
MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.1

UNIT III

Full Stack Development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.2

Learning Resources

• Books

• D. Brad, B. Dayley and C. Dayley, “Node.js, MongoDB and

Angular Web Development: The definitive guide to using the

MEAN stack to build web applications”, Addison-Wesley

Professional, 2nd Edition, 2017

• Web Links (Strictly Referred):

• https://angular.io/

• https://nodejs.org/

• https://expressjs.com

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.3

Course Outcome

• CO1: Relate the basics of Javascript (JS) and ReactJS

• CO2: Apply the concepts of props and State Management in React JS

• CO3: Examine Redux and Router with React JS

• CO4: Appraise Node JS environment and modular development

• CO5: Develop full stack applications using MongoDB

https://angular.io/
https://nodejs.org/
https://expressjs.com/

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.4

Overview

UNIT-3
•Introduction to Angular

•Angular architecture; introduction to components, component interaction and styles;

templates, interpolation and directives; forms, user input, form validations; data

binding and pipes; retrieving data using HTTP; Angular modules

•Node.js

• Introduction, Features, Node.js Process Model

•Environment Setup: Local Environment Setup, The Node.js Runtime, Installation of

Node.js

•Node.js Modules: Functions, Buffer, Module, Modules Types

•Node Package Manager: Installing Modules using NPM, Global vs Local Installation,

Attributes of Package.js on, Updating packages, Mobile-first paradigm, Using twitter

bootstrap on the notes application, Flexbox and CSS Grids

•File System: Synchronous vs Asynchronous, File operations

•Web Module: Creating Web Server, Web Application Architecture, Sending Requests,

Handling http requests

•Express Framework: Overview, Installing Express, Request / Response Method, Cookies

Management

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.5

Angular

• Angular is a platform and framework for building single-page client

applications using HTML and TypeScript

– TypeScript is JavaScript with syntax for types

– TypeScript adds additional syntax to JavaScript to support a tighter integration

with your editor. Catch errors early in your editor.

– TypeScript code converts to JavaScript, which runs anywhere JavaScript

runs: in a browser, on Node.js

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.6

Angular

• The main building blocks of an Angular application:

– Modules: modules are highly recommended because they allow you to separate

your code into separate files

– Data binding: the process of linking data from a component with what is

displayed in a web page

– Services: Services are singleton classes that provide functionality for a web app.

The service functionality is completely independent of context or state, so it can

be easily consumed from the components of an application

– Dependency injection: a process in which a component defines dependencies

on other components. When the code is initialized, the dependent component is

made available for access within the component

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.7

Angular

• The Eight main building blocks of an Angular application:

– Directives: Directives are JavaScript classes with metadata that defines the

structure and behavior

• Components: A component directive is a directive that incorporates an HTML

template with JavaScript functionality to create a self-contained UI element

• Structural: You use structural directives when you need to manipulate the DOM

• Attribute: An attribute directive changes the appearance and behavior of HTML

elements by using HTML attributes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.8

Angular

• Components are the main building block for Angular applications.

Each component consists of:

– An HTML template that declares what renders on the page

– A TypeScript class that defines behavior

– A CSS selector that defines how the component is used in a template

– Optionally, CSS styles applied to the template

• Creating a component

– To create a new component manually:

– Navigate to your Angular project directory.

– Create a new file, <component-name>.component.ts.

– At the top of the file, add the following import statement.

• import { Component } from '@angular/core';

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.9

Angular

• Install angular

– npm install –g @angular/cli

• Create a new App

– Syntax: ng new <app-name>

– Example: ng new test01

• Run Angular Project (inside the project folder)

– Syntax: ng serve --open

• Files:

– app.component.ts : The component class code, written in

TypeScript

– app.component.html: The component template, written in HTML

– app.component.css: The component's private CSS styles.

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.10

Angular

• Creating a component

– After the import statement, add a @Component decorator.

• @Component({

})

– Choose a CSS selector for the component.

