| Data and File Structures |
| :---: |
| (MCA-102) |
| Unit - 1 |
| [Array (Searching and Sorting), Linked List, Stack and Queue] |
| by |
| Dr. Sunil Pratap Singh |
| (Assistant Professor, BVICAM, New Delhi) |
| 2021 |

## Introduction

- Data Type: A data type is a term which refers to the kinds of data that variables may "hold" in a programming language.
- For example, a variable of type boolean can assume either the value true or the value false, but no other value.
- Data Structure: A data structure is an arrangement of data in a computer's memory (or sometimes on a disk).
- In other words, a data structure is meant to be an organization or structuring for a collection of data items. A sorted list of integers stored in an array is an example of such a structuring.
- Algorithms manipulate the data in these structures in various ways, such as inserting a new data item, searching for a particular item, or sorting the items.


## Categories of Data Structures

- Linear Data Structures
- A data structure whose elements form a sequence, and every element in the structure has a unique predecessor and unique successor.
- Examples: Array, Stack, Queue, Linked List
- Non-Linear Data Structures
- A data structure whose elements do not form a sequence, there is no unique predecessor or unique successor.
- Examples: Tree, Graph
$\qquad$
$\qquad$


## Common Operations on Data Structures

- Traversal: accessing or visiting each data item exactly once
- Searching: finding the data item within the data structure which satisfies searching condition
- Insertion: adding a new data element within the data structure
- Deletion: removing a new data element from the data structure
- Sorting: arranging the data in some logical order
- Merging: combining the data elements of two data structures
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Array

- An array is a fixed-size sequential collection of elements of same data type.
- An array is simply a grouping of like-type data.
- In its simplest form, an array can be used to represent a list of numbers, or a list of names.
- Some examples where the concept of an array can be used:
- List of temperatures recorded every hour in a day $\qquad$
- List of employees in an organization
- Test scores of a class of students
- Table of daily rainfall data
- etc
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh


## One-Dimensional Array

- A list of items can be given one variable name using only one subscript and such a variable is called a single-scripted variable of a onedimensional array.
- Declaration:

```
data-type variable-name[size];
```

- Declaration Examples:
float height[50];
int group[10];
char name[10]; $\qquad$


## One-Dimensional Array

- Initialization at Compile Time:
data-type variable-name[size] = \{list of values $\}$;
- Compile Time Initialization Examples

```
int number[3] ={5, 6, 7};
int age[5] = {22, 24, 23};
    --> Remaining two elements will be initialized to 0.
int counter[] = {1, 2, 3, 4, 5};
    --> The array size may be omitted.
char city[5] = {'D', 'E', 'L'};
    --> Remaining two elements will be initialized to NULL.
```


## One-Dimensional Array

- Run Time Initialization Examples

```
int counter[10];
for(i=1, i<=10, i++)
{
    counter[i] = i;
}
Using scanf() function
int counter[10];
for(i=1, i<=10, i++)
{
    scanf("%d", &counter[i]);
}
```



Memory Layout of 1D Array


## Calculating Address of Elements in 1D Array

- Let $\mathrm{x}[\mathrm{n}]$ be an one-dimensional array having n elements with indices i $=0,1, \ldots \ldots, n-1$
- Then, the address of $\mathrm{i}^{\text {th }}$ element ( $\mathrm{x}[\mathrm{i}]$ ) is calculated as follows:

Base Address + ( $\mathrm{i} \times$ Scale Factor of Data Type of Array $)$

Example: Given an array $x[5]$ of integers with base address $=1000$. Calculate the address of element $\mathrm{x}[3]$.

Address of $\mathrm{x}[3]=$ Base Address $+(3 \times$ Scale Factor of Integer)
$=1000+(3 \times 2)=1006$

## Two-Dimensional Array

- Declaration:
data-type variable-name[row-size] [column-size];
- Declaration Examples:
float sales[3][3];
int matrix[4][3]; $\qquad$
$\qquad$
$\qquad$


## Two-Dimensional Array

- Initialization at Compile Time: data-type variable-name[row-size][column-size] = \{list of values $\}$;
- Compile Time Initialization Examples

$$
\begin{aligned}
& \text { int table }[2][3]=\{1,1,1,2,2,2\} ; \\
& \text { int table }[2][3]=\{\{1,1,1\},\{2,2,2\}\} ;
\end{aligned}
$$

--> When array is initialized with all values, explicitly, we need not specify the size of first dimension.
int table[][3] $=\{\{1,1,1\},\{2,2,2\}\}$; $\qquad$
int table[2][3] = \{\{1, 1\}, \{2\}\};
--> It will initialize the first two elements of first row to one, $\qquad$
the first element of second row to two, and all other to zero.


## Memory Layout of 2D Array

- There are two main techniques of storing 2 D array elements into memory:
- Row Major Ordering
- All the rows of the 2 D array are stored into the memory contiguously.
- Column Major Ordering
- All the columns of the 2D array are stored into the memory contiguously.
$\qquad$
$\qquad$
$\qquad$

Memory Layout of 2D Array (contd...)


## Calculating Address of Elements in 2D Array

- Let $\mathrm{x}[\mathrm{m}][\mathrm{n}]$ be a two-dimensional array having m rows and n columns with indices $i=0,1, \ldots \ldots, m ; j=0,1, \ldots \ldots n$.
- Then, the address of an element x [i] [j] of the array, stored in Row Major, is calculated as:

Base Address $+(\mathrm{i} \times \mathrm{n}+\mathrm{j}) \times$ Scale Factor of Data Type of Array

Example: Given an array $x[5][7]$ of integers with base address $=900$. Calculate the address of element $\mathrm{x}[4][6]$.

