
MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U4.1

OBJECT ORIENTED
SOFTWARE ENGINEERING

UNIT IV

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.2

Learning Objectives
• Object Oriented Testing Techniques:

Testing Terminology,

Types of test,

 Automatic Tests,

Testing Strategies.

• Agile Process:

Agile Manifesto,

 Agile Principles,

Introduction to Extreme Programming,

Scrum,

 Lean processes.

• Case Studies.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U4.3

TESTING

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.4

Object Oriented Testing Concepts

• Testing
• Verification
• Validation
• Debugging
• Certification
• Clean Room Software

Engineering
• Error
• Fault
• Failure
• Testing Level
 Unit testing
 Integration Testing
 System Testing

•Testing Techniques
•Regression Test

•Testing Focuses
•Operation test
•Full-scale test
•Stress test
•Overload test
•Negative test
•Test based on
requirements
•Ergonomic tests
•Testing of the user
documentation
•Acceptance testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.5

• Stubs

• Drivers

• Test bed

• Equivalence set

• Equivalence partitioning

• Automatic Testing
 Test data

• Test program

Object Oriented Testing Concepts.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.6

Software Testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.7

Error

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.8

Fault/Defect

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.9

Fault/Defect

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.10

Failure/Incident

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.11

Software Testing
• Software testing can be stated as the process of

validating and verifying that a software
program/application/product:

• Meets the requirements that guided its design and
development works as expected;

• Software testing, depending on the testing method
employed, can be implemented at any time in the
development process. However, most of the test
effort occurs after the requirements have been
defined and the coding process has been
completed.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.12

• A primary purpose of testing is to detect software
failures so that defects may be discovered and
corrected.

• Testing cannot establish that a product functions
properly under all conditions but can only establish
that it does not function properly under specific
conditions

Software Testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.13

Testing takes creativity

• Testing often viewed as dirty work.

• To develop an effective test, one must have:
Detailed understanding of the system

 Knowledge of the testing techniques

 Skill to apply these techniques in an effective and efficient manner

• Testing is done best by independent testers
 We often develop a certain mental attitude that the

program should in a certain way when in fact it does not.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.14

Testing Costs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.15

• Executing a program with the goal of finding an
error.

• To check if the system meets the requirements and
be executed successfully in the planned
environment.

• To check if the system is “ Fit for purpose”.

• To check if the system does what it is expected to
do.

Testing Objectives

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.16

• Find bugs as early as possible and make sure they
get fixed.

• To understand the application well.

• Study the functionality in detail to find where the
bugs are likely to occur.

• Study the code to ensure that each and every line
of code is tested.

• Create test cases in such a way that testing is done
to uncover the hidden bugs and also ensure that
the software is usable and reliable

Tester Objectives

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.17

Verification - typically involves reviews and meeting to
evaluate documents, plans, code, requirements, and
specifications. This can be done with checklists, issues
lists, and inspection meeting.

Validation - typically involves actual testing and takes
place after verifications are completed.

In other words, validation is concerned with checking that
the system will meet the customer’s actual needs, while
verification is concerned with whether the system is well-
engineered, error-free, and so on. Verification will help to
determine whether the software is of high quality, but it will
not ensure that the system is useful.

Verification and Validation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.18

Software Testing Life Cycle

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.19

Requirement Analysis

Activities

• Identify types of tests to be performed.

• Gather details about testing priorities and focus.

• Prepare Requirement Traceability Matrix (RTM).

• Identify test environment details where testing is
supposed to be carried out.

• Automation feasibility analysis (if required).

Deliverables

• RTM

• Automation feasibility report. (if applicable)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.20

Test Planning

Activities
• Preparation of test plan/strategy document for

various types of testing
• Test tool selection
• Test effort estimation
• Resource planning and determining roles and

responsibilities.
• Training requirement
Deliverables
• Test plan /strategy document.
• Effort estimation document.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.21

Test Case Development

Activities

• Create test cases, automation scripts (if applicable)

• Review and baseline test cases and scripts

• Create test data (If Test Environment is available)

Deliverables

• Test cases/scripts

• Test data

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.22

Test Environment Setup

Activities

• Understand the required architecture, environment
set-up and prepare hardware and software
requirement list for the Test Environment.

