
MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1 1

Python Programming

MCA-106

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1 2

UNIT-I

Introduction to Python

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Invented in early 90s by Guido van Rossum.

• Not individually developed by him but idea credit goes to
him.

• Not named after large snake Python.

• Name comes from old BBC television comedy series called
Monty Python’s Flying Circus.

• Open-sourced from the beginning.

• Object-oriented programming interpreted language.

• Latest Version – 3.13

History

3

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Features of Python

4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

1. Readable: Python is an easy to read and understandable

language. Just like natural language.

2. Easy to Learn: Python is a high-level programming (OOP)

language still it is easy to understand and learn the language.

3. Cross-platform: Python is available and can run on

various operating systems such as macOS, Windows, Linux,

etc.

4. Open Source: Python is an open-source programming

language.

5. Large standard library: Python comes with a large

standard library that has some handy codes and functions

which we can use while writing code in Python.

Features of Python

continued …

5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

8. Exception handling

10. Automatic memory management: Python supports automatic

memory management which means the memory is cleared and

freed automatically. You do not have to bother clearing the memory.

Features of Python

continued …

6

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Web development

• Machine learning / Mathematics

• Data Analysis

• Scripting

• Game development

• Desktop applications

• System Programming

Applications of

Python

7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• You can install Python on any operating system such as

Windows, Mac OS X, Linux/Unix and others.

• To install the Python on your operating system, go to this

link: https://www.python.org/downloads/

• Download latest version 3.11.x

• Installation steps are simple. You just have to accept the

agreement and finish the installation.

• Python IDEs and code editors – IDLE, PyCharm, Visual

Studio Code, Spyder, Anaconda (Data Science- Python &

R for scientific programming)

• Three primary implementations of the Python language—

CPython, Jython, and IronPython

Installation of Python

8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Shell is a software that provides users with an interface for

accessing services in kernel.

• Interact with user.

• Python interactive shell is known as IDLE.

Interactive Shell

9

https://www.python.org/downloads/

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Python was designed for readability

• Python uses new lines to complete a command, as

opposed to other programming languages

• Python Indentation - Python uses indentation to indicate a

block of code and define scope of loops, functions and

classes

• Python Comments (#)

• Multi-line comments (’’’ – Triple quotes)

• Do not use punctuation at the end of a statement.

• Case sensitive – print Print

Program Structure

and Execution

10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1 11

Programming Errors

Syntax Errors

Print(‘a’);

Runtime Errors

Divide by 0

Logical Errors

print(5/9*35-32)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

This program adds two numbers

num1 = 1.5

num2 = 6.3

Add two numbers

sum = num1 + num2

Display the sum

print(sum)

First Python Program

12

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Identifier is a user-defined name given to a variable, function, class, module,

etc.

• The identifier is a combination of character digits and an underscore.

• They are case-sensitive.

• ‘num’ and ‘Num’ and ‘NUM’ are three different identifiers in python.

Rules for Naming Python Identifiers

• It cannot be a reserved python keyword.

• It should not contain white space.

• It can be a combination of A-Z, a-z, 0-9, or underscore.

• It should start with an alphabet character or an underscore (_).

• It should not contain any special character other than an underscore (_).

Identifiers

13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Predefined and reserved words in Python that have special meanings

• The identifier is a combination of character digits and an underscore.

• The keyword cannot be used as an identifier, function, or variable

name.

• All the keywords in Python are written in lowercase except True and

False.

• There are 35 keywords in Python 3.11.

Keywords

14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• An escape sequence is a sequence of characters with special meaning

when used inside a string or a character.

• Syntax: The characters need to be preceded by a backslash character

• The characters that we can't insert into a string are called Illegal

characters, and these characters modify the string.

• The function of escape sequences is to insert such characters into the

string without modifying the string.

• Example: \n, \t, \’, \” etc.

Escape Sequences

15

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Data Types

16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Variables are containers for storing data values.

• Python has no command for declaring a variable.

• A variable is created the moment you first assign a value to it.

