MCA-104, Object Oriented Software Engineering

OBJECT-ORIENTED
SOFTWARE ENGINEERING

UNIT 1l

Design and Construction

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM VX

Learning Objectives

» Construction: Introduction, the design model, block
design, working with construction. Use case realization:
the design discipline within UP iterations.

+ Designing the Subsystem: Mapping design to code,
Designing the data access layer, Ul interfaces and
system interfaces.

* Reusable Design Patterns: Importance of design
patterns, Basic design patterns —Singleton, Multiton,
lterator, Adapter, Observer.

* UML: Communication Diagrams, Design Class
Diagram, State Transition Diagram, Package Diagram,
Component Diagram and Deployment Diagram

arati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u32

CONSTRUCTION

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u33

U3. 1
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Learning Objectives

* Whatis Construction Phase
* Why Construction

» Add a Dimension

Artifacts for Construction
Design (What, Purpose, Goals, Levels)
* Implementation Environemnt
Traceability

Interaction Diagram

» Block design

» Block Behavior

* Implementation

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u34

== Whatis Construction Phase?

requirement phase.

» Consists of Design and Implementation.

« Start from elaboration & continues to construction.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3s

= What is Construction Phase?

Iterative Development
Business value is delivered incrementi
time-boxed cross-discipline iteration
noapion | Elaboration Corsfruction
I1 El | E2 c1 c2 c3 L=
Bausiress Modeling
——
Requiremenis]
Analysis & Dasign] ——
Ik Al | —1 Tt
—
Tes!
..*—..-

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3e

MCA-104, Object Oriented Software Engineering

* All about “BUILDING” the system from model of analysis &

U3.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Construction Goals

< The primary goal of the Construction phase is to build a system
capable of operating successfully in beta customer
environments.

<+ During Construction, the project team performs tasks that involve
building the system iteratively and incrementally making sure
that the viability of the system is always evident in executable
form.

< The major milestone associated with the Construction phase is
called Initial Operational Capability.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Why Construct?

» For seamless transition to source code; analysis model is not
sufficient.

» The actual system must be adapted to the implementation
environment.

» Must explore into more dimensions.

» To validate the analysis result.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

ing A Dimension: Analysis To Design Space

P : Behavi
Behavior Implementation
Environment
— Design —
Information
- Presentation
Presentation

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3.3
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Artifacts of Construction

Requirements
Model

_— Construction

Analysis mpli
Model I

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U310

“There are two ways of constructing a software design:

—make it so simple that there are obviously no
deficiencies.

—make it so complicated that there are no obvious
deficiencies.”

- C.A.R. Hoare . C
a0 ‘
v

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM Uzt

What is Design?

+ Specification Is about What, and Design is the start of
the How?

* Inputs to the design process
— Specification document, including models etc.
» Outputs of the design process

— A design document that describes how the code will
be written.

* What subsystems, modules or components are
used

* How these integrate (i.e. work together)
— Information allowing testing of the system.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U312

U3s. 4
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Purpose of System Design

* Bridging the gap between Problem
desired and existing system
in a manageable way.

* Use Divide and Conquer

* We model the new system to
be developed as a set of
subsystems.

Existing System

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U313

Why is Designing so difficult?

Analysis: Focuses on the application domain

Design: Focuses on the solution domain
= Design knowledge is a moving target
= The reasons for design decisions are changing very
rapidly
v'Half-time knowledge in software engineering
¥'Things will be out of date in 3 years
v'Cost of hardware rapidly sinking

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4

Design Goals

Qualities of a Good Design:

= Correct

= Complete

= Changeable

= Efficient

= Simple
Correctness:

= |t Should Lead To A Correct Implementation
Completeness:

= |t Should Do Everything. Everything? It should follow the
specifications.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U315

Us.5
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Design Goals

Changeable:
It Should Facilitate Change—Change Is Inevitable

Efficiency
— It Should Not Waste Resources.
— Better is a Working Slow Design Than a Fast Design That Does
Not Work.

Simplicity
— It Should Be As Understandable As Possible.
— Designs are blue-prints for code construction.

U316

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Design Goals to Sub-systems

A

-y
Define Define
design goals subsystenms

Map subsystems
to hardware/
software platform

Manage
persistent data

=(Define access

control policies,

Select_a
Tabal

r-r\nt—gv-f\'l 1 A

u3A7

©Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Levels of Design

Three possible levels:
» System Design,
—Part of Systems Engineering.

* High-level Software Design
—Architecture, architectural design.

* Low-level Software Design
—Detailed Design, Module Design.

MCA-104, Object Oriented Software Engineering

U318

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Develop the Design Model

» Create detailed “plans” (like blueprints) for implementation.

« ldentify the “/Implementation Environment” & draw
conclusions.

« Incorporate the conclusions & develop a “First approach to a
design model” from requirement models.

» Use analysis model as base & translate analysis objects
to design objects in design model fit for current
implementation

* Why can’t this be incorporated in analysis model?

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U319

Develop the Design Model

» Describe how the “Object Interact’ in each specific use
case & how stimuli between objects is exchanged.

» Create design models before coding so that we can:
» Compare different possible design solutions

» Evaluate efficiency, ease of modification,
maintainability, etc.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.20

relationship
diagram

Data flow
diagram

Inferface
design

/ Architectural

design

[—

Data
design

State-transition
diagram

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM us21

us.7
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Implementation Environment

* Identify the actual technical constraints under
which the system should be built like

—The target environment

— Programming language

— Existing products that should be used (DBMSs,
etc)

 Strategies:
— As few objects as possible should be aware of the
constraints of the actual implementation
environment.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U322

Implementation Env. : Target Env.

Application Objects

‘ | | | ‘ | Several
implementations of
the file manager
block

File Manager

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U323

Y Implementation Environment

Target environment

= Create a new blocks that represent occurre
changed parts in the target environment

Strategies:
= Specified an abstract class
v'polymorphism
= The object can check the platform at run-time
v'CASE statement in the source code
= Decide this when the system us delivered
v'Provide several different modul which will be ct

e Inuactinata whathar tha tarnat anvirnnmant waiill

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U324

U3.8
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

=Z Implementation Environment

Programming language
= Affect the design in translating the concepts us

= The basic properties of the language and its
are fundamental for the design

v'Inheritance and Multiple inheritance
v'Typing
v'Standard
v'Portability
v'Strategies for handling errors during run-tim
Exception (Ada)
=2 Assertions (Eiffel)
v'"Memory management

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U325

= Implementation Environment

Using existing products

= DBMS
UIMS (User Interface Management System)
= Network facilities

= |nternally or externally developed applications th:
incorporated

Products used during development
v'Compilers
v'Debuggers
v'Preprocessor

Other considerations

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.26

=2 Implementation Environment

< Other considerations
= Strategies:

¥v'To postpone optimizations until they are neede
absolutly sure that they will be needed

#=the real bottlenecks are often missed ar
optimizations are necessary

= Use simulation or prototyping to investiga
optimization problem early

v'Extensive experiences may help to jugde at an
« If youre not sure of the correctnessof a

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U327

U3.9
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Implementation Environment

« The people and organization involvec

development could also afect the design
= The principal strategy:
v'such factors should not affect the systen

v The reason: the circumtances (org

ctaffinAa ~amnatanca araac) that ara in ¢

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U328

Traceability

* Refines the analysis model in light of actual
implementation environment.

+ Explicit definition of interfaces of objects, semantics of
operation. Additionally, different issues like DBMS,
programming language etc. can be considered.

The model is composed of “BLOCKS ” which are the
design objects.

One block is implemented as one class.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.29

Traceability

The blocks abstract the

actual implementation.

Traceability is extremely i

important aspect of the

system.

— Changes made will be Analysis Design
only local to a module. Model: Model:

— Provides high functiona .)

L . logical, a practical

localization (high conceptual, abstraction
cohesion). frozen

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.30

MCA-104, Object Oriented Software Engineering

U3.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

raceability matrix is a document, usually in the form of a table,
used to assist in determining the completeness of a relationship
by correlating any two baseline documents using a many-to-
many relationship comparison.

« ltis often used with high-level requirements (these often consist of
marketing requirements) and detailed requirements of the product
to the matching parts of high level design, detailed design, test
plan, and test cases.

