
Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.1

Data and File Structures

(MCA-102)

Unit – 2

[Tree]

by

Dr. Sunil Pratap Singh
(Assistant Professor, BVICAM, New Delhi)

2021

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2

Tree

• A Tree is a non-linear data structure which organizes data in a

hierarchical structure.

• In Tree, every individual element is called a node which stores the data

value.

• Each node is connected by an edge to another node.

• Example:

 Tree with 6 nodes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3

Tree Terminology

• Root

• Rooted Tree

• Degree of a Node

• Degree of a Tree

• Leaf Node / Terminal Node

• Non-Terminal Node / Internal Node

• Siblings

• Level

• Height of a Tree

• Path

• Subtree

• Forest

G

Root

Edge

Parent of

B, C, D A

E F

C B D

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4

Tree Terminology: Example

G

A

C D

C, E, F, G are leaf nodes

A path from A to D

to G

E F

B

A subtree rooted

at B

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5

Tree Terminology: Example

A

C

F

Right child of A B

D E

H

Left subtree of A

G

I J

Right subtree of C

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6

Tree Terminology: Example

Depth and Height of a Tree

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7

Binary Tree

• In a normal tree, every node can have any number of children.

• A binary tree is tree in which each node can have a maximum of 2

children.

• Example:

A

B C

D E

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8

Types of Binary Tree

• Strictly (Full) Binary Tree

 If every node has either 0 or 2 children, a binary tree is called Strictly Binary Tree.

• Complete Binary Tree

 A Complete Binary Tree is a binary tree in which every level, except possibly the

last, is completely filled, and all nodes are as far left as possible

• Perfect Binary Tree

 A binary tree is Perfect Binary Tree in which all internal nodes have two children

and all leaves are at same level.

Strictly Binary Tree Complete Binary Tree Perfect Binary Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9

Extended Binary Tree

• The full binary tree obtained by adding dummy nodes (external nodes) to a

binary tree is called Extended Binary Tree.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10

Properties of Binary Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11

Binary Tree Traversal

• Traversal is a process to visit all the nodes of a tree and may print their
values too.

• There are three ways which we use to traverse a tree:

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12

In-order Traversal

• In this traversal method, the left subtree is visited first, then the root

and later the right sub-tree.

• We should always remember that every node may represent a subtree

itself.

Output: D – B – E – A – F – C – G

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13

Pre-order Traversal

• In this traversal method, the root node is visited first, then the left

subtree and finally the right subtree.

Output: A – B – D – E – C – F – G

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14

Post-order Traversal

• In this traversal method, the root node is visited last, hence the name.

First we traverse the left subtree, then the right subtree and finally the

root node.

Output: D – E – B – F – G – C – A

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15

Inorder Traversal with Stack (Non-Recursive)

1) Create an empty Stack S.

2) Initialize current node as root.

3) Push the current node to S and set current = current->left until current is NULL.

4) If current is NULL and Stack is not empty, then

a. Pop the top item from Stack.

b. Print the popped item, set current = poppedItem->right

c. Go to step 3.

5) If current is NULL and Stack is empty then we are done.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16

Preorder Traversal with Stack (Non-Recursive)

1) Create an empty Stack S.

2) Push the root node to S.

3) While the Stack is not empty, then

a. Pop the top item from S and print.

b. Push the poppedItem->right item to S.

c. Push the poppedItem->left item to S.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17

Postorder Traversal with Stack (Non-Recursive)

1) Create two empty Stacks S1 and S2.

2) Push the root node to S1.

3) While the Stack S1 is not empty, then

a. Pop the top item from S1 and Push it into S2.

b. Push the poppedItem->left item to S1.

c. Push the poppedItem->right item to S1.

4) Pop out all the items from Stack S2 and Print.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18

Example

Find Inorder, Preorder and Postorder traversal sequence for the given tree.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19

Representation of Binary Tree

• Using Array

• Using Linked List

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20

Binary Search Tree

• A Binary Search Tree (BST) is a tree in which all the nodes follow the

below-mentioned properties:

 The left sub-tree of a node has a key less than or equal to its parent node's key.

 The right sub-tree of a node has a key greater than to its parent node's key.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21

Insertion in Binary Search Tree

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22

Deletion in Binary Search Tree

• To delete an element from, there are three cases:

 The node to be deleted has no children.

