
Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.1

Data and File Structures

(MCA-102)

Unit – 1

[Array (Searching and Sorting), Linked List, Stack and Queue]

by

Dr. Sunil Pratap Singh
(Assistant Professor, BVICAM, New Delhi)

2021

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.2

Introduction

• Data Type: A data type is a term which refers to the kinds of data that

variables may “hold” in a programming language.

 For example, a variable of type boolean can assume either the value true

or the value false, but no other value.

• Data Structure: A data structure is an arrangement of data in a

computer’s memory (or sometimes on a disk).

 In other words, a data structure is meant to be an organization or

structuring for a collection of data items. A sorted list of integers stored in

an array is an example of such a structuring.

 Algorithms manipulate the data in these structures in various ways, such

as inserting a new data item, searching for a particular item, or sorting the

items.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.3

Categories of Data Structures

• Linear Data Structures

 A data structure whose elements form a sequence, and every element in the

structure has a unique predecessor and unique successor.

 Examples: Array, Stack, Queue, Linked List

• Non-Linear Data Structures

 A data structure whose elements do not form a sequence, there is no unique

predecessor or unique successor.

 Examples: Tree, Graph

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.4

Common Operations on Data Structures

• Traversal: accessing or visiting each data item exactly once

• Searching: finding the data item within the data structure which

satisfies searching condition

• Insertion: adding a new data element within the data structure

• Deletion: removing a new data element from the data structure

• Sorting: arranging the data in some logical order

• Merging: combining the data elements of two data structures

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.5

Array

• An array is a fixed-size sequential collection of elements of same data

type.

• An array is simply a grouping of like-type data.

• In its simplest form, an array can be used to represent a list of numbers,

or a list of names.

• Some examples where the concept of an array can be used:

 List of temperatures recorded every hour in a day

 List of employees in an organization

 Test scores of a class of students

 Table of daily rainfall data

 etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.6

One-Dimensional Array

• A list of items can be given one variable name using only one subscript

and such a variable is called a single-scripted variable of a one-

dimensional array.

• Declaration:

• Declaration Examples:

data-type variable-name[size];

float height[50];

int group[10];

char name[10];

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.7

One-Dimensional Array

• Initialization at Compile Time:

• Compile Time Initialization Examples

data-type variable-name[size] = {list of values};

int number[3] = {5, 6, 7};

int age[5] = {22, 24, 23};

 --> Remaining two elements will be initialized to 0.

int counter[] = {1, 2, 3, 4, 5};

 --> The array size may be omitted.

char city[5] = {‘D’, ‘E’, ‘L’};

 --> Remaining two elements will be initialized to NULL.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.8

One-Dimensional Array

• Run Time Initialization Examples

int counter[10];

for(i=1, i<=10, i++)

{

 counter[i] = i;

}

Using scanf() function

int counter[10];

for(i=1, i<=10, i++)

{

 scanf(‚%d‛, &counter[i]);

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.9

Memory Layout of 1D Array

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.10

Calculating Address of Elements in 1D Array

• Let x[n] be an one-dimensional array having n elements with indices

i = 0, 1, … …, n-1.

• Then, the address of ith element (x[i]) is calculated as follows:

Base Address + (i × Scale Factor of Data Type of Array)

Example: Given an array x[5] of integers with base address = 1000. Calculate the

address of element x[3].

 Address of x[3] = Base Address + (3 × Scale Factor of Integer)

 = 1000 + (3 × 2) = 1006

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.11

Two-Dimensional Array

• Declaration:

• Declaration Examples:

data-type variable-name[row-size] [column-size];

float sales[3][3];

int matrix[4][3];

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.12

Two-Dimensional Array

• Initialization at Compile Time:

• Compile Time Initialization Examples

data-type variable-name[row-size][column-size] = {list of values};

int table[2][3] = {1, 1, 1, 2, 2, 2};

int table[2][3] = {{1, 1, 1}, {2, 2, 2}};

--> When array is initialized with all values, explicitly, we need

not specify the size of first dimension.

int table[][3] = {{1, 1, 1}, {2, 2, 2}};

int table[2][3] = {{1, 1}, {2}};

--> It will initialize the first two elements of first row to one,

the first element of second row to two, and all other to zero.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.13

Representation of 2D Array

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.14

Memory Layout of 2D Array

• There are two main techniques of storing 2D array elements into

memory:

 Row Major Ordering

o All the rows of the 2D array are stored into the memory contiguously.

 Column Major Ordering

o All the columns of the 2D array are stored into the memory contiguously.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.15

Memory Layout of 2D Array (contd…)

Row Major Ordering

Column Major Ordering

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.16

Calculating Address of Elements in 2D Array

• Let x[m][n] be a two-dimensional array having m rows and n columns

with indices i = 0, 1, … …, m; j = 0, 1, … …n.

• Then, the address of an element x[i][j] of the array, stored in Row

Major, is calculated as:

Base Address + (i × n + j) × Scale Factor of Data Type of Array

Example: Given an array x[5][7] of integers with base address = 900. Calculate the

address of element x[4][6].

 Address of x[4][6] = 900 + (4 × 7 + 6) × 2 = 968

Question: Given an array [1…5, 1…7] of integers with base address = 900.

Calculate address of element [4, 4].

