
Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.1

Data and File Structures
Unit – 4

(File Structures)

Dr. Sunil Pratap Singh
(Assistant Professor, BVICAM, New Delhi)

2021

by

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

File

• A file is a collection of data stored on mass storage (e.g., disk or

tape).

 The data is subdivided into records (e.g., student information).

 Each record contains a number of fields (e.g., roll number, name).

 One (or more) field is the key field (e.g., roll number).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

File Organizations

• A file organization refers to the way records are arranged on a

storage device.

• How best the files be arranged for easy of access?

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

Sequential Files

• A sequential file is one in which records can only be accessed one after

another from beginning to end.

• This file organization is the simplest way to store and retrieve records of

a file.

• In this file, data records are stored in some specific sequence, e.g., order

of arrival, value of key field, etc.

001 Abhijeet 22 002 Arpit 21 003 Ashutosh 21

Record 1 Record 2 Record 3

Key Key Key

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

Sequential Files

• The records of a sequential file cannot be accessed at random, i.e.,

to access the nth record, one must traverse the preceding (n-1)

records.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

Sequential File Organization

• In sequential file organization, the actual storage of records might

or might not be sequential:

 On a tape, it usually is.

 On a disk, it might be distributed across sectors and the operating

system would use a linked list of sectors to provide the illusion of

sequentially.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

Sequential File Organization

• Advantages:

 Easy to handle

 Involve no overhead

 Can be stored on tapes as well as disks

• Disadvantages:

 Records can only be accessed in sequence

 Time consuming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

Indexed File

• To access a record in a file randomly, we need to know the address of

the record.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

Indexed File: Logical View

• An indexed file is made of a data

file, which is a sequential file, and an

index.

• The index itself is a very small file

with only two fields: the key of the

sequential file and the address of

the corresponding record on the

disk.

• The index is sorted based on the key

values of the data files.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

Indexed File: Accessing a Record

• Accessing a record in the file requires following steps:

 The entire index file is loaded into main memory (the file is small and

uses little memory).

 The index entries are searched, using an efficient search algorithm

such as a binary search, to find the desired key.

 The address of the record is retrieved.

 Using the address, the data record is retrieved and passed to the

user.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

Inverted File

• One of the advantages of indexed files is that we can have more

than one index, each with a different key.

• This type of indexed file is usually called an inverted file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

Direct File (Hashed File)

• A hashed file uses a mathematical function to map the key to the

address.

• The user gives the key, the function maps the key to the address

and passes it to the operating system, and the record is retrieved.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.13

Process of Working in Direct File (Hashed File)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.14

Updating a Sequential File

• Information that is kept on files needs to be modified as changes

to the information on the file occur.

 This process is called UPDATING and the files that are being update

are usually called MASTER FILES.

• Updating a file can involve ADDING, CHANGING or DELETING

records to/from the file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.15

Process of Updating a Sequential File

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.16

Example of Updating a Sequential File

• To make the updating process efficient, all files are sorted on the

same key.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.17

Error in Updating a Sequential File

• Several cases may create an error and be reported in the error

file:

 If the transaction defines adding a record that already exists in the

old master file (same key values).

 If the transaction defines deleting or changing a record that does not

exist in the old master file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.18

File Operations in C

• There are two distinct ways to perform file operations in C:

 Low-level I/O Operations (uses UNIX system calls)

 High-level I/O Operation (uses functions of C’s standard I/O library)

• Data can be stored into files in two ways:

 Text Mode

 Binary Mode

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.19

Text Mode

• In text mode, data is stored as a line of characters where each character

occupies 1 byte.

 To store 123456 in a text file would take 6 bytes, 1 byte for each character.

 In the text mode, what gets stored in the memory is that binary equivalent of

the ASCII number of the character.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.20

Binary Mode

• In binary mode, data is stored on a disk in the same way as it is

represented in computer memory.

 Storing 123456 in a binary mode would take only 2 bytes.

 Hence by using binary mode, we can save a lot of disk space.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.21

High Level I/O Functions in ‘C’

• fopen(): Opens an existing/creates a new file for use.

• fclose(): Closes a file which has been opened for use.

• fscanf(): Reads a set of data values from a file.

• fprintf(): Writes a set of data values to a file.

• getc(): Reads a character from a file.

• putc(): Writes a character to a file.

• getw(): Reads an integer from a file.

• putw(): Writes an integer to a file.

• fseek(): Sets the position to a desired point in the file.

• rewind(): Sets the position to the beginning of the file.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.22

Operations on a File in ‘C’

• Mode specifies the purpose of opening of the file. It can be one of the following:

 r opens the file for reading only

 r+ opens the existing file for both reading and writing. If file does not exist, NULL is

returned.

 w opens the file for writing only

 w+ opens the file for both writing and reading. If the file exist, the previous contents are

overwritten by new one.

 a opens the file for appending (or adding) data to file.

 a+ opens the file for reading and appending. If the file does not exist, a new file is created.