• Variables do not need to be declared with any particular type, and can

even change type after they have been set.

x = 4 # x is of type int

x = “Arjun" # x is now of type str

print(x)

• If you want to specify the data type of a variable, this can be done with

casting.

x = str(3) # x will be '3'

y = int(3) # y will be 3

z = float(3) # z will be 3.0

• You can get the data type of a variable with the type() function.

Python Variable

17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

String variables can be declared either by using single or double quotes

x = “Arjun"

is the same as

x = ‘Arjun‘

Variable names are case-sensitive.

A variable can have a short name (like x and y) or a more descriptive

name (age, carname, total_volume). Rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)

• Variable names are case-sensitive (age, Age and AGE are three

different variables)

Python Variable

continued …

18

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python allows you to assign values to multiple variables in one line:

x, y, z = “RED", “GREEN", “BLUE“

And you can assign the same value to multiple variables in one line:

x = y = z = “RED“

If you have a collection of values in a list, tuple etc. Python allows you

extract the values into variables. This is called unpacking.

colors= ["RED", "GREEN", "BLUE"]

x, y, z = colors

print(x)

print(y)

print(z)

Python Variable

continued …

19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python - Output Variables

The python print statement is often used to output variables. To combine

both text and a variable, Python uses the + character.

x = “Powerful"

print("Python is " + x + “ language”)

Python - Global Variables

• Variables that are created outside of a function (as in all of the

examples above) are known as global variables.

• Global variables can be used by everyone, both inside of functions and

outside.

Python Variable

continued …

20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Strings in python are surrounded by either single quotation marks, or

double quotation marks.

‘Powerful’ is same as “Powerful”

You can display a string literal with the print() function.

Assigning a string to a variable is done with the variable name followed by

an equal sign and the string:

a = "Hello“ or a = ’Hello’

You can assign a multiline string to a variable by using three quotes:

a = “ ” ” Python was designed for readability, and has some similarities

to the English language with influence from mathematics. “ “ ”

Or

a = ‘ ‘ ‘ Python was designed for readability, and has some similarities

to the English language with influence from mathematics. ‘ ‘ ‘

Python String

21

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Strings are Arrays

• However, Python does not have a character data type, a single

character is simply a string with a length of 1.

• Square brackets can be used to access elements of the string.

Get the character at position 1 (remember that the first character has the

position 0):

a = "Hello, World!"

print(a[1])

Python String

continued…

22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

String functions or operations on strings:

• Looping Through a String

for x in “BVICAM":

print(x)

Strings and Tuples are immutable.

Eg- x = “hello”

x[0] = s error

Python String

continued…

23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Operators are used to perform operations on variables and values

Python divides the operators in the following groups:

– Arithmetic operators

– Assignment operators

– Comparison/ Relational operators

– Logical operators

– Identity operators

– Membership operators

– Bitwise operators

Python Operators

24

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Arithmetic operators

Python Operators

continued ..

25

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10 to the power 20

// Floor Division - The division of operands where the result is the

quotient in which the digits after the decimal point are removed. But if

one of the operands is negative, the result is floored, i.e., rounded

away from zero (towards negative infinity) −

9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -

11.0//3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Assignment operators

Python Operators

26

Operator Example Same as

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

**= x **= 3 = x ** 3

//= x //= 3 x = x // 3x

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Comparison operators

Python Operators

27

Operato
r

Description Example

== If the values of two operands are equal, then the condition becomes
true.

(a == b) is not true.

!= If values of two operands are not equal, then condition becomes true. (a != b) is true.

<> If values of two operands are not equal, then condition becomes true. (a <> b) is true. This is
similar to != operator.

> If the value of left operand is greater than the value of right operand,
then condition becomes true.

(a > b) is not true.

< If the value of left operand is less than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right
operand, then condition becomes true.

(a >= b) is not true.

<= If the value of left operand is less than or equal to the value of right
operand, then condition becomes true.

(a <= b) is true.

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Logical operators

Python Operators

28

Operator Description Example

and If both the operands are
true then condition
becomes true.

(a and b) is true.

or If any of the two operands
are non-zero then condition
becomes true.