• @Component({ selector: 'app-component-overview', })

– Define the HTML template that the component uses to display information..

– In most cases, this template is a separate HTML file

• @Component({

selector: 'app-component-overview',

templateUrl: './component-overview.component.html',

})

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.11

Angular

• Creating a component

– Syntax: ng generate component <component-name>

– Select the styles for the component's template. In most cases, you define the

styles for your component's template in a separate file.

• @Component({

selector: 'app-component-overview',

templateUrl: './component-overview.component.html',

styleUrls: ['./component-overview.component.css']

})

– Add a class statement that includes the code for the component.

• export class ComponentOverviewComponent {

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.12

Angular Data Binding

https://angular.io/api/core/Component

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.13

Template

• A template looks like regular HTML, except that it also contains

Angular template syntax, which alters the HTML based on your

application's logic and the state of application and DOM data.

– data binding to coordinate the application and DOM data

– pipes to transform data before it is displayed

– directives to apply application logic to what gets displayed

• Template Syntax to Data binding:

– two-way data binding: a mechanism for

coordinating the parts of a template with the

parts of a component

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.14

Text interpolation

• Text interpolation lets you incorporate dynamic string values into your

HTML templates

• Interpolation refers to embedding expressions into marked up text,

uses the double curly brace ({{ and }}) characters as delimiters

– currentCustomer = 'Maria'; // src/app/app.component.ts

– <h3>Current customer:

{{ currentCustomer }}</h3> // app.component.html

• Resolving expressions with interpolation

– <p>The sum of 1 + 1 is {{1 + 1}}.</p>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.15

Directive

• Directives are classes that add additional behavior to elements in your

Angular applications.

• Built-in attribute directives

– Attribute directives listen to and modify the behavior of other HTML elements,

attributes, properties, and components

– Built-in directives use only public APIs

• Adding and removing classes with NgClass

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.16

Directive

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.17

Forms

• Handling user input [https://angular.io/guide/forms-overview]

• Two types of approach

– reactive : Provide direct, explicit access to the underlying forms object

model. Compared to template-driven forms, they are more robust: they're

more scalable, reusable, and testable. If forms are a key part of your

application, or you're already using reactive patterns for building your

application, use reactive forms.

– template-driven : Rely on directives in the template to create and

manipulate the underlying object model. They are useful for adding a

simple form to an app, such as an email list signup form. They're

straightforward to add to an app, but they don't scale as well as reactive

forms. It is very useful for basic form requirements and logic that can be

managed solely in the template.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.18

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.20

Forms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.21

Forms

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.22

Forms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.23

Forms

• Reactive form data flow View-to-model

Favorite Color:

Blue

Form Control Instance
Input event fire

BlueBlue

State

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.24

Forms

• Reactive form data flow model-to-view

Favorite Color:
Form Control Instance

State Change

BlueState

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.25

Forms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.26

Forms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.27

User Input

• User actions such as clicking a link, pushing a button, and entering

text raise DOM events

– Binding to user input events

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.28

User Input

• User actions such as clicking a link, pushing a button, and entering

text raise DOM events

– Get user input from the $event object

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.29

User Input

• User actions such as clicking a link, pushing a button, and entering

text raise DOM events

– Type the $event

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.30

User Input

• User actions such as clicking a link, pushing a button, and entering

text raise DOM events

– Get user input from a template reference variable

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.31

User Input

• User actions such as clicking a link, pushing a button, and entering

text raise DOM events

– On blur

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.32

Form Validation

• Validating input in template-driven form

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.33

Form Validation

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.34

Form Validation

• Validating input in reactive forms

VALIDATOR

TYPE
DETAILS

Sync validators Synchronous functions that take a control instance

and immediately return either a set of validation

errors or null. Pass these in as the second argument

when you instantiate a FormControl.