Address of $x[4][6]=900+(4 \times 7+6) \times 2=968$
Question: Given an array [1...5, 1...7] of integers with base address $=900$. Calculate address of element $[4,4]$.

## Calculating Address of Elements in 2D Array

- Let $\mathrm{x}[\mathrm{m}][\mathrm{n}]$ be a two-dimensional array having m rows and n columns with indices $i=0,1, \ldots \ldots, m ; j=0,1, \ldots \ldots$.
- Then, the address of an element $\mathrm{x}[\mathrm{i}][\mathrm{j}]$ of the array, stored in Column Major, is calculated as:

Base Address $+(\mathrm{j} \times \mathrm{m}+\mathrm{i}) \times$ Scale Factor of Data Type of Array

Example: Given an array $x[5][7]$ of integers with base address $=900$. Calculate the address of element $x[4][6]$.

Address of $x[4][5]=900+(5 \times 5+4) \times 2=958$

Question: Given an array [1...5, 1...6] of integers with base address $=2000$. Calculate address of element [4, 4].

## Sparse Matrix

- A matrix can be defined as a two-dimensional array having 'm' columns and ' $n$ ' rows representing $m \times n$ matrix.
- Sparse matrices are those matrices that have the majority of their elements equal to zero.
- In other words, the sparse matrix is a matrix that has a greater number of zero elements than the non-zero elements.

|  | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 4 | 0 | 5 |
| 1 | 0 | 0 | 3 | 6 |
| 2 | 0 | 0 | 2 | 0 |
| 3 | 2 | 3 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 |

$\qquad$


## Limitations of Sparse Matrix

- Storage
- We need to store $m \times n$ (all elements) elements of matric even though maximum number of elements of the matrix are zero.
- Computing Time
- In case of searching (or performing any operation) in a sparse matrix, we need to traverse $m \times n$ (all elements) rather than accessing non-zero elements of the sparse matrix.


## Sparse Matrix Representation

- The non-zero elements can be stored with triples, i.e., rows, columns, and value.
- The sparse matrix can be represented in the following ways:
- Array Representation
- Linked List Representation
- List of Lists Representation


## Sparse Matrix: Triples/Array Representation)

- A 2D array with 3 row or columns is used to represent the sparse matrix:
- Row: It is an index of a row where a non-zero element is located.
- Column: It is an index of the column where a non-zero element is located $\qquad$
- Value: The value of the non-zero element is located at the index (row, column).

|  |  |  |  |  |  | Row | Column | Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 |  | 0 | 1 | 4 |
| 0 | 0 | 4 | 0 | 5 |  | 0 | 3 | 5 |
| 1 | 0 | 0 | 3 | 6 |  | 1 | 2 | 3 |
| 2 | 0 | 0 | 2 | 0 | $\longrightarrow$ | 1 | 3 | 6 |
| 3 4 | 2 | 3 0 | 0 | 0 |  | 2 | 2 | 2 |
|  |  |  |  |  |  | 3 | 0 | 2 |
|  |  |  |  |  |  | 3 | 1 | 3 |

## Sparse Matrix: Linked List Representation

- A linear linked list is used to represent the sparse matrix. Each node of the list consists of four fields:
- Row: Row: An index of row where a non-zero element is located.
- Column: An index of column where a non-zero element is located.
- Value: Value of the non-zero element which is located at the index (row, column).
- Next Node: It stores the address of the next node


## Sparse Matrix: List of List Representation

- One list is used to represent the rows, and each row contains the list of triples:
- Column: An index of column where a non-zero element is located.
- Value: Value of the non-zero element
- Address of Next Node : It stores the address of the next non-zero element.



## Linear Search

- Searching is a process of finding a value in a list of values.
- Linear search is a very simple search algorithm.
- In this type of search, a sequential search is made over all items one by one.
- Every item is checked and if a match is found then that particular item is returned, otherwise the search continues till the end of the data collection.
- It has a time complexity of $O(n)$, which means the time is linearly dependent on the number of elements, which is not bad, but not that good too.


## Linear Search: Step-by-Step Process

- Step 1: Read the element to be searched from the user
- Step 2: Compare, the element to be searched with the first element in the list.
- Step 3: If both are matched, then display "Given element found" and terminate the search process.
- Step 4: If both are not matched, then compare search element with the next element in the list.
- Step 5: Repeat steps 3 and 4 until the search element is compared with the last element in the list.
- Step 6: If the last element in the list is also not matched, then display "Element not found!" and terminate the function.