• Setup test Environment and test data

• Perform smoke test on the build

Deliverables

• Environment ready with test data set up

• Smoke Test Results.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.23

Test Execution
Activities
• Execute tests as per plan
• Document test results, and log defects for failed cases
• Map defects to test cases in RTM
• Retest the defect fixes
• Track the defects to closure

Deliverables
• Completed RTM with execution status
• Test cases updated with results
• Defect reports

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.24

Test Cycle Closure
Activities
• Evaluate cycle completion criteria based on Time. Test

coverage, Cost. Software, Critical Business Objectives ,
Quality

• Prepare test metrics based on the above parameters.
• Document the learning out of the project
• Prepare Test closure report
• Qualitative and quantitative reporting of quality of the work

product to the customer.
• Test result analysis to find out the defect distribution by type

and severity.

Deliverables
• Test Closure report
• Test metrics

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.25

Testing Levels

• Unit testing

• Integration testing

• System testing

• Acceptance testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.26

Types of Testing
• Unit Testing:
 Individual subsystem
 Carried out by developers
 Goal: Confirm that subsystems is correctly coded and

carries out the intended functionality

• Integration Testing:
 Groups of subsystems (collection of classes) and

eventually the entire system
 Carried out by developers
 Goal: Test the interface among the subsystem

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.27

System Testing
• System Testing:

– The entire system
– Carried out by developers
– Goal: Determine if the system meets the requirements

(functional and global)

• Acceptance Testing:
– Evaluates the system delivered by developers
– Carried out by the client. May involve executing typical

transactions on site on a trial basis
– Goal: Demonstrate that the system meets customer

requirements and is ready to use
Implementation (Coding) and testing go hand in hand

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.28

Testing Activities

Tested
Subsystem

Subsystem
Code

FunctionalIntegration

Unit

Tested
Subsystem

Requirements
Analysis

Document

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document
Subsystem

Code

Subsystem
Code

Functioni
ng

System

Integrated
Subsystems

All tests by developerAll tests by developer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.29

Global
Requirements

Testing Activities

User’s understanding
Tests by developerTests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System Test

Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by userTests (?) by user

Tests by clientTests by client

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.30

• The most ‘micro’ scale of testing.

• Tests done on particular functions or code
modules.

• Requires knowledge of the internal program
design and code.

• Done by Programmers (not by testers).

Unit testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.31

Unit testing

Objectives To test the function of a program or unit of
code such as a program or module

 To test internal logic
 To verify internal design
 To test path & conditions coverage
 To test exception conditions & error

handling

When After modules are coded

Input Internal Application Design
 Unit Test Plan

Output Unit Test Report

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.32

Who Developer

Methods White Box testing techniques

Tools Debug
Re-structure
Code Analyzers
Path/statement coverage tools

Education Testing Methodology
Effective use of tools

Unit testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.33

Continuous testing of an application as and
when a new functionality is added.

Application’s functionality aspects are required to
be independent enough to work separately
before completion of development.

Done by programmers or testers.

Incremental Integration Testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.34

Integration Testing

 Testing of combined parts of an
application to determine their functional
correctness.

 ‘Parts’ can be

 code modules

 individual applications

 client/server applications on a
network.

Integration Testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.35

Types of Integration Testing

Big Bang testing

Top Down Integration testing

Bottom Up Integration testing

Integration Testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.36

Objectives To technically verify proper
interfacing between modules, and
within sub-systems

When After modules are unit tested

Input Internal & External Application
Design

 Integration Test Plan

Output Integration Test report

Integration Testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.37

Who Developers

Methods White and Black Box
techniques
Problem / Configuration
Management

Tools Debug
Re-structure
Code Analyzers

Education Testing Methodology
Effective use of tools

Integration Testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.38

Integration Testing Strategy

• The entire system is viewed as a collection of
subsystems (sets of classes) determined during the
system and object design.