 The node to be deleted has 1 child node.

 The node to be deleted has 2 child nodes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23

Deletion in Binary Search Tree

• The node to be deleted has no children.

o Simply delete the node.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24

Deletion in Binary Search Tree

• The node to be deleted has 1 child node.

o Replace the node with its child node and delete it.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25

Deletion in Binary Search Tree

• The node to be deleted has 2 child nodes.

o Find its in-order successor node, and replace it with in-order successor,
then delete it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26

Deletion in Binary Search Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27

Deletion in Binary Search Tree

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28

Deletion in Binary Search Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29

Deletion in Binary Search Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30

AVL Tree

• What if the input to binary search tree comes in a sorted (ascending or

descending) manner? It will then look like this:

• Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing

binary search tree. AVL tree checks the height of the left and the right sub-trees and

assures that the difference is not more than 1. This difference is called the Balance

Factor.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31

AVL Tree

Balance Factor = height(left-subtree) − height(right-subtree)

or

Balance Factor = height(right-subtree) − height(left-subtree)

• If the difference in the height of left/right and right/left sub-trees is

more than 1, the tree is balanced using some rotation techniques.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32

How Rotation Works to Balance the Tree

• Let the newly inserted node be w:

1. Perform standard BST insert for w.

2. Starting from w, travel up and find the first unbalanced node. Let z be

the first unbalanced node, y be the child of z that comes on the path

from w to z and x be the grandchild of z that comes on the path from w

to z.

3. Re-balance the tree by performing appropriate rotations on the sub-tree

rooted with z.

 There can be 4 possible cases that needs to be handled as x, y and z can be

arranged in 4 ways.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33

Insertion in AVL Tree

• 4 Possible Cases for Unbalanced Node:

1. Left-Left Case: x is the left child of y and y is the left child of z

2. Left-Right Case: x is the right child of y and y is the left child of z

3. Right-Left Case: x is the left child of y and y is the right child of z

4. Right-Right Case: x is the right child of y and y is the right child of z

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34

Example: Right Rotation (LL Case)

• If a tree becomes unbalanced, when a node is inserted in the left

subtree of the left subtree, then we perform a single right rotation.

• Example: Insert C, B and A

• In our example, node C has become unbalanced as A is inserted in the left subtree of

C's left subtree. We performed the right rotation by making C as the right-subtree of

B.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.35

Example: Left Right Rotation (LR Case)

• The LR Rotation is combination of left rotation followed by right rotation.

• Example: Insert C, A and B

• In our example, node C has become unbalanced as B is inserted in the right subtree of

C's left subtree.

 Perform the left rotation on the left subtree of C. This makes A, the left subtree of B.

 Perform the right-rotation on the tree, making B the new root node of this subtree.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.36

Example: Right Left Rotation (RL Case)

• The RL Rotation is combination of right rotation followed by left rotation.

• Example: Insert A, C and B

• In our example, node A has become unbalanced as B is inserted in the left subtree of A's

right subtree.

 Perform the right rotation along C. This makes C, the right subtree of B.

 Perform the left rotation on the tree, making B the new root node of this subtree.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.37

Example: Left Rotation (RR Case)

• If a tree becomes unbalanced, when a node is inserted into the right

subtree of the right subtree, then we perform a single left rotation.

• Example: Insert A, B and C

• In our example, node A has become unbalanced as C is inserted in the right subtree of

A's right subtree. We performed the left rotation by making A as the left-subtree of B.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.38

Example: Complex Situation of LL Case

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.39

Example: Complex Situation of LR Case

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.40

Example: Complex Situation of RL Case

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.41

Example: Complex Situation of RR Case

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.42

Example: Drawing AVL Tree

• Draw AVL Tree by inserting the values: 15, 20, 24, 10, 13, 7, 30, 36

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.43

Example: Drawing AVL Tree

• AVL Tree by inserting the values: 15, 20, 24, 10, 13, 7, 30, 36

13

20

36

15

10

7

24

30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.44

Heap

• Heap is a special balanced binary tree with special characteristics.

• Heap can be defined as a collection of keys (data elements) which

satisfies the following characteristics:

 Ordering: Nodes must be arranged in a order according to values.