(a or b) is true.

not Used to reverse the logical
state of its operand.

Not(a and b) is
false.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Identity operators

x=3 a=3

y=x b=5

x is y a is b

Python Operators

29

Operator Description Example

is Evaluates to true if the variables on either side
of the operator point to the same object and
false otherwise.

x is y, here is results in 1 if id(x)
equals id(y).

is not Evaluates to false if the variables on either side
of the operator point to the same object and
true otherwise.

x is not y, here is not results in 1 if
id(x) is not equal to id(y).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Membership operators

a = 10

b = 20

list = [1, 2, 3, 4, 5];

if (a in list):

print "Line 1 - a is available in the given list"

else:

print "Line 1 - a is not available in the given list“

Python Operators

30

Operator Description Example

in Evaluates to true if it finds a variable in the
specified sequence and false otherwise.

x in y, here in results in a 1 if x is a
member of sequence y.

not in Evaluates to true if it does not finds a variable in
the specified sequence and false otherwise.

x not in y, here not in results in a 1
if x is not a member of sequence y.

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Bitwise operators – Consider a = 0011 1100 and b = 0000 1101

Python Operators

31

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists
in both operands

(a & b) (means 0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61 (means 0011 1101)

^ Binary XOR It copies the bit if it is set in one operand
but not both.

(a ^ b) = 49 (means 0011 0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping'
bits.

(~a) = 1100 0011

<< Binary Left Shift The left operands value is moved left by the
number of bits specified by the right
operand.

a << 2 = 240 (means 1111 0000)

>> Binary Right Shift The left operands value is moved right by
the number of bits specified by the right
operand.

a >> 2 = 15 (means 0000 1111)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Operators Precedence

32

S.No. Operator & Description

1 ** Exponentiation (raise to the power)

2 ~ + - Complement, unary plus and minus (method names for the last two are +@ and -@)

3 * / % // Multiply, divide, modulo and floor division

4 + - Addition and subtraction

5 >> << Right and left bitwise shift

6 & Bitwise 'AND'

7 ^ | Bitwise exclusive `OR' and regular `OR'

8 <= < > >= Comparison operators

9 <> == != Equality operators

10 = %= /= //= -= += *= **= Assignment operators

11 is or is not Identity operators

12 in not in Membership operators

13 not or and Logical operators

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python defines type conversion functions to directly convert one data type

to another which is useful in day to day and competitive programming.

There are two types of Type Conversion in Python:

• Implicit Type Conversion

In Implicit type conversion of data types in Python, the Python

interpreter automatically converts one data type to another without any

user involvement.

x = 10

print("x is of type:",type(x))

y = 10.6

print("y is of type:",type(y))

x = x + y

print(x)

print("x is of type:",type(x))

Type conversion in

Python

33

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Explicit Type Conversion

In Explicit Type Conversion in Python, the data type is manually

changed by the user as per their requirement.

#convert from int to float:

x = float(1)

#convert from float to int:

y = int(2.8)

#convert from int to complex:

z = complex(x)

print(x)

print(y)

print(z)

print(type(x))

print(type(y))

print(type(z))

Type conversion in

Python

34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Short-circuit evaluation means that when evaluating Boolean expression like
AND and OR, you can stop as soon as you find the first condition that satisfies or
negates the expression.

Short Circuit Evaluation in
Python

35

Operation Result Description

x or y If x is false, then y else x Only evaluates the second
argument(y) if the firs one is
false

x and y If x is false, then x else y Only evaluates the second
argument(y) if the first one(x) is
True

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Lazy evaluation is an evaluation strategy which holds the evaluation of an

expression until its value is needed. It avoids repeated evaluation.

Lazy Evaluation − Advantages

• It allows the language runtime to discard sub-expressions that are not

directly linked to the final result of the expression.

• It reduces the time complexity of an algorithm by discarding the

temporary computations and conditionals.

• It allows the programmer to access components of data structures out-

of-order after initializing them, as long as they are free from any circular

dependencies.

• It is best suited for loading data which will be infrequently accessed.