## Linear Search: Working Example

list | 65 | 20 | 10 | 55 | 32 | 12 | 50 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

search element $\mathbf{1 2}$
Step 1:
search element (12) is compared with first element (65) $\qquad$
 12
Both are not matching. So move to next element

## Linear Search: Working Example

Step 2:
search element (12) is compared with next element (20) $\qquad$

list | 65 | 20 | 10 | 55 | 32 | 12 | 50 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

12
Both are not matching. So move to next element
Step 3:
search element (12) is compared with next element (10)

list | 65 | 20 | 10 | 55 | 32 | 12 | 50 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

12
Both are not matching. So move to next element
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Binary Search

- Binary search is a fast search algorithm with run-time complexity of O( $\log n$ ). $\qquad$
- This search algorithm works on the principle of divide and conquer.
- For this algorithm to work properly, the data collection should be in the $\qquad$ sorted form. $\qquad$
$\qquad$
$\qquad$


## Binary Search: Step-by-Step Process

- Step 1: Read the element to be searched from the user.
- Step 2: Find the middle element in the sorted list.
- Step 3: Compare, the search element with the middle element in the sorted list.
- Step 4: If both are matched, then display "Given element found!" and terminate the search process.
- Step 5: If both are not matched, then check whether the search element is smaller or larger than middle element.
- Step 6: If the search element is smaller than middle element, then repeat steps 2, 3, 4 and 5 for the left sub-list of the middle element.
- Step 7: If the search element is larger than middle element, then repeat steps 2, 3, 4 and 5 for the right sub-list of the middle element.
- Step 8: Repeat the same process until we find the search element in the list or until the sub-list contains only one element.
- Step 9: If that element also doesn't match with the search element, then display "Element not found in the list!" and terminate the function.
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U1.31
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$


## Binary Search: Working Example

## Step 2:

search element (12) is compared with middle element (12) $\qquad$

list | 10 | 12 | 20 | 32 |
| :--- | :--- | :--- | :--- | :--- |

12 $\qquad$
Both are matching. So the result is "Element found at index 1 "
low=0;
high=n-1;
while(low<=high) \{ mid=(low+high)/2; if(item<a[mid])
high=mid-1;
else if(item>a[mid])
low=mid+1;
else if(item==a[mid]) \{ printf("Item Found"); break;
\}
else \{
printf("Not Found");
\}
\}
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh

## Selection Sort: Step-by-Step Process

- Step 1: Select the first element of the list (i.e., element at first position in the list).
- Step 2: Compare the selected element with all other elements in the list.
- Step 3: For every comparison, if any element is smaller than selected element (for ascending order), then these two are swapped.
- Step 4: Repeat the same procedure with next position in the list till the entire list is sorted.
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$


## Selection Sort: Working Example

- Consider the following unsorted list of elements:

| 15 | 20 | 10 | 30 | 50 | 18 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Iteration 1:
Select the first element of the list,

- compare it with all other elements in the list, and
- whenever we found a smaller element than the element at first position then swap those two elements.



$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Selection Sort: Working Example

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Selection Sort: Working Example

| 20 12 10 15 2 | 2 20 12 15 10 | 2 10 20 15 12 | 2 10 12 20 15 |
| :---: | :---: | :---: | :---: |
| $t$ | 4 | 41 | 41 |
| 12 20 10 15 2 | 2 12 20 15 10 | 2 10 15 20 12 | 2 10 12 15 20 |
| $t \quad 1$ | + | $t$ |  |
| 10 20 12 15 2 <br> 10     | 2 12 20 15 10 | 2 10 12 20 15 |  |
| $t+$ | 4 |  |  |
| 10 20 12 15 2 | 2 10 20 15 12 |  |  |
| 1 |  |  |  |
| 2 20 12 15 10 |  |  |  |
| Step 1 | Step 2 | Step 3 | Step 4 |

$\qquad$
$\qquad$
$\qquad$

```
for(i=0; i<size; i++)
```

for(i=0; i<size; i++)
{
{
for(j=i+1; j<size; j++)
for(j=i+1; j<size; j++)
{
{
if(list[i] > list[j])
if(list[i] > list[j])
{
{
temp=list[i];
temp=list[i];
list[i]=list[j];
list[i]=list[j];
list[j]=temp;
list[j]=temp;
}
}
}
}
}

``` Program Code for Selection Sort
```

for(i=0; i<n-1; i++)
{
int min = i; //Consider the first element as minimum.
for(j=i+1; j<n; j++)
{
if(a[j] < a[min])
min = j
}
}
if(min != i)
{
swap(a[i], a[min]);
}
}
@ Bharatividyypeeth's Instituto of Computer Applications and Manggement, New Dolhi:6, by Dr. Sunil Pratap Singh
$\qquad$

## Bubble Sort: Step-by-Step Process

- Step 1: Select the first element of the list (i.e., element at first position in the list).
- Step 2: Compare the current element with next element of the list.
- Step 3: If the current element is greater than the next element (for ascending order), then these two are swapped.
- Step 4: If the current element is less than the next element, move to the next element.
- Step 5: Repeat from Step 1.
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$



## Program Code for Bubble Sort

```
for(i=1;i<n;i++) {
    for(j=0;j<n-i;j++) {
        if(a[j]>a[j+1])
        {
            temp=a[j];
            a[j]=a[j+1];
            a[j+1]=temp;
        }
    }
}
```


## Insertion Sort: Step-by-Step Process

- Step 1: Assume that first element in the list is in sorted portion of the list and remaining all elements are in unsorted portion.
- Step 2: Consider first element from the unsorted list and insert that element into the sorted list in order specified.
- Step 3: Repeat the above process until all the elements from the unsorted list are moved into the sorted list.
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$


## Insertion Sort: Working Example

- Consider the following unsorted list of elements:

| 15 | 20 | 10 | 30 | 50 | 18 | 5 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Assume that the sorted portion of the list is empty and all elements in list are in unsorted portion, as shown below:

Sorted


- Move the first element $\mathbf{1 5}$ from the unsorted portion to sorted portion.



## Insertion Sort: Working Example

- To move 20 from unsorted to sorted portion, compare 20 with 15 and insert it at correct position.

- To move element 10 from unsorted portion to sorted portion, compare 10 with 20, it is smaller so perform swapping. Then, compare 10 with 15, again it is smaller so perform swapping.