 Structural: All levels in a heap must full, except last level and nodes must

be filled from left to right strictly (Complete Binary Tree)

• There are two types of heap:

 Max Heap

 Min Heap

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.45

Max Heap

• When the value of the root node is greater than or equal to either of its

children, it is called Max Heap.

• Max heap is used for Heap Sort

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.46

Min Heap

• When the value of the root node is less than or equal to either of its

children, it is called Min Heap.

• Min heap is used to implement Priority Queue.

• It may also be used to implement Heap Sort.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.47

Max Heap Construction: Algorithm

• First increase the heap size by 1, so that it can store the new element.

• Insert the new element at the end of the Heap.

• This newly inserted element may distort the properties of Heap for its

parents. So, in order to keep the properties of Heap, heapify this newly

inserted element following a bottom-up approach.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.48

Max Heap Insertion: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.49

Min Heap Insertion: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.50

Max Heap Deletion: Algorithm

Deletion of Root Node

• Replace the root or element to be deleted by the last element.

• Delete the last element from the Heap.

• Since, the last element is now placed at the position of the root node. So, it

may not follow the heap property. Therefore, heapify the last node placed at

the position of root.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.51

Max Heap Deletion (Root): Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.52

Max Heap Deletion (Specific): Algorithm

Deletion of a Specific Node

• Delete a node from the array.

• Replace the deletion node with the “farthest right node” on the lowest level

of the Binary Tree

• Heapify (fix the heap):

 If the value in replacement node is greater then its parent node, filter the replacement

node UP the binary tree.

 Else Filter the replacement node DOWN the binary tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.53

Min Heap Deletion (Specific): Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.54

Min Heap Deletion: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.55

Min Heap Deletion: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.56

Heap Sort: Step-by-Step Process

• In max-heaps, largest element will always be at the root. Heap Sort uses

this property of heap to sort the array.

• Heap sort is an in-place algorithm, i.e., does not use any extra space,

like merge sort.

• Complexity: O(n log n)

• Procedure:

1) Build a max-heap of elements in array.

2) Swap the root element with last element of array.

3) Reduce the size of the heap by 1 and heapify the root element so that we have

highest element at root.

4) Repeat the steps 2 and 3, until all the items of the list are sorted.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.57

Heap Sort: Working Example

• Let the elements of the array are: 1, 12, 9, 5, 6, 10. For these given

elements, the max heap is constructed as follows:

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.58

Heap Sort: Working Example

• Swapping the root with last element, and decreasing the size of heap:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.59

Heap Sort: Working Example

• Heapify the root element:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.60

Heap Sort: Working Example

• Swapping the root with last element, and decreasing the size of heap:

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.61

Heap Sort: Working Example

• Heapify the root element:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.62

Heap Sort: Working Example

• Swapping the root with last element, and decreasing the size of heap:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.63

Heap Sort: Working Example

• Heapify the root element:

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.64

Heap Sort: Working Example

• Swapping the root with last element, and decreasing the size of heap:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.65

Heap Sort: Working Example

• Heapify the root element:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.66

Heap Sort: Working Example

• Swapping the root with last element, and decreasing the size of heap:

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.67

Heap Sort: Working Example

• Heapify the root element:

• Final sorted elements:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.68

Program Code for Heap Sort

for(i=n-1; i>=0; i--)

{

 swap(a[0], a[i])

 heapify(a, 0, i)

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.69

Priority Queue

• Consider a networking application where four requests arrived to the queue in

the order of R1 requires 20 units of time, R2 requires 2 units of time, R3

requires 10 units of time and R4 requires 5 units of time. Queue is as follows:

• Now, check waiting time for each request to be complete.

 R1 : 20 units of time

 R2 : 22 units of time

 R3 : 32 units of time

 R4 : 37 units of time

• Average waiting time for all requests = (20+22+32+37)/4 ≈ 27 units of time

• That means, if we use a normal queue data structure to serve these requests the

average waiting time for each request is 27 units of time.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.70

Priority Queue

• Now, consider another way of serving these requests. If we serve according to

their required amount of time.