* Arequirements traceability matrix may be used to check to see if the
current project requirements are being met, and to help in the
creation of a request for proposal, software requirement
specification various deliverable documents, and project plan tasks.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

REQ1 REQ1 REQ1 REQ! REQ1 REQ1 REQ1 REQ! REQ1 REQ1 REQ1 R
UG | UC | UC | UC | UG | UC | UG | UG | UuC | UG |T
11 | 12 | 13 | 21 | 22 (231232233 | 24 | 34 | 32

TestCases = 321 3 2 3 1 1 1 1 1 1 2) 3

Requirement Reas
Identifiers | Tested

Tested

Implicitly
k]
112
113
114
115
118

77

121
122
12y
131
132
133

1
2
2
1
2
1
117 1 x
2
2
2
1
1
1

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

cling Machine Analysis Model

Administrator

Alarm

Alarmist Report Generator

Operator Panel

s \ \(\

A
Deposm |tem receiver

Alarm Device

Deposit -

e Receipt

Customer panel ? printer
Receipt basis C\/
De'pos‘lt |tgms

Can O C) \ Crate

Bottle

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 11
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

= Recycling Machine Design Model

[
extends :

/Vl'-!aceip‘. printer

: i
[T \D,D

Customer panel Deposit ilem receiver

| Operator panel
/ \ Report generator
L s T

Receipt basis Depn‘.r.n itam

lnharlts,{ _ e "
L inheiils inheils

Can Bottle Crate

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U334

Working with Design Model

» Changes can and should occur, but all changes should
be justified and documented (for robustness reason).

* We may have to change the design model in various
way:
—To introduce new blocks which don’t have any
representation in the analysis model.
— To delete blocks from the design model.
—To change blocks in the design model (splitting and
joining existing blocks).

» To change the associations between the blocks in the
design model.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U335

=2 Working with Design Model

* Changes can and should occur, but all changes should
be justified and documented (for robustness reason).

« We may have to change the design model in various
way:
—To introduce new blocks which don’'t have any
representation in the analysis model.
— To delete blocks from the design model.
—To change blocks in the design model (splitting and
joining existing blocks).

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.36

U3. 12
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Change in Environment

design model.
= extensions to stimuli.

= inheritance to delegation.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U337

Interaction Diagram

communicating objects

v'The diagram shows how the participating objects realize the use
case through their interaction

v'The blocks send stimuli between one another
v'All stimuli are defined including their parameters

* For each concrete use case, we draw an interaction diagram

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U338

Interaction Diagram

« An interaction diagram shows an interaction,
« consisting of a set of objects and their relation:
« include the messages that may be exchange
them
Model the dynamic aspect of the system
« Contain two sort of diagrams:

= Sequence diagrams,

v'show the messages objects send to eacl
timely manner

= Collaboration diagrams,

3

MCA-104, Object Oriented Software Engineering

» Changing the associations between the blocks in the

» The interaction diagram describes how each use case is offered by

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U339

U3.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Interaction Diagram

» Using interaction diagrams, we can clarify the sequence of
operation calls among objects used to complete a single use
case

» Collaborations have the added advantage of interfaces and
freedom of layout, but can be difficult to follow, understand and
create.

« Interaction diagrams are used to diagram a single use case.

* When you want to examine the behaviour of a single instance
over time use a state diagram, and if you want to look at the
behaviour of the system over time use an activity diagram.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

&= Building an Interaction Diagram

« ldentify blocks

« Draw skeleton, consist of:

= System border

= Bars for each block that participates

» Describes the sequences

= Structured text or pseudo-code

* Mark the bar to which operations belongs with a rectangle

representing operation

* Define a stimulus

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM us.41

= Building an Interaction Diagram

« Draw a stimulus as a horizontal arrow

= Start: bar of the sending block

= End: bar of the receiving block

« Structure the interaction diagram

» Fork diagram

= Stair diagram

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U342

U3. 14
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

System Customer Deposit ltem Recsipt Deposit Receipt
Border Panel Receiver Basis ltem Pinter

.
.
.
.
.
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
N
.
.
.

Time

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

gl nteraction Diagram for returning item use casc

Systern Customer Deposit ltem Receipt Deposit
Border Fanel Receiver Basis lt=m

Customer prasses the start button >
The sansors are activated

oo
new deposit item is inserted
measure and check if this kind
ofitem is acceptable

noReceived = noReceived +1
IF not found THEN creats new
daily amount := daily amount + 1

WHILE ftems are daposited___

FAASEAPAT AL TR AR

arati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Interaction Diagram for returning item use cas¢

Systern Customer Deposit [tem Recaipt Deposit
Border Panal Recaiver Basis Itam
Customer prasses the start button t dtart create
The sensors are activated "
-+, Acivared
[ae] h
new deposititemisinserted JomeET axist()

measure and check if this kind

ofitemis acceptable

IF nat found THEN create new

daily amount := daily amount+ 1

noReceived = noReceived + 1
WHILE items are deposited

[temi)
insertitem x
{item) incr

N
.
.
L~
X
A
.
.
o
.
.
b

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

MCA-104, Object Oriented Software Engineering

U3. 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Advanced Interaction Diagram

* A synchronous message/signal is a control which has to wait fo

an answer before continuing.

* The sender passes the control to the receiver and cannot do

anything until the receiver sends the control back.

* An asynchronous message is a control which does not need to

wait before continuing.
* The sender actually does not pass the control to the receiver.

* The sender and the receiver carry on their work concurrently.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.46

Simple

(unspecified) /L
|

i

\

synchronous

asynchronous B

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Probe Condition

* Use case with extension is described by a probe position
in the interaction diagram

» The probe position indicates a position in the use case to
be extended

= Often accompanied by a condition which indicates under what
circumstances the extension should take place

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.48

U3. 16
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

=4 Example of a Probe Condition

System Customer Alarmist Alarm device
Border Paneal
PROBE: In use case Retuming :
Item whan maasuring the Deposit -, stuck
Item, the Item stuck N Alyrm
Start the alarm N Alam
t activate
Activate Alam device S |:|
~
S
Wait for arror to be fixed t
s
"
__'___'__'___'_'___'__'___E__'___'_ TTTTTEmurtamicwed T T[T
Error fixed .
Tumofthe alaim = reset |:|
Back to normal insertion a3 T fixed

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Homogenization

e In parallel design process, several stimuli with the
same purpose or meaning are defined by several
designers.

* These stimuli should be consolidated to obtain as few
stimuli as possible.
= Called homogenization.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

What_is_your_phone_number?
Where_do_you_live?
Get_address
Get_address_and_phone_number

Homogenized into:
= Get_address
= Get_phone_number

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Us. 17
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Sequence Diagram

* The sequence diagram describes the flow of messages being
passed from object to object.

The purposes of interaction diagram can be describes as:
» To capture dynamic behavior of a system.

» To describe the message flow in the system.

» To describe structural organization of the objects.

» To describe interaction among objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Sequence Diagram Elements

« Class roles, which represent roles that objects may play within the
interaction.

« Lifelines, which represent the existence of an object over a
period of time.

» Activations, which represent the time during which an object is
performing an operation.

+ The white rectangles on a lifeline are called activations and
indicate that an object is responding to a message. It starts when
the message is received and ends when the object is done handling
the message.

* Messages, which represent communication between objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U353

Sequence Diagram

Syntax‘and Semantics
)
N _
)
:: message
)
N
LY Block’s life line
Distinguishing a (sh(l)wmg life €mmm e
system and the cycle) .
outside world Events occurring feedback
within a block signal
Use Actors
o
N

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U354

U3.18
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

== Sequence Diagram- Fork Structure

* Centralised structure -- Fork: Everything is handled and
controlled by the left-most block.

1

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U355

Sequence Diagram- Structure

* Decentralised structure -- Stair: There is no central
control block.

n e
- |
: U

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3.56

= Structure of Sequence Diagram

Decentralized structure is appropriate:
« If the sub-event phases are tightly coupled. This will be the case if
the participating objects:
— Form a part-of or consists-of hierarchy, such as Country - State
- City;
— Form an information hierarchy, such as CEO - Division
Manager - Section Manager;
— Represent a fixed chronological progression (the sequence of
sub-event phases will always be performed in the same order),
such as Advertisement - Order - Invoice -Delivery - Payment; or

— Form a conceptual inheritance hierarchy, such as Animal -
Mammal - Cat.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U357

U3. 19
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

&5 Structure of Sequence Diagr

X O O O

: Post Office : Post Office : Country : City

Customer

L send letter | | |
send letter

send letter |

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

am

SEenc

U3.58

&= Structure of Sequence Diagram

A centralized structure is appropriate:

is likely to change.
— If you expect to insert new sub-event phases.
— If you want to keep parts of the functionality reusable

separate piece

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICA!

— If the order in which the sub-event phases will be performed

as

] U359

g2z Structure of Sequence Diagram

@ o) .

: Report - Can : Bottle
G enerator

e 1
number of cans (Sumy)
1

|
|
|
number of butltles (Sum) |

| L]

1
numhber of crates {(Sum

P e

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3.60

MCA-104, Object Oriented Software Engineering

U3. 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

&5 Structure of Sequence Diagram

Fork
—Indicates a centralized structure and is
characterized by the fact that it is an object controls
the other objects interacted with it.
— This structure is appropriate when:
» The operations can change order

» New operations could be inserted

MCA-104, Object Oriented Software Engineering

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U361

Structure of Sequence Diagram

Stair

— Indicates decentralized structure and is characterized by
delegated responsibility.

