
Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.1

Data and File Structures

(MCA-102)

Unit – 3

[Graph]

by

Dr. Sunil Pratap Singh
(Assistant Professor, BVICAM, New Delhi)

2021

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2

Graph

• A graph G = (V,E) consists of a finite set of vertices V = {v1, v2, . . . , vn} and a

finite set E of edges E = {e1, e2, . . . , em}.

• To each edge e, there corresponds a pair of vertices (u, v) where e is said to be

incident on.

• A graph is said to be a directed graph (or digraph for short) if the vertex pair

(u, v) associated with each edge e (also called arc) is an ordered pair.

Undirected graph with 5

vertices and 6 edges

Digraph with 6 vertices and

11 edges

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3

Representation of Graphs in Computer

• Array-based Representation

 Using Adjacency Matrix

• Linked Representation

 Using Adjacency List

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4

Array-based (2-D Array) Representation

Matrix Representation of an Undirected Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5

Array-based (2-D Array) Representation

Matrix Representation of a Direct Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6

Array-based (2-D Array) Representation

Matrix Representation of a Weighted Graph

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7

Adjacency List Representation

Note: Adjacency List implementation needs Array and Linked List

Adjacency List Representation of an Undirected Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8

Adjacency List Representation

Adjacency List Representation of a Directed Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9

Adjacency List Representation

Adjacency List Representation of a Weighted Graph

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10

Operations of Graph

• Insertion

 There are two major components of a graph – Vertex and Edge. Therefore,

a node or an edge or both can be inserted into an existing graph.

• Deletion

 Similarly, a node or an edge or both can be deleted from an existing graph.

• Traversal

 A graph may be traversed for many purposes – to search a path, to search

a shortest path b/w two given nodes, etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11

Insertion Operation

• Insertion of a vertex and its associated edge with other vertices in an

adjacency matrix involves:

 Add a row for the new vertex

 Add a column for the new vertex

 Make appropriate entries into the rows and columns of the matrix.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12

Algorithm: addVertex() – Undirected Graph

Algorithm addVertex()

{

 lastRow = lastRow + 1;

 lastCol = lastCol + 1;

 adjMat[lastRow][0] = verTex;

 adjMat[0][lastCol] = verTex;

 Set all elements of last row = 0;

 Set all elements of last col = 0;

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13

Algorithm: addEdge() – Undirected Graph

// A new edge (v1, v2) is added to matrix with entry 1.

Algorithm addEdge()

{

 Find row corresponding to v1, i.e., rowV1;

 Find col corresponding to v2, i.e., colV2;

 adjMat[rowV1][colV2] = 1;

 adjMat[colV2][rowV1] = 1;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14

Algorithm: addVertex() – Directed Graph

Algorithm addVertex()

{

 lastRow = lastRow + 1;

 lastCol = lastCol + 1;

 adjMat[lastRow][0] = verTex;

 adjMat[0][lastCol] = verTex;

 Set all elements of last row = 0;

 Set all elements of last col = 0;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15

Algorithm: addEdge() – Directed Graph

// A new edge (v1, v2) is added to matrix with entry 1.

Algorithm addEdge()

{

 Find row corresponding to v1, i.e., rowV1;

 Find col corresponding to v2, i.e., colV2;

 adjMat[rowV1][colV2] = 1;

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16

Delete Operation

• Deletion of a vertex and its associated edge involves:

 Delete the row corresponding to the vertex

 Delete the col corresponding to the vertex

 Mark 0 in relation with other vertices (if other vertices are adjacent to

the deleted vertex).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17

Algorithm: delVertex() – Undirected Graph

Algorithm delVertex()

{

 Find row corresponding to verTex and set all ist elements = 0;

 Find col corresponding to verTex and set all ist elements = 0;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18

Algorithm: delEdge() – Undirected Graph

Algorithm delEdge()

{

 Find row corresponding to v1, i.e., rowV1;

 Find row corresponding to v2, i.e., colV2;

 adjMat[rowV1][colV2] = 0;

 adjMat[colV2][rowV1] = 0;

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19

Graph Traversal

• Depth First Search

• Breadth First Search

• Spanning Tree

 Minimum Cost Spanning Tree

o Prim’s Algorithm

o Kruskal’s Algorithm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20

Graph Traversal: BFS

• Breadth First Search (BFS) is an algorithm for traversing or searching

graph data structures.

 It starts at the root (selecting some arbitrary node as the root) and

explores the neighbor nodes first, before moving to the next level

neighbors.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21

Breadth First Search (BFS)

• Step 1: Define a Queue of size total number of vertices in the graph.