## Insertion Sort: Working Example

- Similarly, an element from unsorted portion is retrieved and is compared with element in sorted portion and is inserted accordingly.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Insertion Sort: Working Example

$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

```
for(i=1; i<n; i++)
{
    temp = data[i];
    j = i-1;
    while(temp<data[j] && j>=0)
    {
        data[j+1] = data[j];
        j = j-1;
    }
    data[j+1]=temp;
}
```


## Shell Sort

- In Insertion Sort, a large number of swaps/shifts are performed to sort the elements.
- Shell sort is an efficient sorting algorithm and is based on Insertion Sort.
- This algorithm avoids large shifts as in case of Insertion Sort, if the smaller value is to the far right and has to be moved to the far left.
- Shell Sort compares items that lie far apart which allows elements to move faster to the front of the list.


## Shell Sort: Algorithm Working

1. Divide the list into sub-lists using interval $\operatorname{Floor}\left(\mathbf{N} / \mathbf{2}^{\mathrm{k}}\right)$.

- Shell Sequence (Floor( $\mathrm{N} / 2^{k}$ ) )

2. Short sub-lists using Insertion Sort.
3. Repeat until complete list is sorted.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Shell Sort: Working

- Let the list of elements be: $\mathbf{3 5}, \mathbf{3 3}, \mathbf{4 2}, \mathbf{1 0}, \mathbf{1 4}, \mathbf{1 9}, \mathbf{2 7}, 44$
- Gap/Interval $=\operatorname{Floor}\left(8 / 2^{1}\right)=4$
- Sub-lists: $\{35,14\},\{33,19\},(42,27\}$, and $\{10,44\}$
- Short sub-lists using Insertion Sort.



## Shell Sort: Working

- In next phase, the interval becomes Floor $\left(8 / 2^{2}\right)=\mathbf{2}$
- Then, we take interval of 2 and this gap generates two sub-lists $\{14,27,35$, $42\}$ and $\{19,10,33,44\}$.
- Short sub-lists using Insertion Sort.

After this step, array becomes $14,10,27,19,35,33,42,44$

## Shell Sort: Working

- In next phase, the interval becomes Floor $\left(8 / 2^{3}\right)=1$
- Finally, sort (using Insertion Sort) the rest of the array using interval of value 1.


$\qquad$

Program Code for Shell Sort

```
for(gap = n/2; gap >= 1; gap = gap/2) {
    for(j = gap; j < n ; j++) {
        for(i = j-gap; i >= 0; i = i - gap) {
            if(a[i+gap] > a[i]) {
                break;
            }
            else {
            swap(a[i+gap], a[i])
            }
        }
    }
}
```


## Radix Sort

- A list of numbers is sorted based on the digits of individual numbers.
- Sorting is performed from least significant digit to the most significant digit.
- The number of passes required are equal to the number of digits present in the largest number of the list.
- Example: If the largest number has 3 digits, then the list will be sorted in 3 passes.


## Radix Sort: Algorithm

1. Define 10 queues, each representing a bucket for each digit from 0 to 9 .
2. Consider the least significant digit of each number in the list which is to be sorted.
3. Insert each number into their respective queue based on the least significant digit.
4. Group all the numbers from queue 0 to queue 9 in the order they have inserted into their respective queues.
5. Repeat from step 2 until all the numbers are grouped based on the most significant digit.

## Radix Sort: Example

Consider the following list of unsorted integer numbers

$$
82,901,100,12,150,77,55 \& 23
$$

Step 1 - Define 10 queues each represents a bucket for digits from 0 to 9


## Radix Sort: Example

Step 2 - Insert all the numbers of the list into respective queue based on the Least significant digit (once placed digit) of every number.

$$
8 \underline{2}, 90 \underline{1}, 10 \underline{0}, 1 \underline{2}, 15 \underline{0}, 7 \underline{7}, 5 \underline{5} \& 2 \underline{3}
$$


$\qquad$

Group all the numbers from queue-0 to queue-9 inthe order they have inserted \& $\qquad$ consider the list for next step as input list.

$$
100,150,901,82,12,23,55 \& 77
$$

$\qquad$
$\qquad$

## Radix Sort: Example

Step 3 - Insert all the numbers of the list into respective queue based on the next Least significant digit (Tens placed digit) of every number.
$1 \underline{0} 0,1 \underline{5} 0,9 \underline{0} 1, \underline{8} 2, \underline{1} 2, \underline{2} 3, \underline{5} 5 \& \underline{7} 7$

$\qquad$

Group all the numbers from queue-0 to queue-9 inthe order they have inserted \& consider the list for next step as input list.

$$
100,901,12,23,150,55,77 \& 82
$$

$\qquad$
$\qquad$
$\qquad$ Radix Sort: Example

Step 4 - Insert all the numbers of the list into respective queue based on the next Least significant digit (Hundres placed digit) of every number.

$$
\underline{1} 00, \underline{9} 01,12,23, \underline{1} 50,55,77 \& 82
$$



Group all the numbers from queue- 0 to queue- 9 inthe order they have inserted \& consider the list for next step as input list.
$\qquad$
List got sorted in the incresing order. $\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



## Algorithm/Code for Merge Sort

```
mergeSort(list, lower, upper)
{
    if(lower < upper)
    {
        mid = (lower + upper)/2;
        mergeSort(list, lower, mid)
        mergeSort(list, mid+1, upper)
        merge(list, lower, mid, upper)
    }
}
```


## Code for Merging in Merge Sort



## Quick Sort: Procedure/Process

- The quick sort uses divide and conquer to gain the same advantages as the merge sort, while not using additional storage.
- A quick sort first selects a value, which is called the pivot value. The actual position where the pivot value belongs in the final sorted list, commonly called the split point, is used to divide the list for subsequent calls to the quick sort.
- Partitioning begins by locating two position markers-let's call them leftmark and rightmark - at the beginning and end of the remaining items in the list.