— Each object only knows a few of the other objects and knows
which objects can help with a specific behavior.

— This structure is appropriate when:

— The operation have a strong connection. Strong connection
exists if the objects:

« form a ‘consist-of hierarchy
« form an information hierarchy
« form a fixed temporal relationship
« form a (conceptual) inheritance relationship
— The operation will always be performed in the same order

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM uz.62

=y Structure Control in Sequence Diagram

» Optional Execution

» Conditional Execution
» Parallel Execution

* Loop Execution

* Nested

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.63

U3. 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Receipt Deposit Receipt

basis - rem printer
Customer presses the sta= button
The sensors are activatec

exists()

[_insertitern((Itern)

SrintQn (Sstream)
getName

ote
Delete
Ready for

MCA-104, Object Oriented Software Engineering

Block Design

» Block design can start when all the block have been
identified.

« For block designing it is important to identify the
interface and operation of each block.

« The implementation (code) for the block can start when
the interfaces are stable and are frozen.

* When the implementation of the block starts, normally
ancestor block should be implemented prior to
descendent blocks.

Ex : the deposit item will design prior to can & bottle.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.65

Block Design

» By taking INTERACTION diagrams where a block
participates & extracting all the operation defined on that
block.

» Using this diagram we are clear about the interface of
the each block..

* The interface for Deposit Item:
exists, incr, getName, getValue

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.66

U3. 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Block Design Comments

« The description of the operation is extracte:
text to the left of the diagram.
« Can work in parallel once interfaces are fro

the open closed principle).

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.67

Object Behavior

be described using a state machine.

* To provide a simplified description that increases
understanding of the block without having to go down to
source code.

+ State represents modes of operations on object.
* Less dependant on programming language.
» This is particularly important in reactive systems.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.68

Object Behavior

Machine stack
State init
input createinstance
nextstate empty
otherwise error;
State empty
input push
do store on top
nextstate loaded
otherwise error;

endmachine

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.69

MCA-104, Object Oriented Software Engineering

* An intermediate level of object internal behavior may

U3.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

=g State transition diagram of a stack

Create Stack

push

Push & not
full/ pop & not
empty

empty

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.70

SeemState transition diagram of a stack

Create Stac

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM us.71

Stimulus Control Object

Stimulus Control Object

» An object that perform the same operation independent of|
state when a certain stimulus is received.

» Entity objects

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U372

U3.24
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

State Controlled Object

State Control Object

» Objects that select operations not only from the stimulus
received, but also from the current state

+ Control object.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U373

STATE DIAGRAM : CPU EXECUTION

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.7a

Internal Block Structure

* In case of OOPL object-module becomes classes

otherwise module unit

» Generally more classes than object

« split class when required

* 5-10 times longer to design a component class than an

ordinary class

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U375

U3. 25
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

* Now, need to write code for each block.

* Implementation strategy depends on the programming

language.

* In an OOP language, the implementation of a block starts

with one class.

« Sometimes there is a need for additional classes, that are

not seen by other blocks.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Analysis objects Block 1..N classes
Behavior in objects Operations Member functions
Attributes(class) Attributes(class) Static variables
Attributes(instance) Attributes(instance) Instance variables
Interaction between objects Stimulus Call to a function
Use case Designed use case Sequence of calls

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

=4 Implementation Environment

Everything that does not come from analysis phase, including
performance requirements.

= Design must be adapted to implementation environment.

= Use of existing products must be decided. Includes previous

version of the system.

= To use an existing product we must adapt our design.

= Tradeoff - less development vs. more complex architecture.

= Also consider testing costs.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 26
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

== Other Considerations in Construction

» Subsystems defined in analysis phase are used to guide the

construction phase.

» Developed separately as much as possible.

Incremental development - start construction phase in parallel

with analysis phase - to identify implementation environment.

* How much refinement to do in analysis phase? (How early/late to

move from analysis to design) - decided in each project

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

» The interaction diagrams and the design class diagrams
created during design provide some of the necessary input for
generating code.

* We now see how to map those artifacts to code in an object-
oriented language. The following interaction and class diagram
will be used to show the mapping process.

The following interaction and c

will be used to show the mappi

1: psiListfi] = gerProductDesci
=

o e v |
= el |

) —
nsritaen [bsrmiD, qtdl 1.1: psList]

A 2: makeLineitemipsList(i] oty

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Register

enterltemiitemiD, oty catalog 8

tSal. [
curren| e L1

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Us. 27
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

el e N R e b LRI

Design access layer

* Create mirror classes: For every busine
identified and created, create one acces
Eg , if there are 3 business classes (cla:
class2 and class3), create 3 access laye
classes (class1DB, class2DB and class:
* Identify access layer class relationships
* Simplify classes and their relationships -
eliminate redundant classes and structu

— Redundant classes: Do not keep 2 classes |
nerform similar tran<late reniiest and tranala

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

~—

U382

A tool to map relational data with objects sho
following mapping capabilities: (all are two

Table-class mapping
Table-multiple classes mapping
Table-inherited classes mapping
Tables-inherited classes mapping

The tool must describe both how the foreign |
used to navigate among classes and instanct

mmmad Alkinata wandal med ko cafacambial fa

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

* It is a simple one-to-one mapping of a

class and the mapping of columns in a
properties in a class. Here we map all
to properties. But it is more efficient tc
those columns for which an object mo
required by the application(s). Here e:
the table represents an object instance
column in the table corresponds to an

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U383

U384

MCA-104, Object Oriented Software Engineering

U3.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Table-Multiple Classes M:

* Here a single table maps to multiple noninhe
classes. Two or more distinct, noninheriting ¢
have properties that are mapped to columns i
table. At run time, mapped table row is acces
instance of one of the classes, based on a co
in the table.

* Table-Inherited Classes Mapping

* Here. a sinale table mans to manv classes th

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U385

Tables-Inherited Classes M

= This mapping allows the translation of is-a r
that exist among tables in the relational schi
class inheritance relationships in the object
relational database, an is-a relationship ofte
by a primary key that acts as a foreign key t
table. In the object-model, is-a is another te
inheritance relationship.

*» Keys for Instance Navigation

* In mapping columns to properties, the simpl
is to translate a column’s value into the corrn
class property value. Here either the colum
value or it defines a navigable relationship k

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.86

REUSABLE DESIGN
PATTERNS

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.87

U3. 29
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

The Beginning of Patterns

» Christopher Alexander, architect
= A Pattern Language--Towns, Buildings, Construction
= Timeless Way of Building (1979)
= “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.”
« Other patterns: novels (tragic, romantic, crime),
movies genres (drama, comedy, documentary)

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U388

« Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Publishing
Company, 1994

« Written by this "gang of four"
= Dr. Erich Gamma, then Software Engineer, Taligent, Inc.
= Dr. Richard Helm, then Senior Technology Consultant, DMR
Group
= Dr. Ralph Johnson, then and now at University of lllinois,
Computer Science Department
= Dr. John Vlissides, then a researcher at IBM

v Thomas J. Watson Research Center
v' See John's WikiWiki tribute page

» This book defined 23 patterns in three categories
= Creational patterns deal with the process of object creation
= Structural patterns, deal primarily with the static composition
and structure of classes and objects
= Behavioral patterns, which deal primarily with dynamic
interaction among classes and objects

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.90

U3. 30
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

introduces 4 decoupling patterns, 5 resource patterns, 5 1/0
patterns, 7 cache patterns, and 4 concurrency patterns.