• Step 2: Select any vertex as starting point for traversal. Visit that vertex and

insert it into the Queue.

• Step 3: Visit all the adjacent vertices of the vertex which is at front of the

Queue which is not visited and insert them into the Queue.

• Step 4: When there is no new vertex to be visit from the vertex at front of the

Queue then delete that vertex from the Queue.

• Step 5: Repeat step 3 and 4 until queue becomes empty.

• Step 6: When queue becomes Empty, then produce final spanning tree by

removing unused edges from the graph

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24

BFS with Queue: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27

BFS with Queue: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30

BFS with Queue: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31

BFS with Queue: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32

Graph Traversal: DFS

• Depth First Search (DFS) is an algorithm for traversing or searching

graph data structures.

 It starts at the root (selecting some arbitrary node as the root) and

explores as far as possible along each branch before backtracking.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33

Depth First Search using Stack

• Step 1: Define a Stack of size total number of vertices in the graph.

• Step 2: Select any vertex as starting point for traversal. Visit that vertex and

push it on to the Stack.

• Step 3: Visit any one of the adjacent vertex of the vertex which is at top of the

stack which is not visited and push it on to the stack.

• Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex

on top of the stack.

• Step 5: When there is no new vertex to be visit then use backtracking and pop

one vertex from the stack.

• Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.

• Step 7: When stack becomes Empty, then produce final spanning tree by

removing unused edges from the graph

•

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34

Example of DFS

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36

DFS with Stack: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.38

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.39

DFS with Stack: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.40

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.41

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.42

DFS with Stack: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.43

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.44

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.45

DFS with Stack: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.46

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.47

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.48

DFS with Stack: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.49

DFS with Stack: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.50

BFS and DFS in Directed Graphs

• Similar to undirected graphs, the same processes work for directed

graphs.

• The only difference is that when exploring a vertex v, we only want to

look at edges (v,w) going out of v; we ignore the other edges coming

into v.

• BFS finds shortest (link-distance) paths from a single source vertex to all

other vertices.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.51

Spanning Tree

• Given a connected and undirected graph, a spanning tree of that graph

is a sub-graph that is a tree and connects all the vertices together.

• A single graph can have many different spanning trees.

• A minimum spanning tree (MST) for a weighted, connected and

undirected graph is a spanning tree with weight less than or equal to

the weight of every other spanning tree.

 Prim’s Algorithm

 Kruskal’s Algorithm

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.52

Steps for finding MST using Kruskal’s Algo.

Let G be a graph with V vertices:

1) Sort all the edges in increasing order of their weight.

2) Pick the smallest edge. Check if it forms a cycle with the spanning tree

formed so far.

a) If cycle is not formed, include this edge.

b) Else, discard it.

3) Repeat step 2 until there are (V-1) edges in the spanning tree.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.53

MST using Kruskal’s Algo.: Example

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree

formed will be having (9 – 1) = 8 edges.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.54

MST using Kruskal’s Algo.: Example 1 (contd...)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.55

MST using Kruskal’s Algo.: Example 1 (contd...)

1. Pick edge 7-6: No cycle is formed, include it..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.56

MST using Kruskal’s Algo.: Example 1 (contd...)

2. Pick edge 8-2: No cycle is formed, include it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.57

MST using Kruskal’s Algo.: Example 1 (contd...)

3. Pick edge 6-5: No cycle is formed, include it.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.58

MST using Kruskal’s Algo.: Example 1 (contd...)

4. Pick edge 0-1: No cycle is formed, include it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.59

MST using Kruskal’s Algo.: Example 1 (contd...)

5. Pick edge 2-5: No cycle is formed, include it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.60

MST using Kruskal’s Algo.: Example 1 (contd...)

6. Pick edge 8-6: Since including this edge results in cycle, discard it.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.61

MST using Kruskal’s Algo.: Example 1 (contd...)

7. Pick edge 2-3: No cycle is formed, include it

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.62

MST using Kruskal’s Algo.: Example 1 (contd...)

8. Pick edge 7-8: Since including this edge results in cycle, discard it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.63

MST using Kruskal’s Algo.: Example 1 (contd...)

9. Pick edge 0-7: No cycle is formed, include it.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.64

MST using Kruskal’s Algo.: Example 1 (contd...)

10. Pick edge 1-2: Since including this edge results in cycle, discard it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.65

MST using Kruskal’s Algo.: Example 1 (contd...)