• The order in which the subsystems are selected for
testing and integration determines the testing strategy
– Big bang integration (Non incremental)

– Bottom up integration

– Top down integration

– Sandwich testing

– Variations of the above

• For the selection use the system decomposition from
the System Design

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.39

Integration Testing: Big-Bang Approach

Unit Test
F

Unit Test
E

Unit Test
D

Unit Test
C

Unit Test
B

Unit Test
A

System Test

Don’t try this!

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.40

Bottom-up Testing Strategy
• The subsystem in the lowest layer of the call hierarchy are

tested individually

• Then the next subsystems are tested that call the previously
tested subsystems

• This is done repeatedly until all subsystems are included in the
testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.41

Bottom-up Integration

A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test G

Test C

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.42

Pros and Cons of bottom up integration testing

• Bad for functionally decomposed systems:
– Tests the most important subsystem (UI) last

• Useful for integrating the following systems
– Object-oriented systems

– real-time systems

– systems with strict performance requirements

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.43

Top-down Testing Strategy

• Test the top layer or the controlling subsystem
first

• Then combine all the subsystems that are called
by the tested subsystems and test the resulting
collection of subsystems

• Do this until all subsystems are incorporated into
the test

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.44

Top-down Integration Testing

A

B C D

GFE

Layer I

Layer II

Layer III

Test A

Layer I

Test A, B, C, D

Layer I + II

Test
A, B, C, D,

E, F, G

All Layers

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.45

Sandwich Testing Strategy

• Combines top-down strategy with bottom-up
strategy

• The system is view as having three layers
– A target layer in the middle

– A layer above the target

– A layer below the target

– Testing converges at the target layer

• How do you select the target layer if there are more
than 3 layers?
– Heuristic: Try to minimize the number of stubs and

drivers

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.46

Sandwich Testing Strategy
A

B C D

GFE

Layer I

Layer II

Layer III

Test E

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

Test F

Test G

Test A

Bottom
Layer
Tests

Top
Layer
Tests

Test A,B,C, D

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.47

Pros and Cons of Sandwich Testing

• Top and Bottom Layer Tests can be done in parallel

• Does not test the individual subsystems thoroughly
before integration

• Solution: Modified sandwich testing strategy

• Test in parallel:
– Middle layer with drivers and stubs

– Top layer with stubs

– Bottom layer with drivers

• Test in parallel:
– Top layer accessing middle layer (top layer replaces

drivers)

– Bottom accessed by middle layer (bottom layer replaces
stubs)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.48

Modified Sandwich Testing Strategy

A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F
Triple
Test I

Triple
Test I

Test D,G

Double
Test II

Double
Test II

Double
Test I

Double
Test I

Test A,C

Test
A, B, C, D,

E, F, G

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.49

System Testing
• Functional Testing
• Structure Testing
• Performance Testing
• Acceptance Testing
• Installation Testing

Impact of requirements on system testing:
– The more explicit the requirements, the easier they are to

test.
– Quality of use cases determines the ease of functional

testing
– Quality of subsystem decomposition determines the ease of

structure testing
– Quality of nonfunctional requirements and constraints

determines the ease of performance tests:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.50

Structure Testing

• Essentially the same as white box testing.

• Goal: Cover all paths in the system design
 Exercise all input and output parameters of each

component.

 Exercise all components and all calls (each component is
called at least once and every component is called by all
possible callers.)

 Use conditional and iteration testing as in unit testing.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.51

Functional Testing

.

.

Essentially the same as black box testing

• Goal: Test functionality of system

• Test cases are designed from the requirements
analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

• The system is treated as black box.

• Unit test cases can be reused, but in end user
oriented new test cases have to be developed as
well.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.52

Performance Testing
• Stress Testing

 Stress limits of system (maximum #
of users, peak demands, extended
operation)

• Volume testing
 Test what happens if large amounts

of data are handled

• Configuration testing
 Test the various software and

hardware configurations

• Compatibility test
 Test backward compatibility with

existing systems

• Security testing
 Try to violate security requirements

• Timing testing
 Evaluate response times and

time to perform a function

• Environmental test
 Test tolerances for heat,

humidity, motion, portability

• Quality testing
 Test reliability, maintain- ability

& availability of the system

• Recovery testing
 Tests system’s response to

presence of errors or loss of
data.