= Other pattern languages include telecommunications patterns,
pedagogical patterns, analysis patterns

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

GoF Patterns

= Creational Patterns = Behavioral Patterns
v Abstract Factory v Chain of Responsibility
v Builder v’ Command
v Factory Method v m
v Prototype v Iterator
¥ Singleton v Mediator
= Structural Patterns /MeTento
v m v Observer
v Bridge v State
v Composite v Strategy
v D 1t
g Feco:ja or v Template Method
acade v Visitor
v Flyweight
v Proxy

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Study Pattern

* Reuse tried, proven solutions
= Provides a head start
= Avoids gotchas later (unanticipated things)
= No need to reinvent the wheel
« Establish common terminology
= Design patterns provide a common point of reference
= Easier to say, “We could use Strategy here.”
« Provide a higher level prospective
= Frees us from dealing with the details too early

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

MCA-104, Object Oriented Software Engineering

» Many other patterns have been introduced documented
= For example, the book Data Access Patterns by Clifton Nock

U3. 31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Other advantage

* Most design patterns make software more
modifiable, less brittle
= we are using time tested solutions

» Using design patterns makes software systems
easier to change—more maintainable

* Helps increase the understanding of basic object-
oriented design principles
= encapsulation, inheritance, interfaces, polymorphism

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

* We will use this structure:
= Pattern name
= Recurring problem: what problem the pattern addresses
= Solution: the general approach of the pattern
= UML for the pattern
v Participants: a description as a class diagram
= Use Example(s): examples of this pattern, in Java

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

w OO Design Patterns

+ Coming up:
= Singleton
= Multiton
= lterator
v'access the elements of an aggregate object
sequentially without exposing its underlying
representation
= Adaptor
v'A means to define a family of algorithms, encapsulate
each one as an object, and make them
interchangeable
= Observer
v'One object stores a list of observers that are updated
when the state of the object is changed

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 32
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

£ people cipped s sice 3 people clipped i side

Defnio Advantages and Usage

» s that lsshas only one nstance, and pr

* Advantages
toaccess tisstae

* Saves memory because object s not created at each 1
nstance is reused againand again.

* |n cases when object creation is very costly (time taki
frate e Hhv'\fl !‘,'\Fh TR wé m‘r‘d it Waiish area

* I otfer words, 2 less must ensure that only sing
created and single objct cn be used by ll oher

& Tharn ara hiin farms af sinalaban dasinn nabham

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.e7

Usage Example
C
MUSIC STORE C
lﬂnmtunl. E

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.98

* The multiton pattern is a design pattern which generalizes
the singleton pattern. Whereas the singleton allows only one
instance of a class to be created, the multiton pattern allows for
the controlled creation of multiple instances, which it manages
through the use of a map.

» Rather than having a single instance per application (e.g.
the java.lang.Runtime object in the Java programming language)
the multiton pattern instead ensures a single instance per key.

» Drawback: This pattern, like the Singleton pattern, makes unit
testing far more difficult, as it introduces global state into an
application.

+ With garbage collected languages it may become a source of
memory leaks as it introduces global strong references to the
objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.99

U3.33
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Multiton MultitonClass.

-instances: Map<Key. Mul
-Multiton()

Eub

/——’l Detail View

Multiton Static Container

GetInstancefid) int(23)

blog postings

id | author title

225 Pre-Oedival Phenomen..
23 [7 Space Battleship Yam
24 [13 Global Finance and ...

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.100

* Name: Iterator (a.k.a Enumeration)

» Recurring Problem: How can you loop over all
objects in any collection. You don’ t want to
change client code when the collection changes.
Want the same methods

» Solution: 1) Have each class implement an
interface, and 2) Have an interface that works
with all collections

» Consequences: Can change collection class

details without changing code to traverse the
collection

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM uz.101

ion of Iterator page 257

ListIterator
First()

Next()
IsDone()
CurrentItem()

// A C++ Implementation

ListIterator<Employee> itr = list.iterator();

for (itr.First(); 'itr.IsDone(); itr.Next()) {
cout << itr.CurrentItem().toString();

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.102

U3. 34
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

version of terator

interface Iterator
boolean hasNext()
Returns true if the iteration has more elements.

Object next()

Returns the next element in the iteration and updates the
iteration to refer to the next (or have hasNext() return false)

void remove()
Removes the most recently visited element

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

a’s Iterator interface

// The Client code
List<BankAccount> bank =
new ArrayList<BankAccount>();
bank.add (new BankAccount ("One", 0.01));
/] .
bank.add (new BankAccount ("Nine thousand", 9000.00));

String ID = "Two";
Iterator<BankAccount> itr = bank.iterator();
while (itr.hasNext()) ¢{

if (itr.next () .getID() .equals (searchAcct.getID()))
System.out.println("Found " + ref.getID());

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

gram Iterator with a few Collections
<<interface>> <<interface>>
List ey Iterator
[iterafor(): Iferator | [hasNextQ |
next()
L
Vector LinkedList ArrayList Itérator
iterator() iterator() iterator() hasNext()
next()
\—<>L Client [<>—

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

MCA-104, Object Oriented Software Engineering

U3.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

* Name: Observer

» Problem: Need to notify a changing number of objects
that something has changed

+ Solution: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

» From Heads-First: Send a newspaper to all who
subscribe

= People add and drop subscriptions, when a new version
comes out, it goes to all currently described
» Spreadsheet

= Demo: Draw two charts—two views--with some changing
numbers--the model

16-107
©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

* File Explorer (or Finders) are registered observers (the
view) of the file system (the model).

+ Demo: Open several finders to view file system and
delete a file

+ Later in Java: We'll have two views of the same model
that get an update message whenever the state of the
model has changed

16-108

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.108

U3. 36
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Observable «interface»

-observers: List<Observer= Observer
+addObserver{Observer observer)
+removebserver(Observer observer)

+notiyObsemvers(Object anything) update(Object anything)
TheGame ViewOne ViewTwo

- board: GameSquare(ll -text charfll -panel: JPanel —

+TheGame(} +toString(): String repaint(}

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.109

Ratchet
Convert the
1/2" Drive (male) interface of a
class into another
@‘:' Interface clients
Socket Adapter expect.
. R Drive {female)
1/4" Drive (female) —11/4" Drive (male) l;]

Structural
arati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.110

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM Uz

U3. 37
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

| 3 basic building blocks of UML - Diagrams

Represented by a connected graph: Vertices are things; Arcs are relationships/behaviors.

5 most common views built from .
) .
UMI_1 x- 0 dingram tunos UML 2.0: 12 diagram types

Structural Diagrams Structural Diagrams

Represent the static aspects of asystem.

— Class; — Class;
Object Object

— Component — Component
— Deployment — Deployment
C ite Structu

Behavioral Diagrams Behaviopal Riagrams Interaction Diagrams
Represent the dynamic aspects.

— Use case — Use case

— Sequence; — Sequence;

Collaboration Communication
— Statechart — Statechart

©Bharati Vidyapeeth's !nstitute of Computer Applications and Management, New Delhi-63, by Dr. Ritika W4

Class Diagrams

Structural Diagrams

— Class;
Object
— Component

— Deployment

Composite Structure

Package

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Class Diagram

The basis for all object modeling
All things lead to this

+ Most common diagram.

« Shows a set of classes, interfaces, and collaborations and their relationships
(dependency, generalization, association and realization); notes too.

« Represents the static view of a system (With active classes, static process view)

Three modeling perspectives for Class Diagram
0 Conceptual: the diagram reflects the domain
0 Specification: focus on interfaces of the software (Java supports interfaces)

O Implementation: class (logical database schema) definition to be implemented in code
and database.

Most users of OO methods take an implementation perspective, which is a shame because the other perspectives
are often more useful. - Martin Fowler

harati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U314

U3. 38
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Classes

Names

Attributes

Operations

may cause object to
change state

type/class

—default value

‘ simple name - start w. upper case|

<<constructor>>

<<process>>

<<query>>

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

short noun - start w. lower ca

signature

name

esponsibilities

Cunningham’89

anything that a class knows or does
(Contract or obligation)

Class Name

Responsibilities

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

Collaborators

An optional 4" item carried out by attributes and operations.

Free-form text; one phrase per responsibility.
Technique - CRC cards (Class-Responsibility-Collaborator); Kent Beck and Ward

A collaborator is also a class which the (current) class interacts with to fulfill a responsibilit

Instance scope

class scope

©Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi:

Frame

header : FrameHeader
uniquelD : Long.

Scope — each instance of the classifier holds its own value.

Scope — one value is held for all instances of the classifier (underlined).

]+ addMessage(m : Message) : Status

setCheckSum()

- encrypt()
-_getClassName()

)

i
£

% &
S
» B

- access allowed for any outside classifier (+).
- access allowed for any descendant of the classifier (#).
- access restricted to the classifier itself (-).

, by Dr. Ritika Wason, Asso. Prof, BVICAM U317

MCA-104, Object Oriented Software Engineering

U3.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

singleton o
e multiplicity w
NetworkController ' i :
consolePort [2,* | : Port S/ ControlRod
[¥ 1 -
~ —

Using Design Pattern

public class Singleton {
private static Singleton instance = null;

private Singleton() {}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();

return instance;

NetworkController

consolePort [2..% | : Port

©Bharati e pplications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Relationships

Window Event
open () ‘\—/d d .
close() ependency
generalization
- association
ConsoleWindow DialogBox Control
generalization
(multiple inheritance) _ .
association navigation
o
.\
| <<frjend>>

d ManagerientNew Delhi

Dependency

« A change in one thing may affect another.
+ The most common dependency between two classes is one where one class
<<use>>s another as a

AudioClip

name
record (m:) |
start() \

t
stop () _/ dependency ysing relationship

CourseSchedule
F: 4 c : Course) > e
removeCourse(c : Course

Usually initial class diagrams will not have any si number of ies in the
beginning of analysis but will as more details are identified.