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V – 1), the
algorithm stops here.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.66

MST using Kruskal’s Algo.: Example 2

Graph

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.67

MST using Kruskal’s Algo.: Example 2 (contd...)

Minimum Cost Spanning Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.68

Steps for finding MST using Prim’s Algo.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.69

MST using Prim’s Algo.: Example 1

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.70

MST using Prim’s Algo.: Example 1 (contd...)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.71

MST using Prim’s Algo.: Example 1 (contd...)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.72

MST using Prim’s Algo.: Example 1 (contd...)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.73

MST using Prim’s Algo.: Example 1 (contd...)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.74

MST using Prim’s Algo.: Example 1 (contd...)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.75

MST using Prim’s Algo.: Example 1 (contd...)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.76

MST using Prim’s Algo.: Example 2

Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.77

MST using Prim’s Algo.: Example 2 (contd...)

Minimum Cost Spanning Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.78

Prim’s Algorithm (Programming) for MST

Let G be a graph with V vertices:

1) Create an array Parent[] of size V and initialize it with NIL.

2) Create a Min Heap of size V. Let the Min Heap be H.

3) Insert all vertices to H such that the key value of starting vertex is 0 and

key value of other vertices is infinite.

4) While H is not empty

a) u = extractMin(H).

b) For every adjcent v of u,

if v is in H

(i) Update key value of v in H if weight of edge u - v is smaller than

current key value of v.

(ii) Parent[v] = u

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.79

Shortest-Path Problems for Graphs

• Single-Source Shortest-Path Problem:

 Given a (di)graph and a distinguished source vertex, s ϵ V, determine the

shortest path from the source vertex s to every other vertex in the

graph.

• All-Pairs Shortest-Path Problem

 Given a directed graph, determine the shortest path between all pairs of

vertices in the weighted digraph.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.80

Single-Source Shortest-Path Problem

Given a (di)graph G = (V, E) and a distinguished source vertex, s ϵ V, determine

the shortest path from the source vertex s to every other vertex in the graph.

 The shortest weighted path from

v1 to v6 has a cost of 6 and goes

from v1 to v4 to v7 to v6.

 The shortest unweighted path

from v1 to v6 has a cost of 2 and

goes from v1 to v4 to v6.

 There is no path from v6 to v1.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.81

Single-Source Shortest-Path Problem (contd…)

 The path from v5 to v4 has cost 1,

but a shorter path exists by

following the loop v5, v4, v2, v5,

v4, which has cost −5.

 This path is still not the shortest,

because we could stay in the loop

arbitrarily long. Graph with a negative-cost cycle

 Thus, the shortest path between these two points (v5 to v4) is undefined due

to the loop.

 This loop is known as a negative-cost cycle; when one is present in the graph,

the shortest paths are not defined.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.82

Unweighted Shortest Paths

 In an unweighted (di)graph, the shortest paths from a single source vertex to all other

vertices can be determined by following the procedure of BFS, which processes the

vertices in increasing order of their distance from the source vertex.

Unweighted directed graph Graph after marking the start
node as reachable in zero edges

Graph after finding all vertices
whose path length from s is 1

Graph after finding all vertices
whose shortest path is 2

Final shortest paths

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.83 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.83

Dijkstra’s Algorithm

• Purpose and Use Cases

 Find the shortest path from a node (called the "source node") to all other

nodes in the graph.

 This algorithm is used in GPS devices to find the shortest path between the

current location and the destination.

 It has broad applications in industry, specially in domains that require

modeling networks.

• History

 In 1959, the algorithm was published by Dr. Edsger W. Dijkstra, a brilliant

Dutch Computer Scientist and Software Engineer.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.84 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.84

Dijkstra’s Algorithm (contd…)

• Basics of the Algorithm

 The algorithm basically starts at the node that we choose (the source node) and it

analyzes the graph to find the shortest path between that node and all the other

nodes in the graph.

 The algorithm keeps track of the currently known shortest distance from each

node to the source node and it updates these values if it finds a shorter path.

 Once the algorithm has found the shortest path between the source node and

another node, that node is marked as "visited" and added to the path.

 The process continues until all the nodes in the graph have been added to the

path.