FILE *fp;

fp = fopen(“fileName”, “mode”);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.23

Operations on a File in ‘C’ (contd…)

• When trying to open a file, one of the following things may happen:

 When the mode is ‘writing’, a file with the specified name is created if the file

does not exist. The contents are deleted, if the file already exists.

 When the purpose is ‘appending’, the file is opened with the current contents

safe. A file with the specified name is created if the file does not exist.

 If the purpose is ‘reading’, and if it file exists, then it is opened with the current

contents safe otherwise an error occurs.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.24

Input/Output Operations on a File

• Using getc() and putc()

 putc(ch, fp); is used to write the character contained in the character variable ch to

the file associated with FILE pointer fp.

 c = getc(fp); is used to read a character from a file that has been opened in read

mode.

putc(ch, fp);

ch = getc(fp);

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.25

Input/Output Operations on a File (contd…)

• Using getw() and putw()

 getw() and putw() are integer-oriented functions.

 These are similar to the getc() and putc() functions and are used to read and write

integer values.

 putw(in, fp); is used to write the integer contained in the character variable in to the

file associated with FILE pointer fp.

 in = getw(fp); is used to read a character from a file that has been opened in read

mode.

putw(in, fp);

in = getw(fp);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.26

Input/Output Operations on a File (contd…)

• Using fprintf() and fscanf()

 fprintf() and fscanf() are identical to the printf() and scanf() functions, except of

course that they work on files.

 fprintf() and fscanf() can handle a group of mixed data simultaneously.

fprintf(fp, “control string”, list);

fscanf(fp, “control string”, list);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.27

Input/Output Operations on a File

• Using getc() and putc()

• Using getw() and putw()

• Using fprintf() and fscanf()

putc(ch, fp);

ch = getc(fp);

putw(in, fp);

in = getw(fp);

fprintf(fp, “control string”, list);

Example: fprintf(fp, “%s %d %f”, item, number, price);

When the end of line is reached, fscanf() returns EOF.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.28

Errors during I/O Operations

• During I/O operations, an error may occur due to the following reasons:

 Trying to read beyond the end-of-file mark.

 Trying to use a file that has not been opened.

 Trying to perform an operation on a file, when the file is opened for another type of

operation.

 Opening a file with an invalid file name.

 Attempting to write to a write-protected file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.29

Error Handling during I/O Operations

• feof() function can be used to test for an end of file condition.

 It takes a FILE pointer as its only argument and returns a nonzero integer value if all of the

data from the specified file has been read, and returns zero otherwise.

• ferror() function reports the status of the file indicated.

 It takes a FILE pointer as its argument and returns a nonzero integer if an error has been

detected up to that point, during processing. It returns zero otherwise.

if(feof(fp) != 0)

 printf(“End of data.\n”);

if(ferror(fp) != 0)

 printf(“An error has occurred.\n”);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.30

Error Handling during I/O Operations (contd…)

• Whenever a file is opened using fopen() function, a file pointer is returned.

 If the file cannot be opened for some reason, then the function returns a NULL pointer.

 This facility can be used to test whether a file has been opened or not.

if(fp == NULL)

 printf(“File could not be opened.\n”);

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.31

Random Access to Files

• ftell() takes a file pointer and return a number of type long, that corresponds to

the current position.

• This function is useful in saving the current position of a file, which can be used later

in the program.

• It takes the following form: n = ftell(fp);

 n would give the relative offset (in bytes) of the current position, which means that n bytes

have already been read (or written).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.32

Random Access to Files (contd…)

• rewind() takes a file pointer and resets the position to the start of the file.

 The statement rewind(fp); n = ftell(fp); will assign 0 to n because the file

position has been set to the start of the file by rewind.

• This function helps us in reading a file more than once, without having to close and

open the file.

 Whenever a file is opened for reading or writing, a rewind is done implicitly.

• Note: The first byte in the file is numbered as 0, second as 1, and so on.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.33

Random Access to Files (contd…)

• fseek() function is used to move the file position to a desired location within the

file.

• It takes the following form: fseek(fileptr, offset, position);

 fileptr is a pointer to the file concerned; offset is a number or variable of type long;

position is an integer number.

 The offset specifies the number of positions (bytes) to be moved from the location

specified by position.

 The position can take one of the following three values: 0 (beginning of file), 1 (current

position) and 3 (end of file).

 The offset may be positive (move forwards) or negative (move backwards).

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.34

Examples of Operations of the fseek()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.35

Input/Output Operations in Binary File

• fread() and fwrite() functions are commonly used to read and write binary data

to and from the file respectively.

• fwrite(void *ptr, int size, int n, FILE *fp);

• fread(void *ptr, int size, int n, FILE *fp);

 ptr points to the block of memory which contains the data items to be written.

 size specifies the number of bytes of each item to be written.

 n is the number of items to be written.

 fp is a pointer to the file where data items will be written.

 On success, these functions returns the number of items successfully written/read

to/from the file.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U4.36

Thank You