• Then, the waiting time for each request to be complete will be as follows:

 R2 : 2 units of time

 R4 : 7 units of time

 R3 : 17 units of time

 R1 : 37 units of time

• Average waiting time for all requests = (2+7+17+37)/4 ≈ 15 units of time

• Priority queue is a variant of queue data structure in which insertion

is performed in the order of arrival and deletion is performed based

on the priority.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.71

Types of Priority Queue

• Max Priority Queue

• Min Priority Queue

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.72

Max Priority Queue

• In max priority queue, elements are inserted in the order in which they

arrive the queue and always maximum value is removed first from the

queue.

• For example, assume that we insert in order 8, 3, 2, 5 and they are

removed in the order 8, 5, 3, 2.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.73

Min Priority Queue

• In min priority queue, elements are inserted in the order in which they

arrive the queue and always minimum value is removed first from the

queue.

• For example, assume that we insert in order 8, 3, 2, 5 and they are

removed in the order 2, 3, 5, 8.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.74

Insertion in Priority Queue

• Initially there are 5 elements in Priority Queue.

• Insert value 6.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.75

Deletion in Priority Queue

• Extract Maximum

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.76

Threaded Binary Tree

• When a binary tree is represented using linked list representation, we

use NULL pointer for nodes which do not have children.

• In any binary tree linked list representation, there are more number of

NULL pointer than actual pointers.

• A. J. Perlis and C. Thornton proposed new binary tree called "Threaded

Binary Tree", which make use of NULL pointer to improve its traversal

processes.

• The idea of Threaded Binary Trees is to make in-order traversal faster

and do it without recursion.

• To convert Binary Tree into Threaded Binary Tree, first find the in-order

traversal of that tree.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.77

Threaded Binary Tree

• One Way Threading:

 Each node is threaded towards either the in-order predecessor or successor (left

OR right) means all right null pointers will point to in-order successor OR all left

null pointers will point to in-order predecessor.

• Two Way Threading:

 Each node is threaded towards both, in-order predecessor and successor

(left AND right) which means all right null pointers will point to in-order

successor AND all left null pointers will point to in-order predecessor.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.78

Threaded Binary Tree: Example

• In-Order : H D I B E A F J C G

• Left child pointers of nodes H, I, E, F, J

 and G are NULL.

• These NULLs are replaced by address of their in-order predecessor,

respectively (I to D, E to B, F to A, J to F and G to C), but here the node H does

not have its in-order predecessor, so it points to the root node A.

• Right child pointers of nodes H, I, E, J and G are NULL.

• These NULLs are replaced by address of their in-order successor, respectively

(H to D, I to B, E to A, and J to C), but here the node G does not have its in-

order successor, so it points to the root node A.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.79

Threaded Binary Tree: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.80

m-way Tree

• The concept of two-way search tree (BST) can be extended to create an m-

way search tree. The m-way tree has following properties:

 Each node has any number of children from 2 to M, i.e., all nodes have degree <=

M, where M >= 2

 Each node has keys (K1 to Kn) and pointers to its children (P0 to Pn), i.e., number

of keys is one less than the number of pointers. The keys are ordered, i.e., Ki <

Ki+1 for 1 <= i <n

 The subtree pointed by a pointer Pi has key values less than the key value of Ki+1

for 1 <= i <n

 The subtree pointed by a pointer Pn has key values greater than the key value of

Kn

 All subtrees pointed by pointers Pi are m-way trees.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.81

B-Tree

• B-Tree is a self-balancing tree data structure that keeps data sorted and

allows searches, sequential access, insertions, and deletions in

logarithmic time.

• B-Tree was developed in the year of 1972 by Bayer and McCreight with

the name Height Balanced m-way Search Tree.

• When data volume is large and does not fit in memory, an extension of

the binary search tree to disk-based environment is the B-tree.

• Since the B-tree is always balanced (all leaf nodes appear at the same

level), it is an extension of the balanced binary search tree.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.82

B-Tree

• The B in B-Tree technically doesn’t represent a word. However some

common characteristics can be summarized with words that begin with

B, which is most likely the origin of the name.

 Balanced – this is a self balancing data structure, which means that

performance can be guaranteed when B-Trees are utilized.

 Broad – as opposed to binary search trees, which grow vertically, B-Trees

expand horizontally, so saying that they are broad is a suitable description.

 Bayer – lastly the creator of B-Trees was named Bayer Rudolf. In all actuality

this is probably the reason why B-Trees got their name.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.83 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.83

B-Tree vs. Binary Search Tree

Basis for Comparison B-Tree
Balanced Binary Search

Tree

Essential Constraint

A node can have at max M

number of child nodes(where M

is the order of the tree).