## Quick Sort: Procedure/Process

- Begin by incrementing leftmark until we locate a value that is greater than the pivot value.
- Then decrement rightmark until we find a value that is less than the pivot value.
- At the point where rightmark becomes less than leftmark, we stop.
- The position of rightmark is now the split point.
- The pivot value can be exchanged with the contents of the split point and the pivot value is now in place.


## Quick Sort: Working



$\qquad$

## Algorithm/Code for Quick Sort

```
quickSort(list, low, high)
{
    int pivot;
    if ( high > low ) //Termination Condition
    {
        pivot = partition(a, low, high);
        quickSort(a, low, pivot-1);
        quickSort(a, pivot+1, high);
    }
}
```

$\qquad$
$\qquad$

## Linked List

- Linked List is a linear collection of data elements, called nodes.
- The linear order is given by pointers.
- Each node is divided into two or more parts.
- A Linked List can be of following types:
- Linear Linked List (One-Way List)
- Doubly Linked List (Two-Way List)
- Circular Linked List


## Linear Linked List

- Linked List is a linear data structure which consists of a series of nodes.
- Unlike arrays, linked list elements are not stored at contiguous location; the elements are linked using pointers.

- Advantages:
- Dynamic data structure: can grow or shrink dynamically
- Ease of insertion/deletion: insertion and deletion are efficient
- Implementation of other complex data structures
- Drawbacks:
- No random access: access to an arbitrary data item is time-consuming
- Requires more memory: extra space is required for pointer
© Bharati Vidyapeeth's shstitute of Computer Applications and Management, New Delhi.63, by Dr. Sunil Pratap Singh


## Implementation of Linear Linked List

| structure 1 |  | structure 2 |  | structure 3 |  | next |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| item |  | item |  | item |  |  |
| //Structure Representation for Node of a Linear Linked Liststruct node\{ |  |  |  |  |  |  |

## Insertion of a Node in Linear Linked List

```
//Insertion of a Node in the Beginning of a Linear Linked List
void insertBegin(int item) {
    NODE *node;
    node=(NODE*)malloc(sizeof(NODE));
    node->data=item;
    if(start==NULL) {
        node->next=NULL;
    }
    else {
        node->next=start;
    }
    start=node;
}
```


## Insertion of a Node in Linear Linked List

```
//Insertion of a Node in the End of a Linear Linked List
void insertEnd(int item) {
    NODE *node,*pos;
    node=(NODE*)malloc(sizeof(NODE));
    node->data=item;
    node->next=NULL;
    if(start==NULL) {
        start=node;
    }
    else {
        pos=start;
        while(pos->next!=NULL) {
            pos=pos->next;
        }
        pos->next=node
    }
}
```

```
//Insertion of a Node at Specific Position of a Linear Linked List
void insertPosition(int item,int p) {
    NODE *node,*pos;
    int count=1;
    pos=start;
    while(count<p)
        if(count==(p-1)) {
        node=(NODE*)malloc(sizeof(NODE));
        node->data=item;
        node->next=pos->next;
        pos->next=node;
        break;
    }
    else {
        pos=pos->next;
        count++;
    }
}
@ Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh

\section*{Deletion of a Node from Linear Linked List}
```

//Deletion of a Node from the Beginning of a Linear Linked List
void deleteBegin() {
NODE *node;
if(start==NULL) {
printf("\nUNDERFLOW");
return;
}
else {
node=start;
start=start->next;
printf("NODE DELETED %d ", node->data);
free(node);
}
}

```

\section*{Deletion of a Node from Linear Linked List}
```

//Deletion of a Node from the End of a Linear Linked List
void deleteEnd() {
NODE *ode, *Pos;
printf("\nuNDERFLOW");
return; }
else if(start->next==NULL)
node=start;
printf("\nNODE DELETED %d", node->data);
free(node); }
else {
pos=start;
pos=start;
while(node->next!=NULL) {
pos=node;
l
pos->next=NuLL
printf("<br>NNODE DELETED %d", node->data);
free(node);
}

```

\section*{Deletion of a Node from Linear Linked List}
//Deletion of a Node from Specific Position of a Linear Linked List void deletePosition(int p) \{

NODE *node, *pos;
pos=start;
int count=0;
while(count \(<\) p) \{
if(count==(p-1)) \{
node=pos->next;
pos->next=node->next
free(node);
break;
\}
else \{
pos=pos->next;
count++;
\}
\}
\}
© Bharati Vidyapeeth's institute of Computer Applications and Management, New Delhi.63, by Dr. Sunil Pratap Singh

\section*{Traversal of a Linear Linked List}
```