Async validators Asynchronous functions that take a control instance

and return a Promise or Observable that later emits a

set of validation errors or null. Pass these in as the

third argument when you instantiate a FormControl.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.35

Form Validation (Built-in validator functions)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.36

Form Validation (Defining custom validators)

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.37

Adding custom validators to reactive forms

• add a custom validator by passing the function directly to the

FormControl

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.38

Adding custom validators to template-driven forms

• In template-driven forms, add a directive to the template, where

the directive wraps the validator function.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.39

Cross-field validation

• A cross-field validator is a custom validator that compares the values

of different fields in a form and accepts or rejects them in

combination.

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.40

Adding cross-validation to template-driven forms

• For a template-driven form, you must create a directive to wrap the

validator function. You provide that directive as the validator using

the NG_VALIDATORS token.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.41

Asynchronous validators

• Asynchronous validators implement the AsyncValidatorFn and

AsyncValidator interfaces.

• Differ than synchronous

– The validate() functions must return a Promise or an observable,

– The observable returned must be finite, meaning it must complete at some point.

To convert an infinite observable into a finite one, pipe the observable through a

filtering operator such as first, last, take, or takeUntil.

• Asynchronous validation is performed after the synchronous

validation and only if the synchronous validation is successful.

• After asynchronous validation begins, the form control enters a

pending state. Inspect the control's pending property and use it to give

visual feedback about the ongoing validation operation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.42

NotValidate

synchronous validators works

Name

Required Field Validator

Synchronous

Field

Validator

Bob

Asynchronous

Field

ValidatorX

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.43

Valid

Boby

Boby

Valid

synchronous validators works

Name

Required Field Validator

Synchronous

Field

Validator

Boby

Asynchronous

Field

Validator

Pending

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.44

Adding async validators to template-driven forms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.45

Data Binding & Pipes

• Data binding automatically keeps your page up-to-date based on your

application's state in Angular.

• Data binding works with properties of DOM elements, components,

and directives, not HTML attributes

• Attributes initialize DOM properties and you can configure them to

modify an element's behavior

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.46

Types of data binding

• Angular provides three categories of data binding according to the

direction of data flow:

– From source to view

– From view to source

– In a two-way sequence of view to source to view

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.47

Types of data binding

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.48

Types of data binding

• Binding types other than interpolation have a target name to the left of

the equal sign.

• The target of a binding is a property or event, which you surround

with square bracket [] characters, parenthesis () characters, or both

[()] characters.

• The binding punctuation of [], (), [()], and the prefix specify the

direction of data flow.

• Summary:

– Use [] to bind from source to view

– Use () to bind from view to source

– Use [()] to bind in a two way sequence of view to source to view

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.49

Binding types and targets

• Type: Property

• Target:

– Element property

– Component property

– Directive property

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.50

Binding types and targets

• Type: Event

• Target:

– Element event

– Component event

– Directive event

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.51

Binding types and targets

• Type: Attribute

• Target:

– Attribute

• Type: Class

• Target:

– class property

• Type: Style

• Target:

– style property

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.52

Pipe

• Decorator that marks a class as pipe and supplies configuration

metadata.

• Angular Pipes allows its users to change the format in which data is

being displayed on the screen.

• Angular pipes are simple functions designed to accept an input value,

process, and return a transformed value as the output.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.53

Pipe

• Pipes are defined using the pipe “|” symbol.

• Pipes can be chained with other pipes.

• Pipes can be provided with arguments by using the colon (:) sign.

• Types of Pipes (in-built)

– DatePipe: Formats a date value.

– UpperCasePipe: Transforms text to uppercase.

– LowerCasePipe: Transforms text to lowercase.

– CurrencyPipe: Transforms a number to the currency string.

– PercentPipe: Transforms a number to the percentage string.