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.17

Calculating Address of Elements in 2D Array

• Let x[m][n] be a two-dimensional array having m rows and n columns

with indices i = 0, 1, … …, m; j = 0, 1, … …n.

• Then, the address of an element x[i][j] of the array, stored in

Column Major, is calculated as:

Base Address + (j × m + i) × Scale Factor of Data Type of Array

Example: Given an array x[5][7] of integers with base address = 900. Calculate the

address of element x[4][6].

 Address of x[4][5] = 900 + (5 × 5 + 4) × 2 = 958

Question: Given an array [1…5, 1…6] of integers with base address = 2000.

Calculate address of element [4, 4].

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.18

Sparse Matrix

• A matrix can be defined as a two-dimensional array having 'm' columns

and 'n' rows representing m×n matrix.

• Sparse matrices are those matrices that have the majority of their

elements equal to zero.

• In other words, the sparse matrix is a matrix that has a greater number of zero

elements than the non-zero elements.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.19

Limitations of Sparse Matrix

• Storage

• We need to store m×n (all elements) elements of matric even though

maximum number of elements of the matrix are zero.

• Computing Time

• In case of searching (or performing any operation) in a sparse matrix, we

need to traverse m×n (all elements) rather than accessing non-zero

elements of the sparse matrix.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.20

Sparse Matrix Representation

• The non-zero elements can be stored with triples, i.e., rows, columns,

and value.

• The sparse matrix can be represented in the following ways:

• Array Representation

• Linked List Representation

• List of Lists Representation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.21

Sparse Matrix: Triples/Array Representation)

• A 2D array with 3 row or columns is used to represent the sparse

matrix:

• Row: It is an index of a row where a non-zero element is located.

• Column: It is an index of the column where a non-zero element is located.

• Value: The value of the non-zero element is located at the index (row, column).

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.22

Sparse Matrix: Linked List Representation

• A linear linked list is used to represent the sparse matrix. Each node of

the list consists of four fields:

• Row: Row: An index of row where a non-zero element is located.

• Column: An index of column where a non-zero element is located.

• Value: Value of the non-zero element which is located at the index (row, column).

• Next Node: It stores the address of the next node.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.23

Sparse Matrix: List of List Representation

• One list is used to represent the rows, and each row contains the list of

triples:

• Column: An index of column where a non-zero element is located.

• Value: Value of the non-zero element.

• Address of Next Node : It stores the address of the next non-zero element.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.24

Linear Search

• Searching is a process of finding a value in a list of values.

• Linear search is a very simple search algorithm.

• In this type of search, a sequential search is made over all items one by

one.

• Every item is checked and if a match is found then that particular item

is returned, otherwise the search continues till the end of the data

collection.

• It has a time complexity of O(n), which means the time is linearly

dependent on the number of elements, which is not bad, but not that

good too.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.25

Linear Search: Step-by-Step Process

• Step 1: Read the element to be searched from the user

• Step 2: Compare, the element to be searched with the first element in the list.

• Step 3: If both are matched, then display "Given element found" and

terminate the search process.

• Step 4: If both are not matched, then compare search element with the next

element in the list.

• Step 5: Repeat steps 3 and 4 until the search element is compared with the

last element in the list.

• Step 6: If the last element in the list is also not matched, then display

"Element not found!" and terminate the function.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.26

Linear Search: Working Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.27

Linear Search: Working Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.28

Linear Search: Working Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.29

Linear Search: Working Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.30

Binary Search

• Binary search is a fast search algorithm with run-time complexity of

Ο(log n).

• This search algorithm works on the principle of divide and conquer.

• For this algorithm to work properly, the data collection should be in the

sorted form.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.31

Binary Search: Step-by-Step Process

• Step 1: Read the element to be searched from the user.

• Step 2: Find the middle element in the sorted list.

• Step 3: Compare, the search element with the middle element in the sorted list.

• Step 4: If both are matched, then display "Given element found!" and terminate the search

process.

• Step 5: If both are not matched, then check whether the search element is smaller or larger

than middle element.

• Step 6: If the search element is smaller than middle element, then repeat steps 2, 3, 4 and 5 for

the left sub-list of the middle element.

• Step 7: If the search element is larger than middle element, then repeat steps 2, 3, 4 and 5 for

the right sub-list of the middle element.

• Step 8: Repeat the same process until we find the search element in the list or until the sub-list

contains only one element.

• Step 9: If that element also doesn't match with the search element, then display "Element not

found in the list!" and terminate the function.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.32

Binary Search: Working Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.33

Binary Search: Working Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.34

Program Code for Binary Search

low=0;

high=n-1;

while(low<=high) {

 mid=(low+high)/2;

 if(item<a[mid])

 high=mid-1;

 else if(item>a[mid])

 low=mid+1;

 else if(item==a[mid]) {

 printf(‚Item Found‛);

 break;

 }

 else {

 printf(‚Not Found‛);

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.35

Selection Sort: Step-by-Step Process

• Step 1: Select the first element of the list (i.e., element at first position in

the list).

• Step 2: Compare the selected element with all other elements in the list.

• Step 3: For every comparison, if any element is smaller than selected

element (for ascending order), then these two are swapped.

• Step 4: Repeat the same procedure with next position in the list till the

entire list is sorted.