Lazy Evaluation in Python

36

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Lazy Evaluation − Drawbacks

• It forces the language runtime to hold the evaluation of sub-expressions

until it is required in the final result by creating thunks (delayed

objects).

• Sometimes it increases space complexity of an algorithm.

• It is very difficult to find its performance because it contains thunks of

expressions before their execution.

Lazy Evaluation in Python

• The range method in Python follows the concept of Lazy Evaluation. It

returns a sequence of numbers, starting from 0 by default, and

increments by 1 (by default), and stops before a specified number.

r = range(start, stop, step)

r= range(6)

r= range(3,6)

r= range(3,20,2)

Lazy Evaluation in Python

37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Decision making is anticipation of conditions occurring while execution of

the program and specifying actions taken according to the conditions.

• Decision structures evaluate multiple expressions which produce TRUE

or FALSE as outcome. You need to determine which action to take and

which statements to execute if outcome is TRUE or FALSE otherwise.

• Following is the general form of a typical decision making structure

found in most of the programming languages −

Conditional Statements in
Python

38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Python programming language assumes any non-zero and non-

null values as TRUE, and if it is either zero or null, then it is assumed

as FALSE value.

• Python programming language provides following types of decision

making statements. Click the following links to check their detail.

Conditional Statements in
Python

39

Sr.No. Statement & Description

1 if statements An if statement consists of a boolean expression followed
by one or more statements.

2 if...else statements An if statement can be followed by an optional else
statement, which executes when the boolean expression is FALSE.

3 nested if statements You can use one if or else if statement inside
another if or else if statement(s).

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

• Equals: a == b

• Not Equals: a != b

• Less than: a < b

• Less than or equal to: a <= b

• Greater than: a > b

• Greater than or equal to: a >= b

a = 33

b = 200

if b > a:

print("b is greater than a")

elif a== b:

print("a and b are equal")

else:

print(“a is greater than b")

Conditional Statements in
Python

40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Short Hand If

If you have only one statement to execute, you can put it on the same line

as the if statement : Example

if a > b: print("a is greater than b")

Short Hand If ... Else

• If you have only one statement to execute, one for if, and one for else,

you can put it all on the same line: Example

a = 2

b = 330

print("A") if a > b else print("B")

The pass Statement

If statements cannot be empty, but if you for some reason have an if

statement with no content, put in the statement to avoid getting an error.

if b > a:

pass

Conditional Statements in
Python

41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• In general, statements are executed sequentially: But, there may be a

situation when you need to execute a block of code several number of

times.

• Programming languages provide various control structures that allow for

more complicated execution paths.

• A loop statement allows us to execute a statement or group of

statements multiple times. The following diagram illustrates a loop

statement −

Python Loops

42

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python programming language provides following types of loops to handle

looping requirements.

Python Loops

43

Sr.No. Loop Type & Description

1 while loop Repeats a statement or group of statements while a given
condition is TRUE. It tests the condition before executing the loop body.

2 for loop Executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

3 nested loops You can use one or more loop inside any another while, for
or do..while loop.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Loop Control Statements

• Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope

are destroyed.

• Python supports the following control statements. Click the following links to

check their detail.

• Let us go through the loop control statements briefly

Python Loops

44

Sr.No. Control Statement & Description

1 break statement Terminates the loop statement and transfers execution to the
statement immediately following the loop.

2 continue statement Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

3 pass statement The pass statement in Python is used when a statement is
required syntactically but you do not want any command or code to execute.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python while Loop Statements

• A while loop statement in Python programming language repeatedly

executes a target statement as long as a given condition is true.

• The syntax of a while loop in Python programming language is −

while expression

statements(s)

• Here, statement(s) may be a single statement or a block of

statements. The condition may be any expression, and true is any

non-zero value. The loop iterates while the condition is true.

• When the condition becomes false, program control passes to the line

immediately following the loop.

• In Python, all the statements indented by the same number of

character spaces after a programming construct are considered to be

part of a single block of code. Python uses indentation as its method of

grouping statements.

