
Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

Data and File Structures
Unit – 4

(File Structures)

Dr. Sunil Pratap Singh
(Assistant Professor, BVICAM, New Delhi)

2021

by

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

File

• A file is a collection of data stored on mass storage (e.g., disk or

tape).

 The data is subdivided into records (e.g., student information).

 Each record contains a number of fields (e.g., roll number, name).

 One (or more) field is the key field (e.g., roll number).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

File Organizations

• A file organization refers to the way records are arranged on a

storage device.

• How best the files be arranged for easy of access?

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

Sequential Files

• A sequential file is one in which records can only be accessed one after

another from beginning to end.

• This file organization is the simplest way to store and retrieve records of

a file.

• In this file, data records are stored in some specific sequence, e.g., order

of arrival, value of key field, etc.

001 Abhijeet 22 002 Arpit 21 003 Ashutosh 21

Record 1 Record 2 Record 3

Key Key Key

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

Sequential Files

• The records of a sequential file cannot be accessed at random, i.e.,

to access the nth record, one must traverse the preceding (n-1)

records.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

Sequential File Organization

• In sequential file organization, the actual storage of records might

or might not be sequential:

 On a tape, it usually is.

 On a disk, it might be distributed across sectors and the operating

system would use a linked list of sectors to provide the illusion of

sequentially.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

Sequential File Organization

• Advantages:

 Easy to handle

 Involve no overhead

 Can be stored on tapes as well as disks

• Disadvantages:

 Records can only be accessed in sequence

 Time consuming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

Indexed File

• To access a record in a file randomly, we need to know the address of

the record.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

Indexed File: Logical View

• An indexed file is made of a data

file, which is a sequential file, and an

index.

• The index itself is a very small file

with only two fields: the key of the

sequential file and the address of

the corresponding record on the

disk.

• The index is sorted based on the key

values of the data files.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

Indexed File: Accessing a Record

• Accessing a record in the file requires following steps:

 The entire index file is loaded into main memory (the file is small and

uses little memory).

 The index entries are searched, using an efficient search algorithm

such as a binary search, to find the desired key.

 The address of the record is retrieved.

 Using the address, the data record is retrieved and passed to the

user.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

Inverted File

• One of the advantages of indexed files is that we can have more

than one index, each with a different key.

• This type of indexed file is usually called an inverted file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

Direct File (Hashed File)

• A hashed file uses a mathematical function to map the key to the

address.

• The user gives the key, the function maps the key to the address

and passes it to the operating system, and the record is retrieved.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13

Process of Working in Direct File (Hashed File)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14

Updating a Sequential File

• Information that is kept on files needs to be modified as changes

to the information on the file occur.

 This process is called UPDATING and the files that are being update

are usually called MASTER FILES.

• Updating a file can involve ADDING, CHANGING or DELETING

records to/from the file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15

Process of Updating a Sequential File

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16

Example of Updating a Sequential File

• To make the updating process efficient, all files are sorted on the

same key.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17

Error in Updating a Sequential File

• Several cases may create an error and be reported in the error

file:

 If the transaction defines adding a record that already exists in the

old master file (same key values).

 If the transaction defines deleting or changing a record that does not

exist in the old master file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18

File Operations in C

• There are two distinct ways to perform file operations in C:

 Low-level I/O Operations (uses UNIX system calls)

 High-level I/O Operation (uses functions of C’s standard I/O library)

• Data can be stored into files in two ways:

 Text Mode

 Binary Mode

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19

Text Mode

• In text mode, data is stored as a line of characters where each character

occupies 1 byte.

 To store 123456 in a text file would take 6 bytes, 1 byte for each character.

 In the text mode, what gets stored in the memory is that binary equivalent of

the ASCII number of the character.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20

Binary Mode

• In binary mode, data is stored on a disk in the same way as it is

represented in computer memory.

 Storing 123456 in a binary mode would take only 2 bytes.

 Hence by using binary mode, we can save a lot of disk space.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21

High Level I/O Functions in ‘C’

• fopen(): Opens an existing/creates a new file for use.

• fclose(): Closes a file which has been opened for use.

• fscanf(): Reads a set of data values from a file.

• fprintf(): Writes a set of data values to a file.

• getc(): Reads a character from a file.

• putc(): Writes a character to a file.

• getw(): Reads an integer from a file.

• putw(): Writes an integer to a file.

• fseek(): Sets the position to a desired point in the file.

• rewind(): Sets the position to the beginning of the file.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22

Operations on a File in ‘C’

• Mode specifies the purpose of opening of the file. It can be one of the following:

 r opens the file for reading only

 r+ opens the existing file for both reading and writing. If file does not exist, NULL is

returned.

 w opens the file for writing only

 w+ opens the file for both writing and reading. If the file exist, the previous contents are

overwritten by new one.

 a opens the file for appending (or adding) data to file.

 a+ opens the file for reading and appending. If the file does not exist, a new file is created.