I
, by Dr. Ritika Wason, Asso. Prof, BVICAM

harati Vidyapeeth's Institute of Computer Applications and Management, New Delhi

U3.120

MCA-104, Object Oriented Software Engineering

U3. 40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

<<metaclass>>

MetaClassName

operation()

: <<instanceOf>> & A
! realization ! !
1 1 1
ClassName 1

-simpleAttribute: Type = Default \;,‘(>)
#elassAttribute: Type |
e Type 1
+operation(in arg: Type = Default): ReturnType :
: <<instanceOf>> :

1
objectName: ClassName

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U321

o

Dependency —Among Classes

. Elght Stereotypes of Dependency Among Classes

= bind: the source instantiates the target template using the given actual
parameters

derive: the source may be computed from the target

friend: the source is given special visibility into the target

instanceOf : the source object is an instance of the target classifier

instantiate: the source creates instances of the target

powertype: the target is a powertype of the source; a powertype is a
classifier whose objects are all the children of a given parent

refine: the source is at a finer degree of abstraction than the target

use: the semantics of the source element depends on the semantics of the
public part of the target

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

2= Dependency —~Among Use Cases

» Two Stereotypes of Dependency Among Use Cases:

= extend.: the target use case extends the behavior of the source

= jnclude: the source use case explicitly incorporates the behavior of another use case
at a location specified by the source

System
Use Case A
7
Vi \
Actor . 4
<<includgy> <<extgnd>> Order Processing System
3 \)
<<actor>> Place
o Use Case B Use Case C T Order <<extend>>
ctor HQBASE points <Tetent7Request Catalog
[T, | Additional requests:™

~ The sales person
d
asks for the catalog

after tion of®
N
the okder
1
1 AN S
<<i) e>> o ~ i >
mclutllL <<include>> ss<include>> N
v 2 &

Supply Customer Info. Order ItemMake Payment
©Bharati Vidyapeeth’s Institute of Computer Applications and Management, NEw PR3, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 41
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Generalizat

* Four Standard Constraints

= complete: all children in the generalization have been
specified; no more children are permitted

= jncomplete: not all children have been specified; additional
children are permitted

= disjoint: objects of the parent have no more than one of the
children as a type

- over/apping: objects of the parent may have more than one of
the children as a type

One Stereotype
= implementation: the child inherits the implementation of the parent
but does not make public nor support its interfaces

harati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Foreigner

Associate
Professor

Female

Professor

Tenured

Enmiores Professor

/\

Degres lype

| I

Masters
Student

Registrar

Undergrad ‘

Studant Student

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

1

SalesPerson

Sales person can do only “Place Order”;
Sales manager can do both “Place Order”
and “Grant Credit”

Grant
Credit

SalesManager

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 42
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Associations

* Represent conceptual relationships between classes
(cf. dependency with no communication/message passing)

direction indicator:
. . how to read relation name navigability
relationship name -

. teaches p 1 Course

teacher e class

role names “-..Multiplicity
defines the number of objects associated with
an instance of the association.
Default of 1;
Zero or more (*);
n..m; range from n to m inclusive

pisibility] {1} role name {: interface namej.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U327

* How would you model the following situation?

“You have two files, say homework1 and myPet, where homework1 is read-
accessible only by you, but myPet is write-accessible by anybody.”

You could create two classes, File and User.
Homework1 and MyPet are files, and you are a user.

<<instanceOf>

<<instanceOf>>
myPet:File

Approa

ch 1: Now, would you :

harat! Vidyapeeth’s insfituite of Computer Applications and Management, New Det ka Wason, Asso. Prof, BVICAM

Associations — Links

— link is a semantic connection among objects.
— Alink is an instance of an association.

association
class
association name
Worker 1 works fcl 4
Company
employee employer | N
+setSalary(s : Salary) A
+setDept(d : Dept)
L3

nstanceOf>>

. ink
named object i

1
1
1
nstanceOf>> X
1

anonymous object

9
lon, Asso. Prof, BVICAM U3.129

is not automatic, but should be explicitin UML

U3.43
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Link Attributes

The most compelling reason for having link attributes is for-many-to-many

relatlonsl[lps File

___ link attribute

access permission |-

* Association Class

! visual tie

AccessRight

\

access permission association class

* With a refactoring

AccessRight

ions afid Management, New Delfii-63, by Dr. Ritika Wascn, Asso. Prof, BVICAM

School

has
1

assigned to

1 1 1 | chairperson

| attenas » | 4 teaches 1. |
Student Course Instructor

The model above is from Rational Rose. How did the composite symbol ()get loaded

versus the aggregation? Use the Role Detail and select aggregation and then the “by
value” radio button.

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

pdeling Structural Relationships

Aggregation - structural association representing “whole/part” relationship.
- “has-a” relationship.

part Ve multiplicity whole |
1..% ’

Department ‘ <>| company
association \«lggrqgminn

Composite is a stronger form of aggregation.
Composite parts live and die with the whole.
Composite parts may belong to only one composite.

Liver
Body
O O O

Building

Can aggregations of objects be cyclic?

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 44
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

== Association — Qualification

Qualifier,

cannot access person without knowing the account #

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.133

Association — Interface Specifier
[association

Interface Specifier

Realization

* A semantic relationship between classifiers in which one classifier specifies a contract
that another guarantees to carry out.
« In the context of interfaces and collaborations

* Aninterface can be realized by many classes/components

* Aclass/component may realize many interfaces

IManager
Person

getProject()
sSchedule()

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, ika Wason, Asso. Prof, BVICAM

« Class diagrams to provide more semantics

« From a general class diagram, first identify classes whose state must be persistent (e.g. after you turn
off the computer, the data survives, although the program doesn’t).

« Create a class diagram using standard tagged value, (e.g. {persistent}).

+ Include attributes and associations.

+ Use tools, if available, to transform logical design (e.g., tables and attributes) into physical design
(e.g., layout of data on disk and indexing mechanisms for fast access to the data).

School Department

1 1 0.1 | chairperson

Student Course Instructor

hputer Applical®

U3.45
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

ward/ Reverse Engineerin

ranslate a collaboration into a logical database schema/operations
« transform a model into code through a mapping to an implementation language.

inheritance in a collaboration diagram

public abstract class EventHandler

suceessor | :
EventHandler J private EventHandler successor
private Integer currentEventId;

currentEventld: Integer
3 souree: S private String source;

i) : void EventHandler() ({}
public void handleRequest() {}

« translate a logical database schema/operations into a collaboration

+ transform code into a model through mapping from a specific implementation language.

by Dr. Ritika Wason, Asso. Prof, BVICAM U3.136

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

Object Diagrams

Structural Diagrams

— Class;

Object

— Component

— Deployment

Composite Structure

Package

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi ika Wason, Asso. Prof, BVICAM

=4 Instances & Object Diagrams

[“instance” and “object” are largely synonymous; used interchangeably.

U difference:
[instances of a class are called objects or instances; but
) instances of other abstractions (components, nodes, use cases, and associations) are not
called objects but only instances.

What is an instance of an association called?

Object Diagrams
«“* very useful in debugging process.
— walk through a scenario (e.g., according to use case flows).
— Identify the set of objects that collaborate in that scenario (e.g., from use case
flows).
— Expose these object’s states, attribute values and links among these objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.138

U3. 46
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Snstances & Objects - Visual Representation

named instance
— myCustomer

_anonymous instance
P

\

Transaction

: keyCode —
)

multiobject orphan instance
(type unknown)

| active object

_(with a thicker bor owns a thread
or process and can initiate control
activity)

Bharati Vidyapeeth's Institute of Computer Applications and Manageme

PO St TUes, ard
« Show these instances and their relationships in

primaryAgent

[searching]

: Transaction

* Show these i and their r
diagram.

1: create
e —

Instances & Objects - Modeling Prototypical Instances

in an

AudioStream

{: Multimedia

¢ : Phone
[WaitingForAnswer]

myCustomer

id : SSN = “432-89-1738”
active = True

instance with attribute values

VICAM U3.139

diagram or an activity
2.1: startBilling

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

1: sort()

list

1: addElement(f)
—

addFile(f:File)
—

d: Directory

s : Department rd: Department
name = “Sales” name = “R&D”

uss : Department

secureAll() 1%
d: Directory

servers| :Server

name = “US Sales™

manager

1: aServer := find(criteria)

aServer:Server

—
2: process(request)

call

Bharati Vidyapeeth's Institute of Computer Applications and Manageme

erin : Person
: ContactInfomation

name = “Erin”

employeelD = 4362 address = “1472 Miller St.”

title=“VP of Sales”

MCA-104, Object Oriented Software Engineering

lew Delhi-63, by Dr. Ritika Wason, Asso. Pr U341

U3. 47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Component Diagrams

Structural Diagrams

— Class;
Object

— Component
— Deployment

— Composite Structure

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Deihi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.142

— COm onent Diagran] UMLI.x — implementation view

ey,

Shows a set of components and their relationships.
Represents the static implementation view of a system.
Components map to one or more classes, interfaces, or collaborations.