• Complexity: O(n2)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.36

Selection Sort: Working Example

• Consider the following unsorted list of elements:

Iteration 1:

Select the first element of the list,

 compare it with all other elements in the list, and

 whenever we found a smaller element than the element at first position then
swap those two elements.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.37

Selection Sort: Working Example

List after first iteration

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.38

Selection Sort: Working Example

Iteration 2:

Select the second position element of the list,

 compare it with all other elements in the list, and

 whenever we found a smaller element than the element at second position
then swap those two elements.

Iteration 3:

List after second iteration

List after third iteration

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.39

Selection Sort: Working Example

List after fourth iteration

List after fifth iteration

List after sixth iteration

List after seventh iteration

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.40

Selection Sort: Working Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.41

Program Code for Selection Sort

for(i=0; i<size; i++)

{

 for(j=i+1; j<size; j++)

 {

 if(list[i] > list[j])

 {

 temp=list[i];

 list[i]=list[j];

 list[j]=temp;

 }

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.42

Revised Program Code for Selection Sort

for(i=0; i<n-1; i++)

{

 int min = i; //Consider the first element as minimum.

 for(j=i+1; j<n; j++)

 {

 if(a[j] < a[min])

 {

 min = j;

 }

 }

 if(min != i)

 {

 swap(a[i], a[min]);

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.43

Bubble Sort: Step-by-Step Process

• Step 1: Select the first element of the list (i.e., element at first position in

the list).

• Step 2: Compare the current element with next element of the list.

• Step 3: If the current element is greater than the next element (for

ascending order), then these two are swapped.

• Step 4: If the current element is less than the next element, move to the

next element.

• Step 5: Repeat from Step 1.

• Complexity: O(n2)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.44

Bubble Sort: Working Example

• Consider the following unsorted list of elements:

Iteration 1:

After Iteration 2

After Iteration 3

After Iteration 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.45

Program Code for Bubble Sort

for(i=1;i<n;i++) {

 for(j=0;j<n-i;j++) {

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.46

Insertion Sort: Step-by-Step Process

• Step 1: Assume that first element in the list is in sorted portion of the list

and remaining all elements are in unsorted portion.

• Step 2: Consider first element from the unsorted list and insert that

element into the sorted list in order specified.

• Step 3: Repeat the above process until all the elements from the unsorted

list are moved into the sorted list.

• Complexity: O(n2)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.47

Insertion Sort: Working Example

• Consider the following unsorted list of elements:

• Assume that the sorted portion of the list is empty and all elements in list

are in unsorted portion, as shown below:

• Move the first element 15 from the unsorted portion to sorted portion.

15 20 10 30 50 18 5 45

15 20 10 30 50 18 5 45

Unsorted Sorted

15 20 10 30 50 18 5 45

Unsorted Sorted

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.48

Insertion Sort: Working Example

• To move 20 from unsorted to sorted portion, compare 20 with 15 and

insert it at correct position.

• To move element 10 from unsorted portion to sorted portion, compare 10

with 20, it is smaller so perform swapping. Then, compare 10 with 15,

again it is smaller so perform swapping.

15 20 10 30 50 18 5 45

Unsorted Sorted

10 15 20 30 50 18 5 45

Unsorted Sorted

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.49

Insertion Sort: Working Example

• Similarly, an element from unsorted portion is retrieved and is compared

with element in sorted portion and is inserted accordingly.

 10 15 20 30 50 18 5 45

Unsorted Sorted

10 15 20 30 50 18 5 45

Unsorted Sorted

10 15 18 20 30 50 5 45

Unsorted Sorted

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.50

Insertion Sort: Working Example

5 10 15 18 20 30 50 45

Unsorted Sorted

5 10 15 18 20 30 45 50

Final Sorted List

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.51

Insertion Sort: Working Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.52

Program Code for Insertion Sort

for(i=1; i<n; i++)

{

 temp = data[i];

 j = i-1;

 while(temp<data[j] && j>=0)

 {

 data[j+1] = data[j];

 j = j-1;

 }

 data[j+1]=temp;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.53

Shell Sort

• In Insertion Sort, a large number of swaps/shifts are performed to sort

the elements.

• Shell sort is an efficient sorting algorithm and is based on Insertion Sort.

• This algorithm avoids large shifts as in case of Insertion Sort, if the

smaller value is to the far right and has to be moved to the far left.

• Shell Sort compares items that lie far apart which allows elements to

move faster to the front of the list.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.54

Shell Sort: Algorithm Working

1. Divide the list into sub-lists using interval Floor(N/2k).

 Shell Sequence (Floor(N/2k))

2. Short sub-lists using Insertion Sort.

3. Repeat until complete list is sorted.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.55

Shell Sort: Working

• Let the list of elements be: 35, 33, 42, 10, 14, 19, 27, 44

• Gap/Interval = Floor(8/21) = 4

• Sub-lists: {35, 14}, {33, 19}, (42, 27}, and {10, 44}

• Short sub-lists using Insertion Sort.

After this step, array becomes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.56

Shell Sort: Working

• In next phase, the interval becomes Floor(8/22) = 2

• Then, we take interval of 2 and this gap generates two sub-lists {14, 27, 35,

42} and {19, 10, 33, 44}.

• Short sub-lists using Insertion Sort.