//Traversal of a Linear Linked List
void travers() {
NODE *pos;
pos=start;
if(pos==NULL) {
printf("\nLIST IS EMPTY");
}
else {
printf("\nLIST ELEMENTS: ");
while(pos!=NULL) {
printf("%d ",pos->data);
pos=pos->next;
}
}
}

```
void addPoly(NODE **start, NODE *p, NODE *q) {
    NODE *node = (NODE *)malloc(sizeof(NODE));
    node->next = NULL;
    *start = node;
    while(p && q) { //LOOP WHILE BOTH LISTS HAVE VALUES
        if(p->pow > q->pow) {
            node->pow = p->pow; node->coe = p->coe; p = p->next;
    }
    else if(p->pow < q->pow) {
        node->pow = q->pow; node->coe = q->coe; q = q->next;
    }
        node->pow = p->pow; node->coe = p->coe + q->coe; p = p->next; q = q->next;
    }
    if(p && q) { //GROW THE LINKED LIST ON CONDITION
        node->next = (NODE *)malloc(sizeof(NODE));
        node = node->next;
        node->next = NULL;
    }
```

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh

```
//continued...
    while(p || q) {
    NODE *newNode = (NODE *)malloc(sizeof(NODE))
    node->next = newNode;
    node = newNode;
    node->next = NULL;
        if(p) {
        node->pow = p->pow; node->coe = p->coe; p = p->next
    }
        if(q) {
        node->pow = q->pow; node->coe = q->coe; q = q->next;
        }
3'
3
```

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Stack

- A Stack is a linear data structure.
- It is a list in which insertion of new data item and deletion of existing $\qquad$ data item is done from one end, known as Top of Stack.
- Stack is also called LIFO (Last-in-First-out) type of list.
- The last inserted element will be the first to be deleted from Stack.
- Example:
- Some of you may eat biscuits (or poppins). If you assume only one side of the cover is torn and biscuits are taken out one by one. This is called poping. If you want to preserve some biscuits for some time later, you will put them back into the pack through the same torn end. This is called pushing.


## Operations on Stack

- Push
- The process of inserting a new element to the top of stack is called Push operation.
- In case the list is full, no new element can be accommodated, it is called Stack Overflow condition.
- Pop
- The process of deleting an element from top of stack is called Pop operation.
- If there is no any element in the Stack and Pop is performed then this will result in Stack Underflow condition. $\qquad$


## Implementation of Stack

- Static Implementation
- It is achieved using Array
- Dynamic Implementation
- It is achieved using Linked List $\qquad$
$\qquad$
$\qquad$


## Implementation of Stack using Array

- Push Operation

```
int stack[10],top = -1
void push(int x)
{
    top = top+1;
        stack[top] = x;
}
```

- Pop Operation
int pop()
$\{$ int temp;
temp = stack[top];
temp $=$ stack $[$
top $=$ top- $1 ;$
top $=$ top- $1 ;$
return temp;
return temp;
\}


## Implementation of Stack using Linked List

- Structure Definition
struct stack
\{
int data; struct node ${ }^{\text {next }}$;
\};
type
typedef struct stack STACK,
stack *top;
- Required Functions $\qquad$ void create(); int isempty(); int isfull() void push(int); int pop();
void display();


## Some Applications of Stack

- Reverse of String/Number
- Recursion (Recursive Function)
- Expression Conversion
- Expression Evaluation
- Syntax Parsing
- Undo-mechanism in an Editor
- etc. $\qquad$
$\qquad$


## Expressions and their Types

- An expression is defined as a number of operands or data items combined using several operators.
- The way to write arithmetic expression is known as a notation.
- An arithmetic expression can be written in three different but equivalent notations, i.e., without changing the essence or output of an expression.
- These notations are:
- Infix Notation
- Prefix Notation
- Postfix Notation


## Infix Notation

- Infix Notation is what we come across in our general mathematics.
- In Infix Notation, operators are written in-between the operands.
- Example:
- Expression to add two numbers A and B is written as:

$$
A+B
$$

- Infix Notation needs precedence of the operators and we sometimes use bracket () to override these rules.


## Prefix Notation

- In Prefix Notation, operators are written before the operands.
- This is also known as polish notation in the honor of the Polar mathematician (Jan Lukasiewicz) who developed this notation.
- Example:
- Expression to add two numbers A and B is written as:
$+A B$


## Postfix Notation

- In Postfix Notation, operators are written after the operands.
- This is also known as reverse polish notation.
- Example:
- Expression to add two numbers $A$ and $B$ is written as:


## AB

- It is most suitable for computer to calculate any expression as there is no need for operator precedence and other rules.
- It is the universally accepted notation for designing ALU of the CPU, therefore important for us to study.


## Conversion from Infix to Postfix Notation

- While there are tokens to be read from expression, read the token.
- If the token is an operand, then insert it to output.
- If the token is an operator and if the Top of Stack is not any operator then push the operator to stack.
- If the token is an operator O1:
- While there is an operator, O 2 at top of stack ( O 2 is Top), and
- If precedence of $\mathrm{O} 1>\mathrm{O} 2$
$\checkmark$ Push 01 on to Stack (now 01 is Top)
- Else if precedence of $\mathrm{O} 1<=02$
$\checkmark$ Pop O 2 to the output and Push 01 onto Stack
- If the token is a left parenthesis, the Push it onto the Stack.
- If the token is a right parenthesis:
- Until the token at Top is a left parenthesis, Pop operators off the Stack onto the output
- Pop the left parenthesis from Stack
- If the token at Top is an operator, Pop and insert it onto output.
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh


## Step-by-Step Example: Infix to Postfix Conversion

## Stack



Infix
$(a+b-c)^{*} d-(e+f)$
Postfix


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Conversion from Infix to Prefix Notation

