acts as a container to hold the widgets. It is used for grouping

and organizing the widgets.

There are number of options which are used to change the format of the

widget. Number of options can be passed as parameters separated by

commas. Some of them are listed below.

• highlightcolor: To set the color of the focus highlight when widget has

to be focused.

• bd: to set the border width in pixels.

• bg: to set the normal background color.

• cursor: to set the cursor used.

• width: to set the width of the widget.

• height: to set the height of the widget.

Frame

113

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

from tkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

bottomframe = Frame(root)

bottomframe.pack(side = BOTTOM)

redbutton = Button(frame, text = 'Red', fg ='red')

redbutton.pack(side = LEFT)

greenbutton = Button(frame, text = 'Brown', fg='brown')

greenbutton.pack(side = LEFT)

bluebutton = Button(frame, text ='Blue', fg ='blue')

bluebutton.pack(side = LEFT)

blackbutton = Button(bottomframe, text ='Black', fg ='black')

blackbutton.pack(side = BOTTOM)

root.mainloop()

Frame(Example)

114

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Label: It refers to the display box where you can put any text or image

which can be updated any time as per the code.

There are number of options which are used to change the format of the

widget. Number of options can be passed as parameters separated by

commas. Some of them are listed below.

• bg: to set he normal background color.

• bg to set he normal background color.

• command: to call a function.

• font: to set the font on the button label.

• image: to set the image on the button.

• width: to set the width of the button.

• height” to set the height of the button.

w = Label(root, text='Python Programming')

w.pack()

Label

115

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Listbox: It offers a list to the user from which the user can accept any

number of options.

There are number of options which are used to change the format of the

widget. Number of options can be passed as parameters separated by

commas.

• highlightcolor: To set the color of the focus highlight when widget has

to be focused.

Lb = Listbox(root)

Lb.insert(1, 'Python')

Lb.insert(2, 'Java')

Lb.insert(3, 'C++')

Lb.insert(4, 'Any other')

Lb.pack()

ListBox

116

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

It is a part of top-down menu which stays on the window all the time.

Every menubutton has its own functionality.

from tkinter import *

import tkinter

top = Tk()

mb = Menubutton (top, text = "Menu Items", relief= RAISED)

mb.grid()

mb.menu = Menu (mb, tearoff = 0)

mb["menu"] = mb.menu

cVar = IntVar()

aVar = IntVar()

mb.menu.add_checkbutton (label ='Contact', variable = cVar)

mb.menu.add_checkbutton (label = 'About', variable = aVar)

mb.pack()

top.mainloop()

MenuButton

117

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Menu: It is used to create all kinds of menus used by the application

from tkinter import *

root = Tk()

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label='File', menu=filemenu)

filemenu.add_command(label='New')

filemenu.add_command(label='Open...')

filemenu.add_separator()

filemenu.add_command(label='Exit', command=root.quit)

helpmenu = Menu(menu)

menu.add_cascade(label='Help', menu=helpmenu)

helpmenu.add_command(label='About')

mainloop()

Menu

118

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

Message: It refers to the multi-line and non-editable text.

The message widget is similar in its functionality to the Label widget, but it

is more flexible in displaying text, e.g. the font can be changed while

the Label widget can only display text in a single font. It provides a

multiline object, that is the text may span more than one line

from tkinter import *

main = Tk()

ourMessage ='This is our Message'

messageVar = Message(main, text = ourMessage)

messageVar.config(bg='lightgreen')

messageVar.pack()

main.mainloop()

Message

119

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

The Radiobutton is a standard Tkinter widget used to implement one-of-

many selections. Radiobuttons can contain text or images, and you can

associate a Python function or method with each button. When the button

is pressed, Tkinter automatically calls that function or method.

General Syntax:

button = Radiobutton(master, text=”Name on Button”, variable = “shared

variable”, value = “values of each button”, options = values, …)

shared variable = A Tkinter variable shared among all Radio buttons

value = each radiobutton should have different value otherwise more than

1 radiobutton will get selected.

RadioButtons

120

https://www.geeksforgeeks.org/python-gui-tkinter/
https://www.geeksforgeeks.org/python-gui-tkinter/

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

from tkinter import *

def sel():

selection = "You selected the option " + str(var.get())

label.config(text = selection)

root = Tk()

var = IntVar()

R1 = Radiobutton(root, text="Option 1", variable=var, value=1, command=sel)

R1.pack(anchor = W)

R2 = Radiobutton(root, text="Option 2", variable=var, value=2, command=sel)

R2.pack(anchor = W)

R3 = Radiobutton(root, text="Option 3", variable=var, value=3, command=sel)

R3.pack(anchor = W)

label = Label(root)

label.pack()

root.mainloop()

RadioButtons (Example)

121

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• Python can be used in database applications.

• One of the most popular databases is MySQL.

• You can download a free MySQL database

at https://www.mysql.com/downloads/.

• Python needs a MySQL driver to access the MySQL

database.

• use PIP to install "MySQL Connector".

• Use command python -m pip install mysql-connector-

python

Database Access

122

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• We can start by creating a connection to the database.

• Use the username and password from your MySQL

database:

import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="yourusername",

password="yourpassword"

)

print(mydb)

Create Connection

123

https://www.mysql.com/downloads/

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

To create a database in MySQL, use the "CREATE DATABASE"

statement:

import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="yourusername",

password="yourpassword"

)

mycursor = mydb.cursor()

mycursor.execute("CREATE DATABASE mydatabase")

Creating a Database

124

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• To create a table in MySQL, use the "CREATE TABLE"

statement.