• Human factors testing
 Tests user interface with user

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.53

Acceptance Testing
• Goal: Demonstrate system is

ready for operational use

– Choice of tests is made by
client/sponsor

– Many tests can be taken
from integration testing

– Acceptance test is
performed by the client, not
by the developer.

• Majority of all bugs in software
is typically found by the client
after the system is in use, not
by the developers or testers.
Therefore two kinds of
additional tests:

• Alpha test:

– Sponsor uses the software at
the developer’s site.

– Software used in a controlled
setting, with the developer
always ready to fix bugs.

• Beta test:

– Conducted at sponsor’s site
(developer is not present)

– Software gets a realistic
workout in target environ-
ment

– Potential customer might get
discouraged

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.54

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.55

System Testing

Objectives To verify that the system components perform
control functions

 To perform inter-system test
 To demonstrate that the system performs both

functionally and operationally as specified
 To perform appropriate types of tests relating to

Transaction Flow, Installation, Reliability etc.

When After Integration Testing

Input Detailed Requirements & External Application
Design

 Master Test Plan
 System Test Plan

Output System Test Report

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.56

Who Development Team and Users

Methods Problem / Configuration
Management

Tools Recommended set of tools

Education Testing Methodology
Effective use of tools

System Testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.57

TESTING METHODOLOGIES AND
TYPES

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.58

Black box testing

• No knowledge of internal design or code required.

• Tests are based on requirements and functionality

White box testing

• Knowledge of the internal program design and code
required.

• Tests are based on coverage of code statements,
branches, paths, conditions.

Testing
Methodologies

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.59

Black box / Functional testing

Based on requirements and functionality

Not based on any knowledge of internal
design or code

Covers all combined parts of a system

Tests are data driven

Testing
Methodologies

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.60

Black-box Testing

• Focus: I/O behavior. If for any given input, we can
predict the output, then the module passes the test.
– Almost always impossible to generate all possible inputs

("test cases")

• Goal: Reduce number of test cases by equivalence
partitioning:
– Divide input conditions into equivalence classes

– Choose test cases for each equivalence class. (Example:
If an object is supposed to accept a negative number,
testing one negative number is enough)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.61

White box testing / Structural testing

Based on knowledge of internal logic of an application's
code

Based on coverage of code statements, branches, paths,
conditions

Tests are logic driven

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.62

White-box Testing
• Statement Testing (Algebraic Testing): Test single

statements (Choice of operators in polynomials, etc)
• Loop Testing:
 Cause execution of the loop to be skipped completely.

(Exception: Repeat loops)
 Loop to be executed exactly once
 Loop to be executed more than once

• Path testing:
 Make sure all paths in the program are executed
 Branch Testing (Conditional Testing): Make sure that

each possible outcome from a condition is tested at least
once

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.63Srihari Techsoft

White Box - Testing Technique

• All independent paths within a module have been
exercised at least once

• Exercise all logical decisions on their true and sides

• Execute all loops at their boundaries and within their
operational bounds

• Exercise internal data structures to ensure their
validity

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.64Srihari Techsoft

This white box technique focuses on the validity of
loop constructs.

Different classes of loops can be defined

• simple loops

• nested loops

Loop Testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.65

Other White Box Techniques

Statement Coverage – execute all statements at least once

Decision Coverage – execute each decision direction at
least once

Condition Coverage – execute each decision with all
possible outcomes at least once

Decision / Condition coverage – execute all possible
combinations of condition outcomes in
each decision.