Python Loops

45

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm
https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Using else Statement with While Loop

• Python supports to have an else statement associated with a loop

statement.

• If the else statement is used with a while loop, the else statement is

executed when the condition becomes false.

• The following example illustrates the combination of an else statement

with a while statement that prints a number as long as it is less than 5,

otherwise else statement gets executed.

count = 0

while count < 5:

print count, “ is less than 5 ”

count = count +1

else:

print count, “ is not less than 5 ”

Python Loops

46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python for Loop Statements

It has the ability to iterate over the items of any sequence, such as a list or

a string.

for iterating_var in sequence:

statement(s)

Example:

for letter in “BVICAM”

print ‘Current Letter:’ , letter

colors = [‘RED’, ‘GREEN’, ‘BLUE’]

for color in colors:

print ‘Current Color:’ , color

Python Loops

47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

A function is a block of organized, reusable code that is used to perform a

single, related action.

Functions provide better modularity for your application and a high degree

of code reusing.

Basically, we can divide functions into the following two types:

• Built-in functions - Functions that are built into Python.

• For example – abs(), complex(), dict(), float(), format(), id()

• User-defined functions - Functions defined by the users themselves.

Functions

48

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Advantages of user-defined functions

• User-defined functions help to decompose a large program into small

segments which makes program easy to understand, maintain and

debug. (Modular Programming)

• If repeated code occurs in a program, functions can be used to include

those codes and execute when needed by calling that function.

• Programmers working on large project can divide the workload by

making different functions.

User-defined functions

49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Defining a user-defined functions

• Function blocks begin with the keyword def followed by the function

name and parentheses (()).

• Any input parameters or arguments should be placed within these

parentheses.

• The first statement of a function can be an optional statement - the

documentation string of the function or docstring.

• The code block within every function starts with a colon (:) and is

indented.

• The statement return [expression] exits a function. A return statement

with no arguments is the same as return None.

• pass statement can be used in case function has an empty body.

User-defined functions

50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

def function_name(paramenters) :

“Function_docstring”

Fucntion_Body

return [expression]

Example :

def print_me(str):

“This prints a passed string into this function”

print str

return

print_me(“Test String”)

Functions

51

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Arguments

Information can be passed into functions as arguments.

You can add as many arguments as you want, just separate them with a

comma.

Number of Arguments

By default, a function must be called with the correct number of arguments.

Arbitrary Arguments, *args

• If you do not know how many arguments that will be passed into your

function, add a * before the parameter name in the function definition.

• This way the function will receive a tuple of arguments, and can access

the items accordingly

def my_function(*students)

print(“The topper of the class is ” + students[3])

Arguments

52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Keyword Arguments

• You can also send arguments with the key = value syntax.

• This way the order of the arguments does not matter.

def my_function(stud1, stud2, stud3, stud4)

print(“The topper of the class is ” + students[3])

my_function(stud2=‘Amit’, stud3=‘Suman’, stud1= ‘Nikita’, stud4=‘Parth’)

Default Parameter Value

def my_function(country = ‘INDIA’)

print(“I am from “ + country)

my_fucntion(“Canada”)

my_fucntion ()

Arguments

53

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Scope of a variable is the portion of a program where the variable is

recognized. Parameters and variables defined inside a function are not

visible from outside the function. Hence, they have a local scope.

• The lifetime of a variable is the period throughout which the variable

exits in the memory. The lifetime of variables inside a function is as long

as the function executes.

• They are destroyed once we return from the function. Hence, a function

does not remember the value of a variable from its previous calls.

def my_function():

x=10

print(“Value of x inside function = ” , x)

my_function()

x=20

print(“Value of x outside function = ” , x)

Scope and Lifetime of

variables

54

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Global vs. Local variables

• Variables that are defined inside a function body have a local scope,

and those defined outside have a global scope.

• This means that local variables can be accessed only inside the

function in which they are declared, whereas global variables can be

accessed throughout the program body by all functions. When you call

a function, the variables declared inside it are brought into scope.

Scope and Lifetime of

variables

55

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• Defining a function only gives it a name, specifies the parameters that

are to be included in the function and structures the blocks of code.