- The conversion process is almost same according to Postfix notation.
- The only change from Postfix form is that traverse the expression from right to left and the operator is placed before the operand rather than after them.
- Convert the expression $A * B+C / D$ into Prefix notation. $\qquad$
- Answer: + * A B/ CD $\qquad$
$\qquad$


## Conversion from Postfix to Infix Notation

1. Scan the postfix expression from left to right.
2. If the scanned symbol is an operand, then push it onto the stack.
3. If the scanned symbol is an operator, pop two symbols from the stack and create it as a $\qquad$ string by placing the operator in between the operands and push it onto the stack.
4. Repeat steps 2 and 3 till the end of the expression. $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Postfix to Infix Conversion: Example |  |  |  |
| :---: | :---: | :---: | :---: |
| Convert the expression A BC * DEF^/G*-H + * to Infix notation. | smmbor | stack | Remats |
|  |  | $1 / 1$ | noma |
|  |  | \| 1 |l|1 | numb |
|  |  | $\triangle$ A\|c|l | nunc |
|  | - |  | Nomen |
|  | - |  | Nund |
|  |  |  | nowe |
|  |  | A\|coolvela | nump |
|  |  |  | Remmorens |
|  |  |  |  |
|  |  |  | musc |
|  |  |  | Nomen |
|  |  |  |  |
|  |  |  | Nush |
|  |  |  | Nomen |
|  |  |  |  |
|  |  | The notis now emax. Tre string tumed | bita |
| ๑ Eharati Vidyapeett's institut of Computer Applications and Management, New Dethi.68, by Dr. Sunil Pratap Singh |  |  |  |

## Infix to Postfix Conversion: Questions

- $A * B+C$
- $A+B * C$ $\qquad$
- $A *(B+C)$
- $A-B+C$
- $A^{*} B^{\wedge} C+D$
- $A^{*}\left(B+C^{*} D\right)+E$
- $(A+B)^{*} C / D+E^{\wedge} F / G \rightarrow A B+C^{*} D / E F^{\wedge} G /+(A n s w e r)$
- $\mathrm{A}+\left(\mathrm{B}^{*} \mathrm{C}-\left(\mathrm{D} / \mathrm{E}^{\wedge} \mathrm{F}\right)^{*} \mathrm{G}\right)^{*} \mathrm{H} \rightarrow \mathrm{ABC}{ }^{*} \mathrm{DEF} \mathrm{F}^{\wedge} / \mathrm{G}^{*}-\mathrm{H}^{*}+$ (Answer)
- A-B/(C*D^E) $\rightarrow$ ABCDE^* / - (Answer)


## Evaluation of Postfix Expression

Expression: 456 * +

| Step | Input | Operation | Stack | Calculation |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | Push | 4 |  |
| 2 | 5 | Push | 45 |  |
| 3 | 6 | Push | 456 |  |
| 4 | $*$ | Pop 2 Elements and Evaluate | 4 | $6 * 5=30$ |
| 5 |  | Push Result (30) | 430 |  |
| 6 | + | Pop 2 Elements and Evaluate | Empty | $4+30=34$ |
| 7 |  | Push Result (34) | 34 |  |
| 8 |  | No More Elements (Pop) | Empty | 34 |

## Double Stack/Multistack

- Double stack means two stacks which are implemented using a single array.
- To prevent memory wastage, the two stacks are grown in opposite direction.
- The pointer Top1 and Top2 points to top-most element of Stack1 and Stack 2 respectively.
- Initially, Top1 is initialized to -1 and Top2 is initialized the size of array.
- As the elements are pushed into Stack1, Top1 is incremented.
- Similarly, as the elements are pushed into Stack2, Top2 is decremented.
- The array is full when Top1=Top2-1.
- Multistack means more than 2 stacks which are implemented using a single array.


## Queue

- A Queue is a linear data structure.
- It is a list in which insertion of new data items is done from one end, called Rear end, and deletion of existing data item is done from other end, known as Front end of Queue.
- Queue is also called FIFO (First-in-First-out) type of list.
- The first inserted element will be the first to be deleted from Queue

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



## Applications of Queue

- Real World Examples
- People on an Escalator or Waiting in a Line $\qquad$
- Cars at a Gas Station
- Computer Science Examples $\qquad$
- Print Queue
- Keyboard Input Buffer
- Queue of Network Data Packets
- Queue of Processes
- Applications in Simulation Studies


## Working of Queue

- Enqueue
- The process of inserting a new element at the Back of queue is called Enqueue operation.
- In case the list is full, no new element can be accommodated, it is called Queue Overflow condition.
- Dequeue
- The process of deleting an element from Front of queue is called Dequeue operation.
- If there is no any element in the queue and Dequeue is performed then this will result in Queue Underflow condition.


## Working of Queue

- Empty Queue

- Queue after inserting 1 elements

- Queue after inserting 2 more elements



## Working of Queue

- Queue after deleting 2 elements

- Queue after inserting 2 elements

- What if we want to insert 1 more element?

- Insertion not possible because $\mathbf{R}=\mathbf{4}$.