Multiple condition Coverage – Invokes each point of entry
at least once.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.66

Comparison White & Black-box Testing

• White-box Testing:

 Potentially infinite number of
paths have to be tested

 White-box testing often tests
what is done, instead of what
should be done

 Cannot detect missing use
cases

• Black-box Testing:

 Potential combinatorial
explosion of test cases (valid &
invalid data)

 Often not clear whether the
selected test cases uncover a
particular error

 Does not discover extraneous
use cases ("features")

• Both types of testing are needed

• White-box testing and black box
testing are the extreme ends of a
testing continuum.

• Any choice of test case lies in
between and depends on the
following:

 Number of possible logical
paths

 Nature of input data

 Amount of computation

 Complexity of algorithms and
data structures

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.67

Functional testing
– Black box type testing geared to functional requirements of an

application.

– Done by testers.

System testing
– Black box type testing that is based on overall requirements

specifications; covering all combined parts of the system.

End-to-end testing
– Similar to system testing; involves testing of a complete

application environment in a situation that copies real-world
use.

Testing Techniques

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.68

Regression testing

 Re-testing after fixes or modifications of the
software or its environment.

Acceptance testing

 Final testing based on specifications of the end-
user or customer

Load testing

 Testing an application under heavy loads.
 Eg. Testing of a web site under a range of loads

to determine, when the system response time
degraded or fails.

Testing Techniques

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.69

Stress Testing

– Testing under unusually heavy loads, heavy
repetition of certain actions or inputs, input of
large numerical values, large complex queries
to a database etc.

– Term often used interchangeably with ‘load’
and ‘performance’ testing.

Performance testing

– Testing how well an application complies to
performance requirements.

Testing Techniques

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.70

Install/uninstall testing

 Testing of full, partial or upgrade
install/uninstall process.

Recovery testing

 Testing how well a system recovers from
crashes, HW failures or other problems.

Compatibility testing

 Testing how well software performs in a
particular HW/SW/OS/NW environment.

Testing Techniques

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.71

Exploratory testing / ad-hoc testing
 Informal SW test that is not based on formal test plans or test

cases; testers will be learning the SW in totality as they test it.

Comparison testing
 Comparing SW strengths and weakness to competing

products.

Testing Techniques

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.72

Test Plan

Objectives

• To create a set of testing tasks.

• Assign resources to each testing task.

• Estimate completion time for each testing task.

• Document testing standards.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.73

Test Cases
Test case is defined as

• A set of test inputs, execution conditions and expected
results, developed for a particular objective.

• Documentation specifying inputs, predicted results and a
set of execution conditions for a test item.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.74

Test Cases
Contents

 Test plan reference id

 Test case

 Test condition

 Expected behavior

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.75

Good Test Cases

Find Defects

Have high probability of finding a new defect.

Unambiguous tangible result that can be inspected.

visible to requirements or design documents

Execution and tracking can be automated

Do not mislead

Feasible

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.76

Defect Log
• Defect ID number

• Descriptive defect name and type

• Source of defect – test case or other source

• Defect strictness

• Defect Priority

• Defect status (e.g. New, open, fixed, closed, reopen,
reject)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.77

7. Date and time tracking for either the most recent status
change, or for each change in the status.

8. Detailed description, including the steps necessary to
reproduce the defect.

9. Component or program where defect was found

10. Screen prints, logs, etc. that will aid the developer in
resolution process.

11. Stage of origination.

12. Person assigned to research and/or corrects the defect.

Defect Log

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.78

Test Metrics

User Participation = User Participation test time Vs. Total
test time.

Path Tested = Number of path tested Vs. Total number of
paths.

Acceptance criteria tested = Acceptance criteria verified
Vs. Total acceptance criteria.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.79

Test cost = Test cost Vs. Total system cost.

Cost to locate defect = Test cost / No. of defects located in
the testing.

Detected production defect = No. of defects detected in
production / Application system size.

Test Automation = Cost of manual test effort / Total test
cost.