• Once the basic structure of a function is finalized, you can execute it by

calling it from another function or directly from the Python prompt.

Pass by reference vs value

All parameters (arguments) in the Python language are passed by

reference. It means if you change what a parameter refers to within a

function, the change also reflects back in the calling function.

def change_me(mylist):

mylist.append([1,2,3,4])

print “value inside the function: ” , mylist

return

mylist =[10,20,30]

change_me(mylist)

print “value outside the function: ” , mylist

Calling a Function

56

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Example:

def my_function(x):

x[0] = 20

return

After function call

my_list= [10,11,12,13,14,15]

my_function(my_list)

print (my_list)

Calling a Function

57

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

When we pass a reference and change the received reference to

something else, the connection between the passed and received

parameter is broken.

def my_function(x):

x = [20, 30, 40]

print (my_list)

return

After function call

my_list= [10,11,12,13,14,15]

my_function(my_list)

print (my_list)

Calling a Function

58

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

These functions are called anonymous because they are not declared in the standard manner

by using the def keyword. You can use the lambda keyword to create small anonymous

functions.

• Lambda forms can take any number of arguments but return just one value in the form of

an expression. They cannot contain commands or multiple expressions.

• An anonymous function cannot be a direct call to print because lambda requires an

expression

• Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the global namespace.

• Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function stack

allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

Lambda [agr1, [arg2, ….. agrn]]: expression

Sum = lambda agr1, agr2 : arg1 +arg2

Print “Value of total = ” , sum(10,10)

Print “Value of total = ” , sum(20,20)

The Anonymous Functions

59

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Recursion is the process of defining something in terms of itself.

In Python, we know that a function can call other functions. It is even possible for the function
to call itself. These types of construct are termed as recursive functions.

Advantages of using recursion

• A complicated function can be split down into smaller sub-problems utilizing recursion.

• Sequence creation is simpler through recursion than utilizing any nested iteration.

• Recursive functions render the code look simple and effective.

Disadvantages of using recursion

• A lot of memory and time is taken through recursive calls which makes it expensive for

use.

• Recursive functions are challenging to debug.

• The reasoning behind recursion can sometimes be tough to think through.

Rercursion

60

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Syntax:

Example:

def factorial(x):

if x==1 :

Return 1

else:

return(x * factorial(x-1))

num = 3

print(“The factorial of ”, num, “ is “ , factorial(num))

Rercursion

61

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

• The developer should be very careful with recursion as it can be quite easy to slip into

writing a function which never terminates, or one that uses excess amounts of memory or

processor power.

• However, when written correctly recursion can be a very efficient and mathematically-

elegant approach to programming.

• To a new developer it can take some time to work out how exactly this works, best way to

find out is by testing and modifying it.

• Every recursive function must have a base condition that stops the recursion or else the

function calls itself infinitely.

• The Python interpreter limits the depths of recursion to help avoid infinite recursions,

resulting in stack overflows.

• By default, the maximum depth of recursion is 1000. If the limit is crossed, it results in

RecursionError.

def recursor():

recursor()

recursor()

Rercursion

62

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python functions, Python modules and Python packages, three mechanisms that

facilitate modular programming.

Modular programming refers to the process of breaking a large programming task into

separate, smaller, more manageable subtasks or modules. Individual modules can then be

cobbled together like building blocks to create a larger application. several advantages

to modularizing code in a large application:

– Simplicity: Rather than focusing on the entire problem at hand, a module typically

focuses on one relatively small portion of the problem.

– Maintainability: Modules are typically designed so that they enforce logical

boundaries between different problem domains. If modules are written in a way that

minimizes interdependency, there is decreased likelihood that modifications to a

single module will have an impact on other parts of the program.

– Reusability: Functionality defined in a single module can be easily reused

– Scoping: Modules typically define a separate namespace, which helps avoid

collisions between identifiers in different areas of a program.

Modules

63

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

In programming, a module is a piece of software that has a specific functionality.