A node can have at max 2

number of subtrees.

Use
It is used when data is stored on

disk.

It is used when data is stored

on RAM.

Height of the Tree
logM N (where M is the order of

the M-way tree)
log2 N

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.84 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.84

B-Tree

• When the number of data elements (keys) are more, the data is read from

disk in the form of blocks.

• Disk access time is very high compared to main memory access time.

• The main idea of using B-Trees is to reduce the number of disk accesses.

 Most of the tree operations (search, insert, delete, max, min) require O(h) disk

accesses where h is height of the tree.

 Height of B-Trees is kept low by putting maximum possible keys in a B-Tree node.

 Since each disk access exchanges a whole block of information between memory

and disk rather than a few bytes, a node of the B-tree is expanded to hold more

than two child pointers, up to the block capacity

 Since h is low for B-Tree, total disk accesses for most of the operations are

reduced significantly compared to balanced Binary Search Trees (like AVL Tree).

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.85 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.85

B-Tree

• B-Trees are a good example of a data structure for external memory.

• B-Trees are commonly used in databases and files systems.

• Most database management systems have implemented the B-tree or

its variants.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.86 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.86

Properties of B-Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.87 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.87

Insertion in B-Tree

• Inserting into a B-tree starts out by "find"ing the leaf in which to insert.

• If there is room in the leaf for another data item, then we're done.

• If the leaf already has m-1 items, then there's no room.

 Split the overfull node in half and pass the middle (median) value up to the parent

for insertion there.

 If the value passed up to the parent causes the parent to be over-full, then it too

splits and passes the middle value up to its parent.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.88 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.88

Example of B-Tree

• Construct a B-tree of order 3 by inserting numbers from 1 to 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.89 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.89

Example of B-Tree

• Construct a B-Tree of order 5 for following numbers:

 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.90 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.90

Deletion in B-Tree

• Delete 8

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.91 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.91

Deletion in B-Tree

• Delete 20, which is not a leaf node so find its successor which is 23. Hence 23
will be moved up to replace 20.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.92 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.92

Deletion in B-Tree

• Delete 18, which causes the node with only one key. The sibling node to
immediate right has an extra key. In such case borrow a key from parent and
move spare key of sibling to up.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.93 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.93

Deletion in B-Tree

• Delete 5. This node has no extra keys nor siblings to left or right. In such a
situation, we can combine this node with one of the siblings. That means
remove 5 and combine 6 with node 1, 3. To make tree balanced, we have to
move parent’s key down. Hence move 4 down.

But, again internal node of 7 contains

only 1 key, which is not allowed in B-

Tree. We will then borrow a key from

siblings but sibling has no spare key.

Hence, we need to combine 7 with 13

and 17, 24.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.94 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.94

Deletion in B-Tree

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.95 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.95

B+ Tree

• B+ Tree is a variation of basic B-Tree.

• Leaves are connected to form a Linked List of keys in sequential order.

• B+ Tree has two parts:

 Index Set that constitutes Internal Nodes

 Sequence Set that constitutes Leaves

• The linked Leaves can be accessed sequentially in addition to

accessing them directly.

 This allows for extremely efficient range queries.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.96 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.96

B+ Tree: Structure of Internal Node

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.97 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.97

B+ Tree: Structure of Leaf Node

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.98 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.98

Structure of B+ Tree

B+ trees don't store data pointer in interior nodes, they are ONLY stored

in leaf nodes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.99 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.99

Example of B+ Tree

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.100 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.100

B Tree vs. B+ Tree

• The leaf nodes in a B-Tree are not linked.

• B+ Trees do not store data pointer in interior nodes.

• In B Tree, Internal Nodes and Leaves, both, store the search keys.

• B+ Tree is efficient due to traversal performed with sibling pointers.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.101 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.101

B* Tree

• B*-tree is a variant of a B-tree that requires each internal node to be at

least 2/3 full, rather than at least half full.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.102 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.102

Bibliography

• E. Horowitz and S. Sahani, “Fundamentals of Data Structures in C”

• Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”

• R. S. Salaria, “Data Structure & Algorithms Using C”

• Schaum’s Outline Series, “Data Structure”