Test Metrics

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.80

Extreme Programming
and Scrum - Getting
Started with Agile

Software Development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.81

The Problem: The Chaos Report

• Started in 1994, studied over 35,000
application development projects

• In 2000:

Source: Standish “Chaos” Report, Jim Johnson lecture at XP2002 conference,
http://www.xp2003.org/xp2002/talksinfo/johnson.pdf

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.82

What is Needed: DuPont Study

• 25% of features are needed

• 75% of features are “nice to have”

Source: Jim Johnson lecture at XP2003 conference, Source: Jim Johnson lecture at XP2003 conference,
http://www.xp2003.org/xp2002/talksinfo/johnson.pdfhttp://www.xp2003.org/xp2002/talksinfo/johnson.pdf

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.83

Lifecycle Costs

• Up to 80% of software lifecycle cost, the total
cost of ownership (TCO), is in maintenance, not
first development

• Focusing on “abilities” is critical to ROI:

maintainability, extensibility,
adaptability, scalability, and most
importantly understandability (usability,
readability, testability)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.84

Agile Methods

 Extreme Programming (XP) (Kent Beck,
Ward Cunningham, Ron Jeffries)

 Scrum (Jeff Sutherland, Mike Beedle, Ken
Schwaber)

 DSDM – Dynamic Systems Development
Method (Community owned)

 Crystal (Alistair Cockburn)

 ASD – Adaptive Software Development (Jim
Highsmith)

 XBreed (Mike Beedle)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.85

All Agile Methods

• Maximize value by minimizing anything that
does not directly contribute to product
development and delivery of customer value

• Respond to change by inspecting and adapting

• Stress evolutionary, incremental development

• Build on success, not hope

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.86

We’ve Seen It Before

• Lean Manufacturing (1990, Toyota)

• Agile Manufacturing

• Just-in-time JIT

• Common goals include:

 Reduce Cycle Time

 Maximize Quality

 Reduce Costs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.87

Lean

• Lean means prioritize and optimize
everything to deliver value to the
customer

• One common technique: Postpone
decisions until the last responsible
moment. Live with uncertainty but define,
communicate, and manage it
Lean Manufacturing and the Toyota Production System, SAE

International

• Lean Software Development: An Agile
Toolkit, Mary & Tom Poppendieck, 2003

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.88

Scrum

• Term in rugby to get an out-
of-play ball back into play

• Term used in Japan in 1987
to describe hyper-
productive development

• Used by Ken Schwaber and
Mike Beedle to describe
their Agile methodology

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.89

Extreme Programming

• A collection of best
practices – each done to
the “extreme”

• Sounds extreme, but very
disciplined

• Created by Kent Beck,
Ward Cunningham, Ron
Jeffries

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.90

Scrum with Extreme Programming

Scrum works
well as a
wrapper
around
Extreme
Programming

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.91

Agile Independence
• Not created by any single company, but by a

group of software industry experts to find
“better ways of developing software by doing it
and helping others do it.”*

• Agile Principles:
 highest priority is customer satisfaction
 welcomes changing requirements
 frequently deliver working software
 advocates close collaboration and rapid feedback
 reinforces “inspect and adapt”

* www.agilealliance.org

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.92

Key PM Difference

Defined/ Predictive Project Management
vs.

Empirical Project Management

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.93

Defined PM
• Assumes we can predict how the project

will unfold – assumes very little uncertainty

• Time to complete and costs predictable

• Uses work breakdown structure

• Manages to a static plan

• Primary participants: development team

• Success; On Time & On Budget

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.94

Empirical PM
• Software and systems construction is a

discovery process – manages uncertainty

• Focuses on value/cost tradeoffs

• Plan is volatile; use discoveries to reprioritize
and adjust

• Primary participants: project steering team

• Success; Delivering good value in
reasonable time

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.95

PM End-Game

• Almost all projects eventually revert to empirical
PM

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.96

Both Are Needed
• Defined PM works because many things in a project

are deterministic.