• Make sure you define the name of the database when you

create the connection
import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="yourusername",

password="yourpassword",

database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("CREATE TABLE customers (id INT AUTO_INCREMENT PRIMARY KEY, name

VARCHAR(255), address VARCHAR(255))")

Creating a Table

125

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

To fill a table in MySQL, use the "INSERT INTO" statement.

import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="yourusername",

password="yourpassword",

database="mydatabase"

)

mycursor = mydb.cursor()

sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"

val = ("John", "Highway 21")

mycursor.execute(sql, val)

mydb.commit()

print(mycursor.rowcount, "record inserted.")

Insert Into Table

126

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• To insert multiple rows into a table, use the executemany() method.

• The second parameter of the executemany() method is a list of tuples,

containing the data you want to insert:
sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"

val = [

('Peter', 'Lowstreet 4'),

('Amy', 'Apple st 652'),

('Hannah', 'Mountain 21'),

('Michael', 'Valley 345'),

('Sandy', 'Ocean blvd 2'),

('Betty', 'Green Grass 1'),

('Richard', 'Sky st 331'),

('Susan', 'One way 98'),

('Vicky', 'Yellow Garden 2'),

('Ben', 'Park Lane 38'),

('William', 'Central st 954'),

('Chuck', 'Main Road 989'),

('Viola', 'Sideway 1633')

]

mycursor.executemany(sql, val)

mydb.commit()

Insert Multiple Rows

127

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• To select from a table in MySQL, use the "SELECT"

statement:
import mysql.connector

mydb = mysql.connector.connect(

host="localhost",

user="yourusername",

password="yourpassword",

database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers")

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Select From a Table

128

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

mycursor = mydb.cursor()

mycursor.execute("SELECT name, address FROM customers")

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Selecting Columns

129

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

When selecting records from a table, you can filter the selection by using

the "WHERE" statement:

mycursor = mydb.cursor()

sql = "SELECT * FROM customers WHERE address ='Park Lane 38'"

mycursor.execute(sql)

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Select With a Filter

130

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• When query values are provided by the user, you should

escape the values.

• This is to prevent SQL injections, which is a common web

hacking technique to destroy or misuse your database.

• The mysql.connector module has methods to escape query

values:
mycursor = mydb.cursor()

sql = "SELECT * FROM customers WHERE address = %s"

adr = ("Yellow Garden 2",)

mycursor.execute(sql, adr)

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Prevent SQL Injection

131

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

You can delete records from an existing table by using the "DELETE

FROM" statement:

mycursor = mydb.cursor()

sql = "DELETE FROM customers WHERE address = 'Mountain 21'"

mycursor.execute(sql)

mydb.commit()

print(mycursor.rowcount, "record(s) deleted")

Delete Record

132

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

You can update existing records in a table by using the "UPDATE"

statement:

mycursor = mydb.cursor()

sql = "UPDATE customers SET address = 'Canyon 123' WHERE address = 'Valley

345'"

mycursor.execute(sql)

mydb.commit()

print(mycursor.rowcount, "record(s) affected")

Update Records in a Table

133

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

You can limit the number of records returned from the query, by using the

"LIMIT" statement:

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers LIMIT 5")

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Start From Another Position

• If you want to return five records, starting from the third record, you can

use the "OFFSET" keyword:

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers LIMIT 5 OFFSET 2")

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Limit the Result

134

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

You can delete an existing table by using the "DROP TABLE" statement:

mycursor = mydb.cursor()

sql = "DROP TABLE customers"

mycursor.execute(sql)

Drop Only if Exist

• If the the table you want to delete is already deleted, or for any other

reason does not exist, you can use the IF EXISTS keyword to avoid

getting an error.

mycursor = mydb.cursor()

sql = "DROP TABLE IF EXISTS customers"

mycursor.execute(sql)

Drop a Table

135

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• You can combine rows from two or more tables, based on a related

column between them, by using a JOIN statement.

Suppose we have a "users" table and a "products" table:

Example

• Join users and products to see the name of the users favorite product:

mycursor = mydb.cursor()

sql = "SELECT \

users.name AS user, \

products.name AS favorite \

FROM users \

INNER JOIN products ON users.fav = products.id"

mycursor.execute(sql)

myresult = mycursor.fetchall()

for x in myresult:

print(x)

Join Two or More Tables

136

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

• In the example above, Hannah, and Michael were excluded from the

result, that is because INNER JOIN only shows the records where

there is a match.

• If you want to show all users, even if they do not have a favorite

product, use the LEFT JOIN statement:

Example

• Select all users and their favorite product:

sql = "SELECT \

users.name AS user, \

products.name AS favorite \

FROM users \

LEFT JOIN products ON users.fav = products.id"

LEFT JOIN

137

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant Professor – Unit IV

If you want to return all products, and the users who have them as their

favorite, even if no user have them as their favorite, use the RIGHT JOIN

statement:

Example

• Select all products, and the user(s) who have them as their favorite:

sql = "SELECT \

users.name AS user, \

products.name AS favorite \

FROM users \

RIGHT JOIN products ON users.fav = products.id"

RIGHT JOIN

138