After this step, array becomes

14, 10, 27, 19, 35, 33, 42, 44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.57

Shell Sort: Working

• In next phase, the interval becomes Floor(8/23) = 1

• Finally, sort (using Insertion Sort) the rest of the array using interval of

value 1.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.58

Shell Sort: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.59

Shell Sort: Example

Sorting by using interval of value 1 (using Insertion Sort)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.60

Program Code for Shell Sort

for(gap = n/2; gap >= 1; gap = gap/2) {

 for(j = gap; j < n ; j++) {

 for(i = j-gap; i >= 0; i = i - gap) {

 if(a[i+gap] > a[i]) {

 break;

 }

 else {

 swap(a[i+gap], a[i])

 }

 }

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.61

Radix Sort

• A list of numbers is sorted based on the digits of individual numbers.

• Sorting is performed from least significant digit to the most significant

digit.

• The number of passes required are equal to the number of digits

present in the largest number of the list.

 Example: If the largest number has 3 digits, then the list will be sorted in 3 passes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.62

Radix Sort: Algorithm

1. Define 10 queues, each representing a bucket for each digit from 0 to 9.

2. Consider the least significant digit of each number in the list which is to be

sorted.

3. Insert each number into their respective queue based on the least significant

digit.

4. Group all the numbers from queue 0 to queue 9 in the order they have

inserted into their respective queues.

5. Repeat from step 2 until all the numbers are grouped based on the most

significant digit.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.63

Radix Sort: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.64 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.64

Radix Sort: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.65 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.65

Radix Sort: Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.66 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.66

Radix Sort: Example

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.67 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.67

Divide and Conquer

1. Divide the problem into multiple small problems.

2. Conquer the sub-problems by solving them. The idea is to break down the

problem into atomic sub-problems, where they are actually solved.

3. Combine the solutions of the sub-problems to find the solution of the actual

problem.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.68 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.68

Divide and Conquer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.69 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.69

Merge Sort: Working

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.70 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.70

Merge Sort: Working

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.71 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.71

Algorithm/Code for Merge Sort

mergeSort(list, lower, upper)

{

 if(lower < upper)

 {

 mid = (lower + upper)/2;

 mergeSort(list, lower, mid)

 mergeSort(list, mid+1, upper)

 merge(list, lower, mid, upper)

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.72 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.72

Code for Merging in Merge Sort

merge(a, lower, mid, upper)

{

 int i, j, k, b[n];

 i = lower;

 j = mid+1;

 k = lower;

 while (i <= mid && j <= upper)

 {

 if (a[i] <= a[j])

 {

 b[k] = a[i];

 i++; k++;

 }

 else

 {

 b[k] = a[j];

 j++; k++;

 }

 }

 //continued … … …

//If any element is left in sub-lists

 if (i > mid)

 {

 while (j <= upper)

 {

 b[k] = a[j];

 j++;

 k++;

 }

 else

 {

 while (i <= mid)

 {

 b[k] = a[i];

 i++;

 k++;

 }

 }

//We may copy the items to main array

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.73 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.73

Quick Sort: Procedure/Process

• The quick sort uses divide and conquer to gain the same advantages as

the merge sort, while not using additional storage.

• A quick sort first selects a value, which is called the pivot value. The

actual position where the pivot value belongs in the final sorted list,

commonly called the split point, is used to divide the list for subsequent

calls to the quick sort.

• Partitioning begins by locating two position markers—let’s call them

leftmark and rightmark — at the beginning and end of the remaining

items in the list.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.74 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.74

Quick Sort: Procedure/Process

• Begin by incrementing leftmark until we locate a value that is greater

than the pivot value.

• Then decrement rightmark until we find a value that is less than the

pivot value.

• At the point where rightmark becomes less than leftmark, we stop.

 The position of rightmark is now the split point.

 The pivot value can be exchanged with the contents of the split point and

the pivot value is now in place.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.75 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.75

Quick Sort: Working

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.76 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.76

Quick Sort: Working

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.77 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.77

Quick Sort: Working

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.78 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.78

Algorithm/Code for Quick Sort

quickSort(list, low, high)

{

 int pivot;

 if (high > low) //Termination Condition

 {

 pivot = partition(a, low, high);

 quickSort(a, low, pivot-1);

 quickSort(a, pivot+1, high);

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.79 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.79

Linked List

• Linked List is a linear collection of data elements, called nodes.

• The linear order is given by pointers.

• Each node is divided into two or more parts.

• A Linked List can be of following types:

 Linear Linked List (One-Way List)

 Doubly Linked List (Two-Way List)

 Circular Linked List

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.80 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.80

Linear Linked List

• Linked List is a linear data structure which consists of a series of nodes.

• Unlike arrays, linked list elements are not stored at contiguous location; the

elements are linked using pointers.