• Modules in Python are simply Python files with a .py extension. A file containing a set of

functions you want to include in your application.

• The name of the module will be the name of the file.

• A Python module can have a set of functions, classes or variables defined and

implemented.

def greeting(name):

print(“Hello ” + name)

• Now we can use the module we just created, by using the import statement

import mymodule

mymodule.greeting(“Aarti")

• You can create an alias when you import a module, by using the as keyword

import mymodule as mx

mx.greeting(“Aarti")

Modules

64

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

There is a huge list of built-in modules in the Python standard library.

Two very important functions come in handy when exploring modules in Python – the dir

and help functions.

Built-in modules are written in C and integrated with the Python shell. Each built-in module

contains resources for certain system-specific functionalities such as OS management, disk

IO, etc. The standard library also contains many Python scripts (with the .py extension)

containing useful utilities.

To display a list of all available modules, use the following command in the Python console:

>>> help(‘modules’)

There is a built-in function to list all the function names (or variable names) in a module. The

dir() function:

import platform

x = dir(platform)

print(x)

Exploring built-in Modules

65

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python has a built-in module that you can use for mathematical tasks. It is a standard

module in Python and is always available.

To use mathematical functions under this module, you have to import the module using

import math

Functions in Python Math Module

math.ceil()

math.exp()

math.pow()

math.sqrt()

math.fmod()

math.fabs()

math.factorial()

math.gcd()

Math Constants

math.e

math.pi

Math Module

66

https://www.w3schools.com/python/ref_math_ceil.asp
https://www.w3schools.com/python/ref_math_exp.asp
https://www.w3schools.com/python/ref_math_pow.asp
https://www.w3schools.com/python/ref_math_sqrt.asp
https://www.w3schools.com/python/ref_math_fmod.asp
https://www.w3schools.com/python/ref_math_fabs.asp
https://www.w3schools.com/python/ref_math_factorial.asp
https://www.w3schools.com/python/ref_math_gcd.asp
https://www.w3schools.com/python/ref_math_e.asp
https://www.w3schools.com/python/ref_math_pi.asp

MCA-106, Python Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya, Assistant. Prof. U1.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Python has a

built-in module that you can use to make random numbers.

Random Module

67

Method Description

seed() Initialize the random number generator

shuffle() Takes a sequence and returns the sequence in a random order

sample() Returns a given sample of a sequence

random() Returns a random float number between 0 and 1

randrange() Returns a random number between the given range

uniform() Returns a random float number between two given parameters

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

As an application program grows larger in size , it includes a lot of modules.

As the number of modules grows, it becomes difficult to keep track of them all if they are

dumped into one location. This is particularly so if they have similar names or functionality.

You might wish for a means of grouping and organizing them.

Packages allow for a hierarchical structuring of the module namespace using dot notation.

In the same way that modules help avoid collisions between global variable

names, packages help avoid collisions between module names.

Packages are analogous to directories and modules for files. As a directory can contain

subdirectories and files, a Python package can have sub-packages and modules.

Python Packages

68

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal, Assistant Professor –

Unit 1

Creating a package is quite straightforward, since it makes use of the operating system’s

inherent hierarchical file structure. They are simply directories, but with a twist.

Each package in Python is a directory which MUST contain a special file called _init_.py.

This file can be empty, and it indicates that the directory it contains is a Python package, so it

can be imported the same way a module can be imported.

If we create a directory called pkg, which marks the package name, we can then create

modules inside that package called mod1.py and mod2.py. We also must not forget to add

the _init_.py file inside the pkg directory.

import pkg.mod1, pkg.mod2

pkg.mod1.greeting(“Aarti")

from pkg import mod1

mod1.greeting(“Aarti")

Creating a Package

69

https://www.w3schools.com/python/ref_random_seed.asp
https://www.w3schools.com/python/ref_random_shuffle.asp
https://www.w3schools.com/python/ref_random_sample.asp
https://www.w3schools.com/python/ref_random_random.asp
https://www.w3schools.com/python/ref_random_randrange.asp
https://www.w3schools.com/python/ref_random_uniform.asp