Mapping of Components into Classes Components and their Relationships

S
loanOfficer.dll % Registrar.exe

-

nOfcer | 1 SF =)
LoanOfficer . CreditSearch (-})
N v Coyrse.dil
Stydent.dll
LoanPolicy

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U343

=== Component Diagram [UML2.0 — architectural view

« Big demands . 5ind architecture

« Architecture still an emerging discipline
» Challenges, a bumpy road ahead

» UML and architecture evolving in parallel

» Component diagram in need of better formalization and
experimentation

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U144

U3. 48
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Component Diagram — another example

(www.cs.tut fitapahtumat/olio2004/richardson pdf)

{eyboard

ey
O—{1 &

IK=ybeListener

usiy"f =

USB_in IUSB_Out

(] U3.145

Component Diagram — another example

PC

k-l 1 GraphicsCard

1 Motherb:

KeybdListener

B

IDisplay

u —‘\h
Behavioral Port .
IUSB_In IUSB_Out

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

== Component Diagram UML2.0 - architectural view

xplicit description o
o provided services to other components o { J ,
o requested services from other components — @) ‘

An interface is a collection of 1..* methods, and 0..* attributes
Interfaces can consist of synchronous and / or asynchronous operations
a A (square) is an interaction point between the component and its environment.
o Can be named; Can support uni-directional (either provide or require) or bi-directional
(both provide and require) communication; Can support multiple interfaces.
o possibly concurrent interactions
o fully isolate an object's internals from its environment

Student ﬁ

©Bharati Vidyapeeth's Institute of Computer Applications and Managerbertta New*Delhi-

AccessControl
StudentAdministration
Encription
Incoming
signals/calls

Persistence

Outgoing
4.sign

iika Viason, Asso. Prof, BVICAM

/by Ly

U3. 49
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Component Diagram: UML 1.X and UML 2.0

T & AT AT

DataAcoess ‘£
4 Facilities

Faeiites, S
- \ ~
L ~

<<infrastructure=>

i s
Seminar ~ DataAccess

Manngement O_L_l— Student
<capplication>> Student,
N

o |

N
N ,'/
% ~
% D&chss S Persistence
\s sg'}/ Seminar <<infrastructure>>
A ‘%_'74—
v XN -
/
o \

N\
Student Dalafresss,

; []
\dwinisteation £ B g
<<application>> - ,_Sula(\!):n

| S |

MCA-104, Object Oriented Software Engineering

E Component Diagram: umL 1.x and UML 2.0

(htp:/i

htm)

I

DataAccess g e
o = -
Faciliies -
Encryptior
= v
P Sceurity
Seminar gl - DataAcosss @ Access Cantral | <=infrastructure=>
Management g__ O Student
<<l ~ T ——Studan
Ny ©
N
% paak g g
g DA | Somnar Persistence
Student Persistence | «<infrastructures>
Administration [— — — aéémgo_ —
Ul N ‘

B
ponent=> L _|

University DI}

So, how many different conventions for components in UML2.0? ERRNES

|

DalaAcoé%_ <<reguires>>
Schedule \!

o (¥
brispn)

(J simplified the ports to either provide or require a single interface
[relationships between ports and internal classes in three different ways:

JCohesive reuse and change of classes; acyclic component depend

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

i) as (flow), as ,and as s (logical->physical) relationships

U3.50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

.
mponent Diagram nn Another Exampl
0 a connector: just a link between two or more connectable elements (e.g., ports or interfaces)
02 kinds of i bly and d ion. For
0An connector: a binding between a provided interface and a required interface

(or ports) that indicates that one component provides the services required by another;
simple line/ball-and-socket/lollipop-socket notation

oA connector binds a component’s external behavior (as specified at a port) to
an internal realization of that behavior by one of its parts

int
MergeAndsort
! out
2

External View of a Component with Ports

MergeAndsort]

So, what levels of abstracti

Structured Class

‘A structured class(fier) is defined, in whole or i part, in terms of a number of parts - contained instances
owned or referenced by the structured class(fier)

With a similar meaning to a relation Any difference?
Astructured classifier's parts are created within the containing classifier (sither when the structured classifier
is created or later) and are destroyed when the containing classifier s destroyed.

Like classes and combine the descri of

classifiers with

car component or ica

class?
ate
left: Wheel [2] right: Wheel [2]

Components extend classes with additional features such as
a the ability to than classes can; e.g., packages, constraints, use cases, and
artifacts

ations that define the execution parameters of a component deployed to a node

< deployment speci
3, by Dr. Ritika Wason, Asso. Prof, BVICAM

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

Classifiers

« Classifie—mechanism that describes structural (e.g. class attributes) and
behavioral (e.g. class operations) features. In general, those modeling elements
that can have instances are called classifiers.

« cf. Packages and generalization relationships do not have instances.

an asynchronous stimulus
communicated between instances
class interface signal
Shape data type <<signal>>
OffHook
origin TUnknown 00
<<type>>
move() int
resize() { \;:I:l}c: rnngﬁ *rgolm .
isplay(- to +: -
displayQ ° } use case
Process loan
membership_server
kernel32.dll
<<subsystem>>
Customer Service
component
neralizable Element, Clas.

U3. 51
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

SgEE UNIVERSITY
iy gmvns

Composite class (incomplete)

= with parts, ports and connectors

CashDispenser

Usercazn

Hisugen | asverS=cmrsen

[m}

port

ATcans

connector

what kind?

21-genos

TCPAP

Structural Diagrams

— Class;
Object

— Component

Deployment Diagrams

— Deployment

Composite Structure

Package

« Nodes typically enclose one or more components.

TCPAP

J2EF
Server

« Shows a set of processing nodes and their relationships.
* Represents the static deployment view of an architecture.

1

Membership
Server
DecNet

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

S + PhP Server

Tomeat

Server

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

$00Z Jeuiwes SO

U3. 52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

WebServer <<RMi=>

<=JDBC>>

Student administration

+ EJBContainer

.DBSerser
[OS~LinuXj

vaiversity o 5]
<database>>
vendr~Gracic}

MCA-104, Object Oriented Software Engineering

Physi
WebServer - phy
software c
RMlmessage bus: cor

al device or

art

Nodes can contain other nodes
or software artifacts recursively

Deployment spe
d properties

I nodes - stereotype device

tion type

cs: configuration files:

<<message bus>>

Course
Management

<cweb sorvices>

Course
Management
<<legacy system>

Is this better?
More concrete

Diagram.htm)

<<IDBC f :
108

L

regitraionvnl <<deployment spec>>

<eluice>
ApplcaonSerser
Mebsenier il 108-Solars}
studentdninitration var It
studentcar
senlnarar
schedulear

ensistence ramewarh.ear

o

rseManagementjar

<crressage bus>>

<lvies>
Mainframe
{05=MVS}

Course Mansgement <<egay systen>

vendor=Oracle
version=9i}

Bharati Vidyapeeth's Institute of Computer Applications and Manageme

Structural

Composite Structure Diagrams

Diagrams

— Class;

Obj

ect

— Component

— Deployment

— Composite Structure

— Pack

New Delhi:

kage

U3.159

U3.53

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

vesomposite Structure Diagrams

b om/artifacts/compositeStructur

« Depicts the internal structure of a classifier (such as a class, component,
or), including the interaction points of the classifier to other parts
of the system. emmmmTTITII -

r - ~77 7 _seminar
- applicant A \ N
/" applicant 7 Mdio

/[student ~ Waithist_" [Seminar \

prereq:
Seminar

applicant

Student -7
prereq: oSy 4 Enm
Seminar S Yse
applicant /Acsircd seminar

Course
: Course

R \
(" Enroll)

constrainer
gistration | Course

Enrollment req: Course

structured-class; stractured-componentstractured use case, structured node ctured interface, ...

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Edward: Architect Bala: Analyst

7 seller

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

MCA-104, Object Oriented Software Engineering

UNIVERSITY
OF OSLO

Context Model in UML2.0 -1l

= Including multiplicities on parts
multiplicity

BankContext

SATN[1.100] []

User-Cazn

29-Sep-04 Haugen | Malier-Federsen

002 Jeujwes SWO

U3. 54

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Structural Diagrams

— Class;
Object
— Component

— Deployment

Composite Structure

=Package

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.163

« Package — general-purpose mechanism for organizing elements into groups.