• Advantages:

 Dynamic data structure: can grow or shrink dynamically

 Ease of insertion/deletion: insertion and deletion are efficient

 Implementation of other complex data structures

• Drawbacks:

 No random access: access to an arbitrary data item is time-consuming

 Requires more memory: extra space is required for pointer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.81 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.81

Implementation of Linear Linked List

//Structure Representation for Node of a Linear Linked List

struct node

{

 int item;

 struct node *next;

};

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.82 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.82

Insertion of a Node in Linear Linked List

//Insertion of a Node in the Beginning of a Linear Linked List

void insertBegin(int item) {

 NODE *node;

 node=(NODE*)malloc(sizeof(NODE));

 node->data=item;

 if(start==NULL) {

 node->next=NULL;

 }

 else {

 node->next=start;

 }

 start=node;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.83 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.83

Insertion of a Node in Linear Linked List

//Insertion of a Node in the End of a Linear Linked List

void insertEnd(int item) {

 NODE *node,*pos;

 node=(NODE*)malloc(sizeof(NODE));

 node->data=item;

 node->next=NULL;

 if(start==NULL) {

 start=node;

 }

 else {

 pos=start;

 while(pos->next!=NULL) {

 pos=pos->next;

 }

 pos->next=node;

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.84 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.84

Insertion of a Node in Linear Linked List

//Insertion of a Node at Specific Position of a Linear Linked List

void insertPosition(int item,int p) {

 NODE *node,*pos;

 int count=1;

 pos=start;

 while(count<p)

 if(count==(p-1)) {

 node=(NODE*)malloc(sizeof(NODE));

 node->data=item;

 node->next=pos->next;

 pos->next=node;

 break;

 }

 else {

 pos=pos->next;

 count++;

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.85 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.85

Deletion of a Node from Linear Linked List

//Deletion of a Node from the Beginning of a Linear Linked List

void deleteBegin() {

 NODE *node;

 if(start==NULL) {

 printf("\nUNDERFLOW");

 return;

 }

 else {

 node=start;

 start=start->next;

 printf("NODE DELETED %d ", node->data);

 free(node);

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.86 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.86

Deletion of a Node from Linear Linked List

//Deletion of a Node from the End of a Linear Linked List

void deleteEnd() {

 NODE *node,*pos;

 if(start==NULL) {

 printf("\nUNDERFLOW");

 return; }

 else if(start->next==NULL) {

 node=start;

 start=NULL;

 printf("\nNODE DELETED %d", node->data);

 free(node); }

 else {

 pos=start;

 node=start->next;

 while(node->next!=NULL) {

 pos=node;

 node=node->next; }

 pos->next=NULL;

 printf("\nNODE DELETED %d", node->data);

 free(node);

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.87 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.87

Deletion of a Node from Linear Linked List

//Deletion of a Node from Specific Position of a Linear Linked List

void deletePosition(int p) {

 NODE *node,*pos;

 pos=start;

 int count=0;

 while(count<p) {

 if(count==(p-1)) {

 node=pos->next;

 pos->next=node->next;

 free(node);

 break;

 }

 else {

 pos=pos->next;

 count++;

 }

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.88 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.88

Traversal of a Linear Linked List

//Traversal of a Linear Linked List

void travers() {

 NODE *pos;

 pos=start;

 if(pos==NULL) {

 printf("\nLIST IS EMPTY");

 }

 else {

 printf("\nLIST ELEMENTS: ");

 while(pos!=NULL) {

 printf("%d ",pos->data);

 pos=pos->next;

 }

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.89 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.89

Polynomials Addition using Linear Linked List

void addPoly(NODE **start, NODE *p, NODE *q) {

 NODE *node = (NODE *)malloc(sizeof(NODE));

 node->next = NULL;

 *start = node;

 while(p && q) { //LOOP WHILE BOTH LISTS HAVE VALUES

 if(p->pow > q->pow) {

 node->pow = p->pow; node->coe = p->coe; p = p->next;

 }

 else if(p->pow < q->pow) {

 node->pow = q->pow; node->coe = q->coe; q = q->next;

 }

 else {

 node->pow = p->pow; node->coe = p->coe + q->coe; p = p->next; q = q->next;

 }

 if(p && q) { //GROW THE LINKED LIST ON CONDITION

 node->next = (NODE *)malloc(sizeof(NODE));

 node = node->next;

 node->next = NULL;

 }

 }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.90 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.90

Polynomials Addition using Linear Linked List

 //continued…

 while(p || q) {

 NODE *newNode = (NODE *)malloc(sizeof(NODE));

 node->next = newNode;

 node = newNode;

 node->next = NULL;

 if(p) {

 node->pow = p->pow; node->coe = p->coe; p = p->next;

 }

 if(q) {

 node->pow = q->pow; node->coe = q->coe; q = q->next;

 }

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.91 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.91

Stack

• A Stack is a linear data structure.

• It is a list in which insertion of new data item and deletion of existing

data item is done from one end, known as Top of Stack.

• Stack is also called LIFO (Last-in-First-out) type of list.

 The last inserted element will be the first to be deleted from Stack.

• Example:

 Some of you may eat biscuits (or poppins). If you assume only one side of

the cover is torn and biscuits are taken out one by one. This is called

poping. If you want to preserve some biscuits for some time later, you will

put them back into the pack through the same torn end. This is called

pushing.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.92 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.92

Operations on Stack

• Push

 The process of inserting a new element to the top of stack is called

Push operation.

 In case the list is full, no new element can be accommodated, it is

called Stack Overflow condition.

• Pop

 The process of deleting an element from top of stack is called Pop

operation.