– DecimalPipe: Transforms a number into a decimal point string.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.54

Pipe.component.ts

import { Component, OnInit } from '@angular/core';

@Component({

selector:'app-pipes',

templateUrl:'./pipes.component.html',

styleUrls: ['./pipes.component.css']

})

export class PipesComponent implements OnInit {

dateToday: string;

name: string;

constructor() { }

ngOnInit(): void {

this.dateToday = new Date().toDateString();

this.name = “BVICAM"

} }

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.55

Pipe.component.html

<h1>

Date: {{ dateToday }}

Date Pipe: {{ dateToday | date | uppercase}}

Date Pipe: {{ dateToday | date: 'short' | lowercase}}

Name: {{ name | uppercase}}

Name: {{ name | slice:6}}

</h1>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.56

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.57

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.58

Getting data from backend

• Enable HTTP services

– HttpClient is Angular's mechanism for communicating with a remote server over

HTTP.

– Make HttpClient available everywhere in the application in two steps. First, add

it to the root AppModule by importing it:

– Next, still in the AppModule, add HttpClientModule to the imports array:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.59

Angular Fetch Data from API Using HttpClientModule

• Step 1: Add HttpClientModule Into the Imports Array and Import it.

• Step 2: Create an Instance of HttpClient and Fetch the Data Using It

• Step 3: Create a Student Interface To Cast the Observables

• Step 4: Subscribe the Data From the Service in the Component

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.60

• Angular applications are modular and Angular has its own modularity

system called NgModules.

• NgModules are containers for a cohesive block of code dedicated to

– an application domain,

– a workflow, or

– a closely related set of capabilities

• They can contain

– components,

– service providers, and

– other code files whose scope is defined by the containing NgModule.

Angular Modules

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.61

• An NgModule is defined by a class decorated with @NgModule().

• The @NgModule() decorator is a function that takes a single

metadata object, whose properties describe the module

• Properties are:

– declarations: -The components, directives, and pipes that belong to this

NgModule.

– exports: The subset of declarations that should be visible and usable in the

component templates of other NgModules.

– imports: Other modules whose exported classes are needed by component

templates declared in this NgModule.

– providers: Creators of services that this NgModule contributes to the global

collection of services

– bootstrap: The main application view, called the root component, which hosts all

other application views.

Angular Modules

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.62

Example of simple root module (app.module.ts)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.63

• NgModules provide a compilation context for their components.

• A root NgModule always has a root component that is created during

bootstrap

• Any NgModule can include any number of additional components,

which can be loaded through the router or created through the

template

NgModules and components

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.64

• A component and its template together define a view. A component

can contain a view hierarchy, which allows you to define arbitrarily

complex areas of the screen that can be created, modified, and

destroyed as a unit.

NgModules and components

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.65

• Node.js is an open-source and cross-platform JavaScript runtime

environment.

• Node.js runs the V8 JavaScript engine, the core of Google Chrome,

outside of the browser. This allows Node.js to be very performant.

• A Node.js app runs in a single process, without creating a new thread

for every request

• Node.js provides a set of asynchronous I/O primitives in its standard

library

• When Node.js performs an I/O operation, like reading from the

network, accessing a database or the filesystem, instead of blocking

the thread, Node.js will resume the operations when the response

comes back

Node JS

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.66

• Node.js to handle thousands of concurrent connections with a single

server without introducing the burden of managing thread concurrency

• npm with its simple structure helped the ecosystem of Node.js

proliferate, and now the npm registry hosts over 1,000,000 open

source packages you can freely use

Node JS

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.67

Node JS

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.68

• AdonisJS: A TypeScript-based fully featured framework highly

focused on developer ergonomics, stability, and confidence. Adonis is

one of the fastest Node.js web frameworks.

• Express: It provides one of the most simple yet powerful ways to

create a web server. Its minimalist approach, unopinionated, focused

on the core features of a server, is key to its success.

• hapi: A rich framework for building applications and services that

enables developers to focus on writing reusable application logic

instead of spending time building infrastructure.

• Loopback.io: Makes it easy to build modern applications that require

complex integrations.

• Micro: It provides a very lightweight server to create asynchronous

HTTP microservices.