• Defined model provides constraints:
 “deliver not the best solution, but the best we can afford”

Defined Empirical

Entire Project

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.97

Empirical PM Strategy

• Early estimates of cost and value, tied to
business processes

• Deliver subsets of functionality prioritized by
business value

• Reassess and re-plan to fit resources,
schedule, and discoveries

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.98

Agile PM Concepts

• Software construction is a discovery process

• Not the best solution; the affordable solution

• Invent successful outcomes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.99

Scrum Overview

• Empirical management and control process for
projects and products

• Widely used since 1990’s

• Wraps existing engineering practices

• Manages noise, allows overhead to wither

• Simple, common sense

• Delivers business functionality in 30 days

• Scalable

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.100

Scrum Scheduling and Tracking

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.101

Scrum Roles

• Product Owner

• Team

• Scrum Master

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.102

Scrum Roles – Product Owner

• Single person who owns, maintains, prioritizes
Product Backlog

• Empowered to make decisions for customers
and users

• Responsible for vision, ROI, and releases of
product

• Attends Sprint planning and Sprint review
meetings

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.103

Scrum Roles - Team

• Self-organizing, cross-functional, no formal
roles

• Seven plus or minus two people

• Best experts available

• Cost and commit to work, and responsible for
delivering

• Full autonomy and authority to deliver during
Sprint

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.104

Scrum Roles – Scrum Master

• Project manager, Coach, and/or Player-Coach

• Responsible for process and maximizing team
productivity

• Sets up and conducts meetings
 Sprint Planning

 Daily “Scrum”

 Sprint Release

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.105

XP Definitions

• Kent Beck’s idea of turning the knobs on all the
best practices up to 10.

• Optimizing the “Circle of Life” by hitting the
sweet-spot of practices that self-reinforce and
become more than the sum of the parts
(synergize).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.106

Developers
Estimate Cost

Developers
Build Value

Customer Defines Value

Customer Chooses Value

1

XP Circle of Life

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.107

Cost-of-Change Curves

Flattening cost of change curve is both enabled
by and exploited by Extreme Programming (XP)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.108

The Four XP Values

• Simplicity
 Simplest thing that could

possibly work

 YAGNI: you aren’t going to
need it

• Communication
 Developers

 Users

 Customers

 Testers

 Code

• Feedback
 Testing

 Experimenting

 Delivering

• Courage
 Trust

 History

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.109

The Four XP Variables

• Quality
 Internal high,

fixed

• Cost
 People-Time

 Mythical Man-
Month (F.
Brooks)

• Schedule
 Fixed-length,

short iterations

• Scope
 Negotiable

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.110

Twelve XP Practices

7.7. Collective OwnershipCollective Ownership

8.8. Continuous IntegrationContinuous Integration

9.9. OnOn--site Customersite Customer

10.10. Sustainable PaceSustainable Pace

11.11. MetaphorMetaphor

12.12. Coding StandardsCoding Standards

1.1. Planning GamePlanning Game

2.2. Short ReleasesShort Releases

3.3. Simple DesignSimple Design

4.4. TestingTesting

5.5. RefactoringRefactoring

6.6. Pair ProgrammingPair Programming

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.111

1. Planning Game

• Release Planning: Define and estimate higher-
level features down to about 5-10 days effort
each. Customer lays features in fixed-length
iteration schedule.

• Iteration Planning: Same, but to 3 or less days
effort & detailed story cards within next iteration.

• Simple to steer project towards success.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.112

2. Short Releases

Deliver business value early and often

Do not slip iteration release dates
adjust scope within an iteration, never time or quality

Small, stable teams are predictable in short
time-frames

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.113

3. Simple Design

• XP Mantra: “The simplest thing that could
possibly work”.

• Meet current, minimum business requirements
only. Avoid anticipatory design.

• YAGNI – You Aren’t Going to Need It

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.114

4. Testing

• Automated unit tests for every entity.

• Automated acceptance tests for every story /
requirement.

• All unit tests pass 100% before checking in a
feature.

• Test-First, in small increments:
1. Write the test

2. Prove it fails (red-bar)

3. Code until it passes (green-bar)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.115

5. Refactoring

• Refactoring: changing internal structure without
changing external behavior

• Remove duplication. “Once and Only Once”,
“Three strikes and your out”.

• Leaves code in simplest form.