FILE *fp;

fp = fopen(“fileName”, “mode”);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23

Operations on a File in ‘C’ (contd…)

• When trying to open a file, one of the following things may happen:

 When the mode is ‘writing’, a file with the specified name is created if the file

does not exist. The contents are deleted, if the file already exists.

 When the purpose is ‘appending’, the file is opened with the current contents

safe. A file with the specified name is created if the file does not exist.

 If the purpose is ‘reading’, and if it file exists, then it is opened with the current

contents safe otherwise an error occurs.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24

Input/Output Operations on a File

• Using getc() and putc()

 putc(ch, fp); is used to write the character contained in the character variable ch to

the file associated with FILE pointer fp.

 c = getc(fp); is used to read a character from a file that has been opened in read

mode.

putc(ch, fp);

ch = getc(fp);

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25

Input/Output Operations on a File (contd…)

• Using getw() and putw()

 getw() and putw() are integer-oriented functions.

 These are similar to the getc() and putc() functions and are used to read and write

integer values.

 putw(in, fp); is used to write the integer contained in the character variable in to the

file associated with FILE pointer fp.

 in = getw(fp); is used to read a character from a file that has been opened in read

mode.

putw(in, fp);

in = getw(fp);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26

Input/Output Operations on a File (contd…)

• Using fprintf() and fscanf()

 fprintf() and fscanf() are identical to the printf() and scanf() functions, except of

course that they work on files.

 fprintf() and fscanf() can handle a group of mixed data simultaneously.

fprintf(fp, “control string”, list);

fscanf(fp, “control string”, list);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27

Input/Output Operations on a File

• Using getc() and putc()

• Using getw() and putw()

• Using fprintf() and fscanf()

putc(ch, fp);

ch = getc(fp);

putw(in, fp);

in = getw(fp);

fprintf(fp, “control string”, list);

Example: fprintf(fp, “%s %d %f”, item, number, price);

When the end of line is reached, fscanf() returns EOF.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28

Errors during I/O Operations

• During I/O operations, an error may occur due to the following reasons:

 Trying to read beyond the end-of-file mark.

 Trying to use a file that has not been opened.

 Trying to perform an operation on a file, when the file is opened for another type of

operation.

 Opening a file with an invalid file name.

 Attempting to write to a write-protected file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29

Error Handling during I/O Operations

• feof() function can be used to test for an end of file condition.

 It takes a FILE pointer as its only argument and returns a nonzero integer value if all of the

data from the specified file has been read, and returns zero otherwise.

• ferror() function reports the status of the file indicated.

 It takes a FILE pointer as its argument and returns a nonzero integer if an error has been

detected up to that point, during processing. It returns zero otherwise.

if(feof(fp) != 0)

 printf(“End of data.\n”);

if(ferror(fp) != 0)

 printf(“An error has occurred.\n”);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30

Error Handling during I/O Operations (contd…)

• Whenever a file is opened using fopen() function, a file pointer is returned.

 If the file cannot be opened for some reason, then the function returns a NULL pointer.

 This facility can be used to test whether a file has been opened or not.

if(fp == NULL)

 printf(“File could not be opened.\n”);

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31

Random Access to Files

• ftell() takes a file pointer and return a number of type long, that corresponds to

the current position.

• This function is useful in saving the current position of a file, which can be used later

in the program.

• It takes the following form: n = ftell(fp);

 n would give the relative offset (in bytes) of the current position, which means that n bytes

have already been read (or written).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32

Random Access to Files (contd…)

• rewind() takes a file pointer and resets the position to the start of the file.

 The statement rewind(fp); n = ftell(fp); will assign 0 to n because the file

position has been set to the start of the file by rewind.

• This function helps us in reading a file more than once, without having to close and

open the file.

 Whenever a file is opened for reading or writing, a rewind is done implicitly.

• Note: The first byte in the file is numbered as 0, second as 1, and so on.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33

Random Access to Files (contd…)

• fseek() function is used to move the file position to a desired location within the

file.

• It takes the following form: fseek(fileptr, offset, position);

 fileptr is a pointer to the file concerned; offset is a number or variable of type long;

position is an integer number.

 The offset specifies the number of positions (bytes) to be moved from the location

specified by position.

 The position can take one of the following three values: 0 (beginning of file), 1 (current

position) and 3 (end of file).

 The offset may be positive (move forwards) or negative (move backwards).

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34

Examples of Operations of the fseek()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35

Input/Output Operations in Binary File

• fread() and fwrite() functions are commonly used to read and write binary data

to and from the file respectively.

• fwrite(void *ptr, int size, int n, FILE *fp);

• fread(void *ptr, int size, int n, FILE *fp);

 ptr points to the block of memory which contains the data items to be written.

 size specifies the number of bytes of each item to be written.

 n is the number of items to be written.

 fp is a pointer to the file where data items will be written.

 On success, these functions returns the number of items successfully written/read

to/from the file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.36

Thank You