## Implementation of Queue

- Static Implementation
- It is achieved using Array
- Dynamic Implementation
$\qquad$
- It is achieved using Linked List $\qquad$
$\qquad$
$\qquad$


## Implementation of Queue using Array

- Insertion (Enqueue)

```
#define Max 5
#define Nil -1
int queue[Max];
int front, rear;
void enqueue(int x) {
    if(front == Nil) {
        front = rear = 0;
    }
    else {
        rear = rear + 1;
    }
    queue[rear] = a;
}
```

- Deletion (Dequeue)

```
int dequeue(int x)
{
    int temp = queue[front];
    if(rear == front)
        front = rear = Nil;
    }
    else
    {
    front = front + 1;
    }
```

\}

## Implementation of Queue using Array

- Traversal (Display/Print Elements)
void display()
\{


## int i;

for ( $\mathrm{i}=$ front; i <= rear; $\mathrm{i}++$ )
\{ printf("\%d ",queue[i]);
\}
$\}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Implementation of Queue using Linked List

- Structure Definition
struct queue
it
int data;
struct node *next;
\};
type
typedef struct queue QUEUE; QUEUE *start;
- Required Functions $\qquad$
void create();
int isempty();
int isfull()
void enqueue(int);
int dequeue();
void display();
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Implementation of Queue using Linked List

- In Queue, insertion takes place at Rear end.
- This is similar to inserting an element at the end of a Linked List.
- In Queue, deletion takes place at Front end. $\qquad$
- This is similar to deleting an element from the front of a Linked List.
- Therefore, Linked List has application in implementing a Queue.



## Structure for a Queue using Linked List

struct queue
\{ int data;
struct node *next;
\};
typedef struct queue QUEUE;
QUEUE *start;

## Insertion in a Queue using Linked List

void enqueue(int a)
\{

```
QUEUE *node,*pos;
    node = (QUEUE*)malloc(sizeof(QUEUE));
    node->data = a;
    node->next = NULL;
    if(start == NULL)
        start = node;
    else
    {
        pos = start;
        while(pos->next != NULL)
            pos = pos->next;
        pos->next = node;
    }
```

\}

## Deletion from a Queue using Linked List

```
t dequeue()
    QUEUE *node;
    int item;
    if(start != NULL)
    {
        node = start;
        item = node->data;
        start = start->next;
        free(node);
        return (item);
    }
    else
        return 0;
```

\{
\}


## Multiqueue

- Maintaining two or more queues in the same array refers to Multiqueue.
- Double Queue:

$\qquad$
$\qquad$


## Limitations of Linear Queue (With Array)

- Consider the following representation of Queue:

- Even after having 2 unoccupied cells, we are unable to insert data elements because insertion is done at Rear end, and Rear is pointing to last position of the Queue.
- Solution?
- Circular Queue $\qquad$



## Circular Queue

- Circular Queue is a linear data structure
- The operations are performed based on FIFO (First In, First Out) principle
- The last position is connected back to the first position to make a circle


## Working of Circular Queue

- Empty Queue

- Queue after inserting 1 elements

- Queue after inserting 4 more elements

$\qquad$


## Working of Circular Queue



## Implementing Circular Queue using Array

```
//Method 1 to Check Queue Overflow
int isFull() {
    if((front == rear + 1)|(front == 0 && rear == SIZE-1))
    return 1;
    else
}
//Method 2 to Check Queue Overflow
    int isFull() {
    if((rear+1) % SIZE == front)
    if((rear+1) % SIZE == front)
    else return 1;
    else}\mathrm{ return 0;
}
int isEmpty() {
    if(front == -1)
    if(front == -1)
    else
return 0;

\section*{Insertion in Circular Queue using Array}
```

void insert(int item)
{
if(isFull())
printf("OVERFLOW!");
else
{ if(front == -1)
{
front = 0;
}
rear = (rear + 1) % SIZE;
queue[rear] = item;
}

```
\(\}\)

\section*{Deletion in Circular Queue using Array}
int delete() \{
int item;
if(isEmpty()) \{
printf("UNDERFLOW!");
return (-1)
\}
else \{
item = queue[front];
if(front == rear) \{
front \(=-1\);
rear \(=-1\);
\}
else \{
front \(=(\) front +1\() \%\) SIZE
\}
printf("ITEM DELETD \%d", item); return (element);
\} \(\}\)

\section*{Traversal of a Circular Queue using Array}
```

int travers()
{
int i;
if(isEmpty())
printf("UNDERFLOW!");
else
{
printf("ITEMS: ");
for(i = front; i!=rear; i=(i+1)%SIZE) {
printf("%d ",queue[i]);
}
printf("%d ",queue[i]);
}
}

```

\section*{Deque (Double Ended Queues)}
- Insertion and Deletion are performed from both the ends, i.e.,
- we can insert/delete elements from the REAR end or from the FRONT end
- Four operations are performed:
- Insertion of an element at the REAR end of Queue.
- Deletion of an element from the FRONT end of Queue.
- Insertion of an element at the FRONT end of Queue.
- Deletion of an element from the REAR end of Queue.
- There are two types of Deques:
- Input-restricted Deque: Deletion can be performed from both ends (FRONT and REAR) while Insertion can be done at one end (REAR)
- Output-restricted Deque: Deletion can be performed from one end (FRONT) while Insertion can be done at both ends (REAR and FRONT)

\section*{Implementation of Deque using Array}
- Methods to be implemented for Deque
int isEmpty()
int isFull()
void insertFront(int x )
void insertRear(int x )
int deleteFront()
int deleteRear()
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Bibliography}
- E. Horowitz and S. Sahani, "Fundamentals of Data Structures in C"
- Mark Allen Weiss, "Data Structures and Algorithm Analysis in C" \(\qquad\)
- R. S. Salaria, "Data Structure \& Algorithms Using C"
- Schaum's Outline Series, "Data Structure"
- http://www.btechsmartclass.com/(Online)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