 If there is no any element in the Stack and Pop is performed then this

will result in Stack Underflow condition.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.93 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.93

Implementation of Stack

• Static Implementation

 It is achieved using Array

• Dynamic Implementation

 It is achieved using Linked List

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.94 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.94

Implementation of Stack using Array

• Push Operation

• Pop Operation

int stack[10],top = -1;

void push(int x)

{

 top = top+1;

 stack[top] = x;

}

int pop()

{

 int temp;

 temp = stack[top];

 top = top-1;

 return temp;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.95 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.95

Implementation of Stack using Linked List

• Structure Definition

• Required Functions

struct stack

{
 int data;
 struct node *next;
};
typedef struct stack STACK;
STACK *top;

void create();

int isempty();

int isfull()

void push(int);

int pop();

void display();

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.96 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.96

Some Applications of Stack

• Reverse of String/Number

• Recursion (Recursive Function)

• Expression Conversion

• Expression Evaluation

• Syntax Parsing

• Undo-mechanism in an Editor

• etc.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.97 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.97

Expressions and their Types

• An expression is defined as a number of operands or data items

combined using several operators.

• The way to write arithmetic expression is known as a notation.

• An arithmetic expression can be written in three different but

equivalent notations, i.e., without changing the essence or output of an

expression.

• These notations are:

 Infix Notation

 Prefix Notation

 Postfix Notation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.98 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.98

Infix Notation

• Infix Notation is what we come across in our general mathematics.

• In Infix Notation, operators are written in-between the operands.

• Example:

 Expression to add two numbers A and B is written as:

 A + B

• Infix Notation needs precedence of the operators and we sometimes

use bracket () to override these rules.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.99 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.99

Prefix Notation

• In Prefix Notation, operators are written before the operands.

• This is also known as polish notation in the honor of the Polar

mathematician (Jan Lukasiewicz) who developed this notation.

• Example:

 Expression to add two numbers A and B is written as:

 + A B

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.100 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.100

Postfix Notation

• In Postfix Notation, operators are written after the operands.

• This is also known as reverse polish notation.

• Example:

 Expression to add two numbers A and B is written as:

A B +

• It is most suitable for computer to calculate any expression as there is

no need for operator precedence and other rules.

• It is the universally accepted notation for designing ALU of the CPU,

therefore important for us to study.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.101 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.101

Conversion from Infix to Postfix Notation

• While there are tokens to be read from expression, read the token.

• If the token is an operand, then insert it to output.

• If the token is an operator and if the Top of Stack is not any operator then push the

operator to stack.

• If the token is an operator O1:

 While there is an operator, O2 at top of stack (O2 is Top), and

 If precedence of O1 > O2

 Push O1 on to Stack (now O1 is Top)

 Else if precedence of O1 <= O2

 Pop O2 to the output and Push O1 onto Stack

• If the token is a left parenthesis, the Push it onto the Stack.

• If the token is a right parenthesis:

 Until the token at Top is a left parenthesis, Pop operators off the Stack onto the output

 Pop the left parenthesis from Stack

• If the token at Top is an operator, Pop and insert it onto output.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.102 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.102

Infix

Postfix

(a + b - c) * d – (e + f)

Step-by-Step Example: Infix to Postfix Conversion

Stack

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.103 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.103

Infix

Postfix

a + b - c) * d – (e + f)

(

Stack

Step-by-Step Example: Infix to Postfix Conversion

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.104 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.104

Infix

Postfix

+ b - c) * d – (e + f)

(

a

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.105 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.105

Infix

Postfix

b - c) * d – (e + f)

(

a

+

Step-by-Step Example: Infix to Postfix Conversion

Stack

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.106 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.106

Infix

Postfix

- c) * d – (e + f)

(

a b

+

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.107 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.107

Infix

Postfix

c) * d – (e + f)

(

a b +

-

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.108 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.108

Infix

Postfix

) * d – (e + f)

(

a b + c

-

Step-by-Step Example: Infix to Postfix Conversion

Stack

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.109 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.109

Infix

Postfix

* d – (e + f)

a b + c -

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.110 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.110

Infix

Postfix

d – (e + f)

a b + c -

*

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.111 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.111

Infix

Postfix

– (e + f)

a b + c - d

*

Step-by-Step Example: Infix to Postfix Conversion

Stack

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.112 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.112

Infix

Postfix

(e + f)

a b + c – d *

-

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.113 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.113

Infix

Postfix

e + f)

a b + c – d *

-

(

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.114 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.114

Infix

Postfix

+ f)

a b + c – d * e

-

(

Step-by-Step Example: Infix to Postfix Conversion

Stack

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.115 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.115

Infix

Postfix

f)

a b + c – d * e

-

(

+

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.116 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.116

Infix

Postfix

)

a b + c – d * e f

-

(

+

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.117 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.117

Infix

Postfix

a b + c – d * e f +

-

Step-by-Step Example: Infix to Postfix Conversion

Stack

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.118 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.118

Infix

Postfix

a b + c – d * e f + -

Step-by-Step Example: Infix to Postfix Conversion

Stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.119 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.119

Infix to Postfix Conversion: Example

Convert ((A – (B + C)) * D) ^(E + F) to Postfix form.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.120 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.120

Conversion from Infix to Prefix Notation

• The conversion process is almost same according to Postfix notation.

 The only change from Postfix form is that traverse the expression from right

to left and the operator is placed before the operand rather than after

them.

• Convert the expression A * B + C / D into Prefix notation.