* Nested El : Comp relationship (When the whole dies, its parts die
as well, but not necessarily vice versa)

¢ (C++ namespace; specialization means “derived”)

simple names path names
visibility Client Client
Trpsetorn FOrderForm Order enclosing package name

Business rules + TrackingForm package name
Order —
é

textual nesting graphical nesting {version =224}

« Packages that are friends to another may see all the elements of that package, no
matter what their visibility.

« Ifan element is visible within a package, it is visible within all packages nested
inside the package.

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

endency —Among Packages

» Two Stereotypes of Dependency Among Packages:

® access. the source package is granted the right to reference the elements of the
target package (:: convention)

= jmport: akind of access; the public contents of the target package enter the flat
namespace of the source as if they had been declared in the source

Client

+OrderForm
TrackingForm
- Order

<<import>>

1 1
1 1
! ! eXPOrts ™y e <<import>>
1 1
packageName ‘ I I | packageName ‘
t I OrderRules
-GUI:Window -
L Ul Winde imports
sub ass Gut
import
®+Window
@ Form
#EventHandler
harati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.165

U3. 55
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Look for “clumps” of elements that are semantically close to one another.
« Surround “clumps” with a package.
« Identify public elements of each package.

Identify import dependencies.

utd.administration

Tools.db

db interfaces

Cloudscape

Oracle

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.166

ge Diagrams

VVartifacts/packageDiagram. htm)

Classes related through inheritance, composition or communication often
belong in the same package

classes, operations, etc.)
Heading: rectangle with a cut-off bottom-right corner, [kind] name [parameter]|

- A depicts the contents of a package (or components,

Aframe encapsulates
a collection of collaborating instances or
refers to another representation of such

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

*Adornments

Notes & Compartments

*Extensibility Mechanisms

—Stereotypes - Extension of the UML metaclasses.

agged Values - Extension of the properties of a UML element.

©Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi:

, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.168

U3. 56
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Adornments

+ Textual or graphical items added to an element’s basic notation.

+ Notes - Graphical symbol for rendering constraints or comments attached to an element
or collection of elements; No Semantic Impact

Rendered as a See smartCard.doc fo@) i
i - il 2 H A .Co
rectangle with a dog: details about this ;::r"c—%‘];‘ c/‘;V:.‘:V': rational.com

Additional Adornments

* Placed near the element as
— Text
— Graphic

+ Special compartments for adornments in
— Classes

— Components
— Nodes

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Riti U3.169

Stereotypes

* Mechanisms for extending the UML vocabulary.
* Allows for new modeling building blocks or parts.

» Allow controlled extension of metamodel classes.
[1

* Graphically rendered as
= Name enclosed in guillemets (<< >>) /
v <<stereotype>>
= New icon

[

« The new building block can have
* its own special properties through a set of tagged values

*® its own semantics through constraints

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof,

Tagged Values

* a(name, value) pair describes a property of a model element.
* Properties allow the extension of “met del” el t attributes.

modifies the semantics of the element to which it relates.
* Rendered as a text string enclosed in braces { }
Placed below the name of another element.

{channels = 3} {customerOnly}
/(dueDate = 12/30/2002
status = unpaid }
tagged values

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3AT1

U3. 57
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

.
Constraints
Extension of the semantics of a UML element.

* Allows new or modified rules
+ Rendered in braces {}.

— Informally as free-form text, or

— Formally in UML’s Object Constraint Language (OCL):

E.g., {self.wife.gender = female and self.husband.gender = male}

{or}
{secure} {subset}
Person Compan
employees employers y
age: 0% [
Integer

Company
self.employees.forAll (Person p |
©Bharati Vidyapeeth's Institute of C| p.age >= 18 and p.age <= 65) ason, Asso. Prof, B

ses: Notation and Semantics

Class - Name

attribute-name-1 : data-type-1 = default-value-1
attribute-name-2 : data-type-2 = default-value-2

operation-name-1 (argument-list-1) : result-type-1
operation-name-2 (argument-list-2) : result-type-2

responsibilities

To model the <<semantics>> (meaning) of a class:
- Specify the body of each method (pre-/post-conditions and invariants)

- Specify the state machine for the class

- Specify the collaboration for the class

- Specify the responsibilities (contract)

harati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

Attributes

yn
[visibility] name [multiplicity] [: type] [= initial-value] [{property-string }
Visibility

+ public; - private; # protected; {default =+}
* type

. There are several defined in Rational Rose.

= You can define your own.
property-string
Built-in property-strings:

® changeable—no restrictions (default)

= 4ddOnly—values may not be removed or altered, but may be added

= frozen—may not be changed after initialization

Or you can define your own: e.g. {leaf}

origin Name only

+ origin Visibility and name

origin : Point Name and type

head : *ltem Name and complex type
name [0..1] : String Name, multiplicity, and type
origin : Point ={0, 0} Name, type, and initial value
id : Integer { frozen } Name and property

, by Dr. Ritika Wason, Asso. Prof, BVICAM U374

harati Vidyapeeth's Institute of Computer Applications and Management, New Delhi

U3. 58
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Operations
* Syntax
[visibility] name [(parameter-list)] [: return-type] [(property-string) |
Visibility
+ public; - private; # protected; {default = +}
* parameter-list syntax
[direction] name : type [= default-value]
« direction
= in—input parameter; may not be modified
= oui—output parameter; may be modified
® inout—input parameter; may be modified
property-string
leaf
— isQuery—state is not affected
sequential—not thread safe
— guarded—thread safe (Java synchronized)
— concurrent—typically atomic; safe for multiple flows of control

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U375

=l emplate Classes; Primitive Types

A template class is a parameterized element and defines a family of classes
In order to use a template class, it has to be instantiated

+ Instantiation involves binding formal template parameters to actual ones, resulting in a concrete
class

« < template parameters
template class ltem >

{ alue
(L ® Map Byckets: int

+bind(in i : Item; in v : Value) : Boolean
+isBound(inii : Item) : Boolean {isQuery}

L (— explicit binding
\

Uses <<bind>>

Map o)
- <<bind>> (Customer, Order, 3)

/ \

C

implicit binding Item Value Buckets
Primitive Types
using a class notation —Stereotype —<s:AaLtatyRe>>

-2**31IRE
false

+2**%31-1
true

Interface: A Java Example

public interface SoundFromSpaceListener extends EventListener {
void handleSoundFromSpace(SoundFromSpaceEventObject sfseo);
}

public class SpaceObservatory implements SoundFromSpaceListener
public void handleSoundFromSpace(SoundFromSpaceEventObject sfseo) {
soundDetected = true;
callForPressConference();

Can you draw a UML diagram corresponding to this?

harati Vidyapeeth's Institute of Computer Applications and Management, New Delhi

, by Dr. Ritika Wason, Asso. Prof, BVICAM U377

U3.59
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

— only a view on some other package.

— package consisting mainly of patterns.
— a package that serves as a proxy for the public
contents of another package.
— a package representing an independent part of
the system being modeled.

— a package representing the entire system being
modeled.

Is <<import>> transitive?
I visibility transitive?

Does <<friend>> apply to all types of visibility: +, -, #?

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U378

» 3 Stereotypes of Dependency in Interactions among Objects:
= become: the target is the same object as the source but at a later point in
time and with possibly different values, state, or roles
= call: the source operation invokes the target operation
= copy: the target object is an exact, but independent, copy of the source

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U379

State Machine Diagram

* UML state machine diagrams depict the various states that an
object displays.

* And the transitions between those states

+ State diagrams show the change of an object over time

» Very useful for concurrent and real-time systems

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.180

U3. 60
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

=4 State Machine Diagram Notations

event / action

event £ action
—_—

Iritial state

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.181

Pressed
ADisplay

ancel Pressed
fClear

Pressed
[first digit = 072]

/Display U

Pressed EnterPressed
fDisplay AValidate

Validate

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.182

State Machine

* “The state machine view describes the dynamic behavior of
objects over time by modeling the lifecycles of objects of each
class.

+ Each object is treated as an isolated entity that communicates
with the rest of the world by detecting events and responding to
them.

+ Events represent the kinds of changes that objects can detect...
Anything that can affect an object can be characterized as an
event.”

- The UML Reference Manual, [Rumbaugh,99]

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.183

U3. 61
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

State Chart Diagram

+ It shows a machine consisting of states, transitions,
events and activities.

« |t addresses the dynamic view of the system.

* |tis depicted as follows in rational rose.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.184

State Diagram Features

» Event — something that happens at a specific point
= Alarm goes off
+ Condition — something that has a duration

= Alarmis on
= Fuel level is low
- State — an abstraction of the attributes and

relationships of an object (or system)

= The fuel tank is in a too low level when the fuel level is
below level x for n seconds

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.185

State Diagram Features

« State. A condition during the life of an object in which it satisfies
some condition, performs some action, or waits for some event.