Node.js Frameworks and Tools

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.69

History of Node JS

2009

Node.js is born
The first form of npm

is created

2010

Express is born
Socket.io is born

npm hits version 1.0

Larger companies adopting

Node.js: LinkedIn, Uber, etc.

Adoption continues

very rapidly

First big blogging

platform using Node.js:

Ghost

2011

2012

2013

2015

The Node.js Foundation

is born
Node.js 4

Yarn is born

Node.js 6

2016 2022To Versioning

Node.js 18

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.70

• Cross-platform compatibility

• Asynchronous and Event Driven

• Single Threaded but Highly Scalable

• The convenience of using one coding language

• V8 Engine

• Facilitates quick deployment and microservice development

• No Buffering

• Commendable data processing ability

• Active open-source community

• Additional functionality of NPM

• Advanced hosting ability of NodeJs

Node.js Frameworks and Tools

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.71

Conventional Process Model

Thread

Pool

Thread 1

for

Request 1

Thread 2

for

Request 2

Thread 3

for

Request 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.72

Node JS Process Model

Single Thread

Event Loop

Internal C++

Thread pool

Thread is free to serve

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.73

• Cross-platform compatibility

• Asynchronous and Event Driven

• Single Threaded but Highly Scalable

• The convenience of using one coding language

• V8 Engine

• Facilitates quick deployment and microservice development

• No Buffering

• Commendable data processing ability

• Active open-source community

• Additional functionality of NPM

• Advanced hosting ability of NodeJs

Conventional Process Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.74

• In simple terms, a module is code that we group together for the

purposes of sharing and reuse

• Modules, therefore, allow us to break down complexity in our

applications into small chunks

• In Node.js, each JavaScript file as a separate module.

• When Node.js was invented, modules and code encapsulation were

high on the priority list

Node Modules

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.75

• module.exports are part of the CommonJS specification

• Module exports are the instruction that tells Node.js which bits of

code (functions, objects, strings, etc.) to “export” from a given file so

other files are allowed to access the exported code

• Make it more clear:

– Suppose all the modules written together in single file.

– The code would look like each module wrapped in a function and given an

argument, which is the current module.

Module.exports

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.76

Exporting Module

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.77

• When there are circular require() calls, a module might not have

finished executing when it is returned.

Cycle

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.78

Modules

• If the exact filename is not found, then Node.js will attempt to load

the required filename with the added extensions: .js, .json, and finally

.node.

• There are three ways in which a folder may be passed to require() as

an argument.

– The first is to create a package.json file in the

root of the folder, which specifies a main module.

• Loading from node_modules folders

• Loading from the global folders

– Get a path from ENV Variables

• The module wrapper

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.79

Buffer

• The buffer module from node.js, for the browser.

• Buffer objects are used to represent a fixed-length sequence of bytes.

• Super fast.

• Extremely small bundle size (6.75kb)

• Excellent browser support

• Square-bracket buf[4] notation works!

• Install buffer: npm i buffer

var Buffer = require('buffer/').Buffer

const buf = Buffer.from([1, 2, 3, 4]);

const uint32array = new Uint32Array(buf);

console.log(uint32array);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.80

Node Package Manager (npm)

• npm is the standard package manager for Node.js.

• It started as a way to download and manage dependencies of Node.js

packages, but it has since become a tool used also in frontend

JavaScript.

• Yarn and pnpm are alternatives to npm cli. You can check them out as

well.

• Installing all dependencies

– If a project has a package.json file, by running

• npm install

– it will install everything the project needs, in the node_modules folder, creating

it if it's not existing already.

– install a specific package by running: npm install <package-name>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.81

Node Package Manager (npm)

• npm is the standard package manager for Node.js.

• It started as a way to download and manage dependencies of Node.js

packages.

• Yarn and pnpm are alternatives to npm cli. You can check them out as well.

• Installing all dependencies

– If a project has a package.json file, by running : npm install

– it will install everything the project needs, in the node_modules folder, creating

it if it's not existing already.