 Answer: + * A B/ C D

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.121 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.121

Conversion from Postfix to Infix Notation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.122 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.122

Postfix to Infix Conversion: Example

Convert the expression A
B C * D E F ^ / G * - H + *
to Infix notation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.123 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.123

Infix to Postfix Conversion: Questions

• A * B + C

• A + B * C

• A * (B + C)

• A – B + C

• A * B ^ C + D

• A * (B + C * D) + E

• (A + B) * C / D + E ^ F /G  A B + C * D / E F ^ G / + (Answer)

• A + (B * C – (D / E ^ F) * G) * H  A B C * D E F ^ / G * - H * + (Answer)

• A - B / (C * D ^ E)  A B C D E ^ * / - (Answer)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.124 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.124

Evaluation of Postfix Expression

Step Input Operation Stack Calculation

1 4 Push 4

2 5 Push 4 5

3 6 Push 4 5 6

4 * Pop 2 Elements and Evaluate 4 6 * 5 = 30

5 Push Result (30) 4 30

6 + Pop 2 Elements and Evaluate Empty 4 + 30 = 34

7 Push Result (34) 34

8 No More Elements (Pop) Empty 34

Expression: 4 5 6 * +

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.125 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.125

Double Stack/Multistack

• Double stack means two stacks which are implemented using a single array.

• To prevent memory wastage, the two stacks are grown in opposite direction.

• The pointer Top1 and Top2 points to top-most element of Stack1 and Stack 2

respectively.

• Initially, Top1 is initialized to -1 and Top2 is initialized the size of array.

• As the elements are pushed into Stack1, Top1 is incremented.

• Similarly, as the elements are pushed into Stack2, Top2 is decremented.

• The array is full when Top1=Top2-1.

• Multistack means more than 2 stacks which are implemented using a single

array.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.126 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.126

Queue

• A Queue is a linear data structure.

• It is a list in which insertion of new data items is done from one end,

called Rear end, and deletion of existing data item is done from other

end, known as Front end of Queue.

• Queue is also called FIFO (First-in-First-out) type of list.

 The first inserted element will be the first to be deleted from Queue.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.127 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.127

Conceptual View of a Queue

• Inserting/Adding an Element in Queue

Front of Queue

New element is added to

the Rear of the Queue

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.128 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.128

Conceptual View of a Queue

• Deleting/Removing an Element from Queue

New Front of Queue

Element is removed from

the Front of the Queue

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.129 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.129

Applications of Queue

• Real World Examples

 People on an Escalator or Waiting in a Line

 Cars at a Gas Station

• Computer Science Examples

 Print Queue

 Keyboard Input Buffer

 Queue of Network Data Packets

 Queue of Processes

• Applications in Simulation Studies

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.130 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.130

Working of Queue

• Enqueue

 The process of inserting a new element at the Back of queue is called

Enqueue operation.

 In case the list is full, no new element can be accommodated, it is

called Queue Overflow condition.

• Dequeue

 The process of deleting an element from Front of queue is called

Dequeue operation.

 If there is no any element in the queue and Dequeue is performed then

this will result in Queue Underflow condition.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.131 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.131

Working of Queue

• Empty Queue

• Queue after inserting 1 elements

• Queue after inserting 2 more elements

0 1 2 3 4

F = -1

R = -1

20

0 1 2 3 4

F = 0

R = 0

20 30 40

0 1 2 3 4

F = 0

R = 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.132 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.132

Working of Queue

• Queue after deleting 2 elements

• Queue after inserting 2 elements

• What if we want to insert 1 more element?

 Insertion not possible because R = 4.

40

0 1 2 3 4

F = 2

R = 2

40 50 60

0 1 2 3 4

F = 2

R = 4

40 50 60

0 1 2 3 4

F = 2

R = 4

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.133 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.133

Implementation of Queue

• Static Implementation

 It is achieved using Array

• Dynamic Implementation

 It is achieved using Linked List

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.134 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.134

Implementation of Queue using Array

• Insertion (Enqueue)

#define Max 5

#define Nil -1

int queue[Max];

int front, rear;

void enqueue(int x) {

 if(front == Nil) {

 front = rear = 0;

 }

 else {

 rear = rear + 1;

 }

 queue[rear] = a;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.135 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.135

Implementation of Queue using Array

• Deletion (Dequeue)

int dequeue(int x)
{

 int temp = queue[front];
 if(rear == front)
 {
 front = rear = Nil;
 }
 else
 {
 front = front + 1;
 }
 return temp;
}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.136 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.136

Implementation of Queue using Array

• Traversal (Display/Print Elements)

void display()

{
 int i;
 for(i = front; i <= rear; i++)
 {
 printf("%d ",queue[i]);
 }
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.137 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.137

Implementation of Queue using Linked List

• Structure Definition

• Required Functions

struct queue

{
 int data;
 struct node *next;
};
typedef struct queue QUEUE;
QUEUE *start;

void create();

int isempty();

int isfull()

void enqueue(int);

int dequeue();

void display();

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.138 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.138

Implementation of Queue using Linked List

• In Queue, insertion takes place at Rear end.

 This is similar to inserting an element at the end of a Linked List.

• In Queue, deletion takes place at Front end.

 This is similar to deleting an element from the front of a Linked List.

• Therefore, Linked List has application in implementing a Queue.