NOTE: This algorithm works for both directed and undirected graphs. It works only

for connected graphs. The graph should not contain negative edge weights.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.85 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.85

Dijkstra’s Algorithm (Pseudocode)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.86 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.86

Shortest-Path using Dijkstra’s Algo: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.87 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.87

Shortest-Path using Dijkstra’s Algo: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.88 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.88

Shortest-Path using Dijkstra’s Algo: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.89 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.89

Shortest-Path using Dijkstra’s Algo: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.90 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.90

Shortest-Path using Dijkstra’s Algo: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.91 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.91

Shortest-Path using Dijkstra’s Algo: Example

The array pred[v] is used to build the shortest-path tree.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.92 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.92

Shortest-Path using Dijkstra’s Algo: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.93 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.93

More Problems related to Dijkstra’s Algo.

Solution

Solution

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.94 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.94

Ex. of Dijkstra’s Algo. for Undirected Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.95 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.95

Ex. of Dijkstra’s Algo. for Undirected Graph

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.96 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.96

All-Pairs Shortest-Path Problem

• Given a weighted digraph G = (V, E) with a weight function w: E → R,

where R is the set of real numbers, determine the length of the

shortest path (i.e., distance) between all pairs of vertices in G.

• Solution 1: Assume no negative edges. Run Dijkstra's algorithm, n

times, once with each vertex as source. What's the time complexity?

• Solution 2: Floyd-Warshall algorithm (dynamic programming) with time

complexity O(n3), where n is the number of vertices (|V|) in G.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.97 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.97

Floyd-Warshall's Algorithm: Background

• Floyd-Warshall's algorithm is a graph analysis algorithm for finding

shortest paths in a weighted, directed graph.

• A single execution of the algorithm will find the shortest paths between

all pairs of vertices.

• This algorithm compares all possible paths through the graph between

each pair of vertices.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.98 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.98

Floyd-Warshall's Algorithm: Background

Observation: For a shortest path from i to j such that any intermediate vertices

on the path are chosen from the set {1, 2, ..., k}, there are two possibilities:

Combining the above two cases we get:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.99 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.99

Dijkstra’s Algorithm (Pseudocode)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.100 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.100

Shortest-Path using Floyd–Warshall: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.101 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.101

Topological Sort

• Directed Acyclic Graph (DAG)

 A directed acyclic graph is a directed graph with no cycles.

 They are often used to represent dependence constraints of some type.

• Topological Sort of a DAG

 The topological sort a DAG (V, E) is a total ordering, v1 < v2 . . . < vn of the

vertices in V such that for any edge (vi , vj) ϵ E, if j > i.

 Topological Sort is a linear ordering of the vertices in such a way that if

there is an edge in the DAG going from vertex ‘u’ to vertex ‘v’, then ‘u’

comes before ‘v’ in the ordering.

 There may exist multiple different topological orderings for a given DAG.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.102 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.102

Topological Sort (Examples)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.103 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.103

Topological Sort (contd…)

Topo Sorts

1 2 3 4 5 6

1 2 3 4 6 5

1 3 2 4 5 6

1 3 2 4 6 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.104 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.104

Steps to Find Topological Sort from DAG

1. Identify vertices that have no incoming edge, and select one such

vertex.

 In-degrees of these vertices is zero.

 If no such edges, graph has cycles (cyclic graph).

2. Delete this vertex of in-degree zero and all its outgoing edges from the

graph.

 Place the deleted vertex in the output.

3. Repeat Steps 1 and Step 2 until graph is empty.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.105 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.105

Example: Topological Sort from a DAG

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.106 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.106

Example: Topological Sort from a DAG

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.107 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.107

Implementation of Topo Sort using Queue

1. Initialize a queue with each vertex’s in-degree.

2. While there are vertices remaining in the queue:

a) Dequeue and output a vertex.

b) Reduce in-degree of all vertices adjacent to it by 1.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.108 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.108

Ex.: Topo Sort Implementation using Queue

In-degree (Queue)

Output:

Dequeue(0)
In-degree (Queue)

Output: 0

Dequeue(1)
In-degree (Queue)

Output: 0, 1

Dequeue(2)
In-degree (Queue)

Output: 0, 1, 2

Dequeue(3)
In-degree (Queue)

Output: 0, 1, 2, 3

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.109 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.109

Ex.: Topo Sort Implementation (contd…)

Dequeue(4)
In-degree (Queue)

Output: 0, 1, 2, 3, 4

Dequeue(5)
In-degree (Queue)

Output: 0, 1, 2, 3, 4, 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.110 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U3.110

Bibliography

• E. Horowitz and S. Sahani, “Fundamentals of Data Structures in C”

• Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”

• R. S. Salaria, “Data Structure & Algorithms Using C”

• Schaum’s Outline Series, “Data Structure”