– install a specific package by running: npm install <package-name>

• --save-dev installs and adds the entry to the package.json

• --no-save installs but does not add the entry to the package.json

• --save-optional installs and adds the entry to the package.json file

• --no-optional will prevent optional dependencies from being installed

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.82

Node Package Manager (global / local)

• local packages are installed in the directory where you run npm install

<package-name>, and they are put in the node_modules folder under this

directory

• global packages are all put in a single place in your system (exactly where

depends on your setup), regardless of where you run npm install -g

<package-name>

• A package should be installed globally when it provides an executable

command that you run from the shell (CLI), and it's reused across projects.

• All projects have their own local version of a package, even if this might

appear like a waste of resources, it's minimal compared to the possible

negative consequences.

• You can also install executable commands locally and run them using npx,

but some packages are just better installed globally.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.83

Node Package Manager (package.json)

• The package.json file is kind of a manifest for your project.

• It's a central repository of configuration for tools

• It's also where npm and yarn store the names and versions for all the

installed packages.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.84

Node Package Manager (package.json)

• JSON file Structure

– version indicates the current version

– name sets the application/package name

– description is a brief description of the app/package

– main sets the entry point for the application

– private if set to true prevents the app/package to be accidentally published on npm

– scripts defines a set of node scripts you can run

– dependencies sets a list of npm packages installed as dependencies

– devDependencies sets a list of npm packages installed as development dependencies

– engines sets which versions of Node.js this package/app works on

– browserslist is used to tell which browsers (and their versions) you want to support

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.85

Node Package Manager

• Update All Packages

• Install the npm-check-updates package globally:

– npm install -g npm-check-updates

• Now run npm-check-updates to upgrade all version hints in package.json,

allowing installation of the new major versions

– ncu –u

• Finally, run a standard install

– npm install

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.86

Mobile-first paradigm

• responsive web design

• accommodates the screen size and other device attributes

• mobile-first, mean that the design an application first to work well on a

mobile device and then move on to devices with larger screens.

• In Stylesheet, required Media queries where, for certain sized screens, the

styles defined for mobile devices are overridden to make sense for devices

with larger screens.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.87

Mobile-first paradigm

• At least target these device scenarios:

• Small: This includes iPhone 4.

• Medium: This can refer to tablet computers, or the larger smart phones.

• Large: This includes larger tablet computers, or the smaller desktop

computers.

• Extra-large: This refers to larger desktop computers and other large screens.

• Landscape/portrait: You may want to create a distinction between

landscape mode and portrait mode. Switching between the two of course

changes viewport width, possibly pushing it past a breakpoint

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.88

Using Twitter Bootstrap on the Notes application

• Setting it up

• npm i bootstrap

• import

‘./node_modules/bootstrap/dist/css/bootstrap.min.css’

;

• import

‘./node_modules/bootstrap/dist/js/bootstrap.min.js’;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.89

CSS Flexbox and Grid CSS

• Grid vs. Flexbox

– Grid is made for two-dimensional layout while Flexbox is for one. Flexbox can

work on either row or columns at a time, but Grids can work on both.

– Flexbox, gives you more flexibility while working on either element (row or

column). HTML markup and CSS will be easy to manage in this type of

scenario.

– GRID gives you more flexibility to move around the blocks irrespective of your

HTML markup.

– Flex Direction allows developers to align elements vertically or horizontally

while, In CSS Grid, auto-keyword functionality to automatically adjust columns

or rows.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.90

Synchronous vs Asynchronous

• npm i fs –save

• Every method in the fs module has synchronous as well as asynchronous

forms.

• Asynchronous methods take the last parameter as the completion function

callback and the first parameter of the callback function as error.

• It is better to use an asynchronous method instead of a synchronous method,

as the former never blocks a program during its execution, whereas the

second one does.

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.91

Synchronous vs Asynchronous

https://www.tutorialspoint.com/nodejs/nodejs_file_system.htm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.92

File operations

• r: Open file for reading.