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.139 139

Front

Rear

Enqueue(6);
6

Enqueue(4);

4
Enqueue(7);

7 Enqueue(3);

3
Dequeue();

Queue using Linked List

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.140 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.140

Structure for a Queue using Linked List

struct queue

{

 int data;

 struct node *next;

};

typedef struct queue QUEUE;

QUEUE *start;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.141 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.141

Insertion in a Queue using Linked List

void enqueue(int a)

{

 QUEUE *node,*pos;

 node = (QUEUE*)malloc(sizeof(QUEUE));

 node->data = a;

 node->next = NULL;

 if(start == NULL)

 start = node;

 else

 {

 pos = start;

 while(pos->next != NULL)

 pos = pos->next;

 pos->next = node;

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.142 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.142

Deletion from a Queue using Linked List

int dequeue()

{

 QUEUE *node;

 int item;

 if(start != NULL)

 {

 node = start;

 item = node->data;

 start = start->next;

 free(node);

 return (item);

 }

 else

 return 0;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.143 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.143

Multiqueue

• Maintaining two or more queues in the same array refers to Multiqueue.

• Double Queue:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.144 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.144

Limitations of Linear Queue (With Array)

• Consider the following representation of Queue:

• Even after having 2 unoccupied cells, we are unable to insert data

elements because insertion is done at Rear end, and Rear is pointing to

last position of the Queue.

• Solution?

 Circular Queue

40 50 60

0 1 2 3 4

F = 2

R = 4

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.145 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.145

Circular Queue

0

1

3

2

4

5

6

7

0 1 2 3 4 5 6 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.146 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.146

Circular Queue

• Circular Queue is a linear data structure

• The operations are performed based on FIFO (First In, First Out)

principle

• The last position is connected back to the first position to make a circle

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.147 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.147

Working of Circular Queue

• Empty Queue

• Queue after inserting 1 elements

• Queue after inserting 4 more elements

0 1 2 3 4

F = -1

R = -1

10

0 1 2 3 4

F = 0

R = 0

10 20 30 40 50

0 1 2 3 4

F = 0

R = 4
FULL

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.148 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.148

Working of Circular Queue

• Queue after deleting 1 elements

• Queue after deleting 1 more elements

• Queue after inserting 2 more element

20 30 40 50

0 1 2 3 4

F = 1

R = 4

30 40 50

0 1 2 3 4

F = 2

R = 4

60 70 30 40 50

0 1 2 3 4

F = 2

R = 1
FULL

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.149 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.149

Implementing Circular Queue using Array

//Method 1 to Check Queue Overflow
int isFull() {
 if((front == rear + 1) || (front == 0 && rear == SIZE-1))
 return 1;
 else
 return 0;
}

int isEmpty() {
 if(front == -1)
 return 1;
 else
 return 0;
}

//Method 2 to Check Queue Overflow
int isFull() {
 if((rear+1) % SIZE == front)
 return 1;
 else
 return 0;
}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.150 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.150

Insertion in Circular Queue using Array

void insert(int item)

{

 if(isFull())

 printf(‚OVERFLOW!‛);

 else

 {

 if(front == -1)

 {

 front = 0;

 }

 rear = (rear + 1) % SIZE;

 queue[rear] = item;

 }

}

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.51

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.151 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.151

Deletion in Circular Queue using Array

int delete() {

 int item;

 if(isEmpty()) {

 printf(‚UNDERFLOW!");

 return(-1);

 }

 else {

 item = queue[front];

 if(front == rear) {

 front = -1;

 rear = -1;

 }

 else {

 front = (front + 1) % SIZE;

 }

 printf(‚ITEM DELETD %d‛, item);

 return (element);

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.152 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.152

Traversal of a Circular Queue using Array

int travers()

{

 int i;

 if(isEmpty())

 printf(‚UNDERFLOW!");

 else

 {

 printf("ITEMS: ");

 for(i = front; i!=rear; i=(i+1)%SIZE) {

 printf("%d ",queue[i]);

 }

 printf("%d ",queue[i]);

 }

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.153 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.153

Deque (Double Ended Queues)

• Insertion and Deletion are performed from both the ends, i.e.,

 we can insert/delete elements from the REAR end or from the FRONT end

• Four operations are performed:

 Insertion of an element at the REAR end of Queue.

 Deletion of an element from the FRONT end of Queue.

 Insertion of an element at the FRONT end of Queue.

 Deletion of an element from the REAR end of Queue.

• There are two types of Deques:

 Input-restricted Deque: Deletion can be performed from both ends

(FRONT and REAR) while Insertion can be done at one end (REAR)

 Output-restricted Deque: Deletion can be performed from one end

(FRONT) while Insertion can be done at both ends (REAR and FRONT)

Data and File Structures (MCA-102)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.154 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.154

Implementation of Deque using Array

• Methods to be implemented for Deque

int isEmpty()

int isFull()

void insertFront(int x)

void insertRear(int x)

int deleteFront()

int deleteRear()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.155 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.155

Bibliography

• E. Horowitz and S. Sahani, “Fundamentals of Data Structures in C”

• Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”

• R. S. Salaria, “Data Structure & Algorithms Using C”

• Schaum’s Outline Series, “Data Structure”

• http://www.btechsmartclass.com/ (Online)