• When change is hard, refactor to allow change
to be easy, testing as you go, then add change.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.116

6. Pair Programming

• Two heads are better than one, especially in an
open lab environment (colocation)

• Earliest possible code inspections

• Earliest possible brainstorming

• Better quality at lower cost

• Driver/Navigator

• Peer pressure reinforces discipline

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.117

7. Collective Ownership

Interchangeable programmers

Team can go at full speed

Can change anything, anytime, without delay

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.118

8. Continuous Integration

• Avoids “versionitis” by keeping all the
programmers on the same page

• Integration problems smaller, taken one
at a time

• Eliminates traditional, high-risk
integration phase

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.119

9. On-site Customer

Customer/User liaisons are team-members

Available for priorities, clarifications, to
answer detailed questions

Reduces programmer assumptions about
business value

Shows stakeholders what they pay for, and
why

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.120

10. Sustainable Pace

Tired programmers make more mistakes

Better to stay fresh, healthy, positive, and
effective

XP is for the average programmer, for the
long run

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.121

11. Metaphor

• Use a “system of names”

• Use a common system description

• Helps communicate with customers, users,
stakeholders, and programmers

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.122

12. Coding Standards

• All programmers write the same way

• Rules for how things communicate with
each other

• Guidelines for what and how to document

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.123

XP Practices Support Each Other

On-site Customer Planning game

40 Hour Week

Metaphor

Refactoring
Simple Design

Short Releases

TestingPair Programming

Collective Ownership

Coding Standards

Continuous Integration

Source: Beck, Extreme Programming Explained: Embrace Change, 1999

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.124

Practices to Start With

Talking to, instead of about, people, in their
language, considering their perspective

Customer, developer, mgmt., Q/A, user, finance,
marketing, sponsor

Frequent Integration (Config. Mgmt., Check-in >
daily)

Testing (Unit, Integration, System, Feature)

Release Management (build-box, sandboxes,
labeled releases, migrations)

See www.balancedagility.com

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.125

How to Explore

Web
• Agile Alliance:

www.agilealliance.org

• Scrum:
www.controlchaos.com

• Don Well’s XP Introduction:
Extreme Programming: A Gentle Introduction
www.extremeprogramming.org

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.126

How Not to Get Started

1. Read some

2. Discuss some

3. Start an approach without advice from those
with previous experience

4. Draw conclusions from experience

• Can work this way, but its risky

• Often fails to define and leverage success
criteria. Often unrealistic expectations.

• Inexperience decreases chances of success

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.127

How Best to Get Started
• Get help from experienced people for:
 Readiness assessments

 Approach selection
Pilot / skunkworks vs. changing existing process

Mission-critical vs. stand-alone

Selective best practices vs. complementary set vs.
all best practices

 Measurement and success criteria

 Identifying and delivering targeted training,
mentoring, coaching, project management /
stewardship

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.128

Agile Best Practice Adaptations

• How long should iterations and releases be?

• How does development work with QA?

• How do our stakeholders work with multiple
customers?

• How should our teams be structured?

• How do we work with regulatory agencies?

• How does this work with legacy systems?

• How does this work with Use Cases and RUP?

• How do we ensure architectural vision and usage.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.129

Agile Summary

• Agile = try, inspect, adapt, repeat

• Highly focused, empowered teams

• Collaborate with all stakeholders

• Optimize and automate feedback

• Deliver real value early and often

• Use feedback to evaluate, ruthlessly prioritize,
and re-plan

• Delivers high quality, ensures flexibility

• Evaluate business value of everything

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U4.44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63,by Dr. Ritika Wason, BVICAM U4.130

Agile Future

• Agile in most dev. orgs, in few IT orgs.

• Agile is here to stay, past early adopters, into
early majority

• “Agile” is loosing meaning

• XP is developer-focused, now Q/A friendly,
needs to become customer/user friendly

• Scrum is still “pure”, but there are now tools…
CMM and RUP were “pure” to start…

• All camps need to sell business value, in
business terms, financial terms, risk terms