• r+: Open file for reading and writing

• rs: Open file for reading in synchronous mode.

• w: Open file for writing.

• wx: Like 'w' but fails if the path exists.

• w+: Open file for reading and writing.

• a: Open file for appending.

• a+: Open file for reading and appending.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.93

Creating a Basic HTTP Server

• First create a folder to manage server

– mkdir http-server

• Create a new file named server.js

• Write the following code in server.js

const http = require("http");

const host = 'localhost';

const port = 8000;

const requestListener = function (req, res) {

res.writeHead(200);

res.end(“First HTTP server!");

};

const server = http.createServer(requestListener);

server.listen(port, host, () => {

console.log(`Server is running on http://${host}:${port}`);

});

>node server.js

https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.94

Returning Different Types of Content (HTML)

• Create a new file named html.js

• Write the following code in server.js

const http = require("http");

const host = 'localhost';

const port = 8000;

const requestListener = function (req, res) {

res.setHeader("Content-Type", "text/html");

res.writeHead(200);

res.end(`<html><body><h1>This is HTML</h1></body></html>`);

};

const server = http.createServer(requestListener);

server.listen(port, host, () => {

console.log(`Server is running on http://${host}:${port}`);

});

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.95

Returning Different Types of Content (JSON)

• Create a new file named json.js

• Write the following code in server.js

const http = require("http");

const host = 'localhost';

const port = 8000;

const requestListener = function (req, res) {

res.setHeader("Content-Type", "application/json");

res.writeHead(200);

res.end(`{"message": "This is a JSON response"}`);

};

const server = http.createServer(requestListener);

server.listen(port, host, () => {

console.log(`Server is running on http://${host}:${port}`);

});

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.96

Web Application Architecture

https://www.section.io/engineering-education/http-requests-nodejs/

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.97

Web Application Architecture

https://www.geeksforgeeks.org/node-js-web-application-

architecture/#:~:text=js%20Server%20Architecture%3A%20To%20manage,js%20Processing%20Model.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.98

Web Application Architecture

https://www.simplilearn.com/understanding-node-js-architecture-article

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.99

Express Framework

• minimal and flexible Node.js web application framework

• provides a robust set of features to develop web and mobile applications

• It facilitates the rapid development of Node based Web applications.

• Allows to set up middlewares to respond to HTTP Requests.

• Defines a routing table which is used to perform different actions based on HTTP

Method and URL.

• Installing Express

– npm install express –-save

• body-parser − This is a node.js middleware for handling JSON, Raw, Text and

URL encoded form data.

• cookie-parser − Parse Cookie header and populate req.cookies with an object keyed

by the cookie names.

– npm install body-parser --save

– npm install cookie-parser --save

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.100

Example

https://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.101

Express Framework (Request & Response)

• Express application uses a callback function whose parameters are request and

response objects.

• Request Object − The request object represents the HTTP request and has

properties for the request query string, parameters, body, HTTP headers, and so on.

• Response Object − The response object represents the HTTP response that an

Express app sends when it gets an HTTP request.

• Examples already discussed in practical lab sessions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.102

Express Framework (Cookies)

• Cookies are

– small files/data that are sent to client with a server request stored on the client

side.

• Every time the user loads the website back, this cookie is sent with the

request. This helps us keep track of the user’s actions.

• The following are the numerous uses of the HTTP Cookies −

– Session management

– Personalization(Recommendation systems)

– User tracking.

MCA 114, Full stack development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,
by Dr. Arpita U3.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.103

Express Framework (Cookies)

• Adding Cookies with Expiration Time

• Deleting Existing Cookies

https://www.tutorialspoint.com/expressjs/expressjs_sessions.htm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.104

Express Framework (Session)

• HTTP is stateless; in order to associate a request to any other request,

you need a way to store user data between HTTP requests.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Arpita

U1.105

Express Framework (Session)