« Event. An occurrence that may trigger a state transition. Event
types include an explicit signal from outside the system, an
invocation from inside the system, the passage of a designated
period of time, or a designated condition becoming true.

* Guard. A boolean expression which, if true, enables an event to
cause a transition.

« Transition. A transition represents the change from one state
to another:

« Action. One or more actions taken by an object in response to a
state change.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.186

U3. 62
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Composite States

/ Serving Customer

Customer
Authentication

Transaction

U3.187

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

State Chart Diagram

state machine Bank ATM

turn off / shutDown
Off

turn on / startup

failure

turn off
/ shutDown

Self Test

failure

cardinserted

cancel

/ Serving Customer

entry / readCard
exit / ejectCard

I
u3.188

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

State Diagram- Case Study

« A simple digital watch has a display and two buttong
A button and the B button. The watch has tw|
operation, display time and set time.

* In the display time mode, the watch displays hours
separated by a flashing colon.

+ The set time mode has two submodes, set hours and
The A button selects modes. Each time it is presse
advances in the sequence: display, set hours,
display, etc.

* Within the submodes, the B button advances t
minutes once each time it is pressed. Buttons must|

MCA-104, Object Oriented Software Engineering

U3.189

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3.63

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

ject Diagram

» Object diagram is a pictorial representation of the
relationships between the instantiated classes at any
point in time.

* |t's depicted as follows in Rational Rose-

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.190

John Smith: Student

Seminar —

Term: “Fall”

Semester
Intro
<

Sally Jones: Student

Seminar

Term:* "Snrina?

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U391

Object Diagram Example

Customer1:Customer

Customer_id = 0001
Customer_name= Jane Doe
Customer_phone = 112456789

Order1: Order Order2: Order Orde
Order_no = 0001 Order_no = 0002 Order_nc
Order _amount = 500 Order _amount = 478 Order _a

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.192

U3. 64
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Activity Diagram

Activity diagrams are typically used for business process
modeling

» For modeling the detailed logic of a business rule

* Model the internal logic of a complex operation

An activity diagram is a special case of a state chart diagram in

which states are activities (“functions”)

Activity diagrams are the object-oriented equivalent of flow charts
and data flow diagrams (DFDs)

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.193

Activity Diagram Structuring

These diagrams are similar to state chart diagrams and use similar|
conventions, but activity diagrams describe the behavior of a class in

response to internal processing.

Swimlanes, which represent responsibilities of one or more objects
for actions within an overall activity; that is, they divide the activity

states into groups and assign these groups to objects that must
perform the activities.

* Action States, which represent atomic, or non-interruptible,
actions of entities or steps in the execution of an algorithm.

*Action flows, which represent relationships between the different
action states of an entity.

*Object flows, which represent the utilization of objects by action
states and the influence of action states on objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.194

Activity Diagram Notations

* Rounded rectangles represent activities;

» Diamonds represent decisions;

« Bars represent the start (split) or end (join) of concurrent activities;

« A black circle represents the start (initial state) of the workflow;

« An encircled black circle represents the end (final state).

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.195

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

U3.65

MCA-104, Object Oriented Software Engineering

am Notations

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.196

Activity Diagram Notations

® 3 Activity

Iritial state

Activity

[conditiomn)
R

[eondition]

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.197

Activities

An activity is the specification of a parameterized sequence of behaviour. An
activity is shown as a round-cornered rectangle enclosing all the actions, control
flows and other elements that make up the activity.

ad Activity

Activity

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.198

U3. 66
© Bharati Vidyapeeth'’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Control Flow

A control flow shows the flow of control from one action to the next. Its notation is a
line with an arrowhead.

ad Activity Edge /

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.199

Initial Node

An initial or start node is depicted by a large black spot, as shown below.

ad Initial .~

FPerform
Action

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Final Node

The activity final node is depicted as a circle with a dot inside.

ad Activity Final /

Close
Order

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

U3. 67
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Object and Object Flows

An object flow is a path along which objects or data can pass. An object is shown a
arectangle.

= Db_ie:::tj_-')

Oz mi=rak

MCA-104, Object Oriented Software Engineering

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.202

Decision and Merge Nodes

Decision nodes and merge nodes have the same notation: a diamond shape. They
can both be named. The control flows coming away from a decision node will have
guard conditions which will allow control to flow if the guard condition is met.

=ad Decision or Merge

[condition is true]

&

Action on

U3.203

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Fork and Join Nodes

Forks and joins have the same notation: either a horizontal or vertical bar (the
orientation is dependent on whether the control flow is running left to right or top to
bottom). They indicate the start and end of concurrent threads of control.

ad Fork and Join -~

Concurrent
Action 1

Concurrarnt
ardinn 7

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.204

U3.68

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

Steps to create an AD

1. Identify activities (steps) of a process

2. Identify who/what performs activities
steps)

3. Draw swimlines
4. Identify decision points (if-then)

5. Determine if step is in loop (For each.
based loop)

6. Determine if step is parallel

MCA-104, Object Oriented Software Engineering

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.205

Steps to create an AD

8. Draw the start point of the process in the swir
first activity (step)

9. Draw the oval of the first activity (step)

10. Draw an arrow to the location of the second

11. Draw subsequent activities, while insertin

points and synchronization/loop bars where a

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.206

=4 Activity Diagram- ATM Machine

swimlane
Customer ATM Machine B
«— start
nsert card
activi
R P A
(__Enterpin Authorize

brum.'&
¥
{_Enter amount [valid PIN)

Check account |

[balarice >= amount]

g

Debit acco
Take money rom siot o

=
©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.207

U3. 69

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

=4 Activity Diagram- Quote System

Customer Salespersan Tachnical Expert Systom X W

Start

Time

Decisic
{Cureten

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.208

Activity Diagram- Flight Mgt. System

Passenner Ground Crew

Checkin
[Bags checked]
] Stow haggage

Board Plane

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.209

7

N

Dynamic Diagram Types

= Interaction Diagrams - Set of objects or role
messages that can be passed among them.

= Sequence Diagrams - emphasize time orde;
= Communication Diagrams - emphasize strui
ordering
» State Diagrams

= State machine consisting of states, transitiol
and activities of an object

Nt 8. . B PN oV Vo e N i s

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U210

U3.70
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Interaction Diagram

* An interaction diagram shows an interaction,
« consisting of a set of objects and their relation:
* include the messages that may be exchange
them
* Model the dynamic aspect of the system
« Contain two sort of diagrams:
= Sequence diagrams,

v'show the messages objects send to eacl
timely manner

= Collaboration diagrams,

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM uz211

Interaction Diagram Details

» Using interaction diagrams, we can clarify the sequence of
operation calls among objects used to complete a single use
case

» Collaborations have the added advantage of interfaces and
freedom of layout, but can be difficult to follow, understand and
create.

« Interaction diagrams are used to diagram a single use case.

* When you want to examine the behaviour of a single instance
over time use a state diagram, and if you want to look at the
behaviour of the system over time use an activity diagram.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.212

Sequence Diagram

» The sequence diagram describes the flow of messages being
passed from object to object.

The purposes of interaction diagram can be describes as:
» To capture dynamic behavior of a system.

» To describe the message flow in the system.

» To describe structural organization of the objects.

» To describe interaction among objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3213

U3. 71
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Sequence Diagram Elements

» Class roles, which represent roles that objects may play within the
interaction.

» Lifelines, which represent the existence of an object over a
period of time.

» Activations, which represent the time during which an object is
performing an operation.

» The white rectangles on a lifeline are called activations and
indicate that an object is responding to a message. It starts when
the message is received and ends when the object is done handling
the message.

» Messages, which represent communication between objects.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U214

Messages

+ Aninteraction between two objects is performed as a message
sent from one object to another (simple operation call, Signaling,
RPC)
If object obj,; sends a message to another object obj, some link
must exist between those two objects .
» A message is represented by an arrow between the life lines of two
objects.
= Self calls are also allowed
= The time required by the receiver object to process the message
is denoted by an activation-box.
* Amessage is labeled at minimum with the message name.
= Arguments and control information (conditions, iteration) may
be included.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.215

Message to Self

» A message that an object sends itself can be shown as follows:

messageToSelf(parameters) 3 eSS

and ts

refurnivalug

1 E]

» Keep in mind that the purpose of a sequence diagram is to show
the interaction between objects, so think twice about every self
message you put on a diagram.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U216

U3.72
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

ment Er "WRMW t Bank Comporer | Money Dispenser

T
CtOF 1. WithdrawMoney |

T
I
1.1: checkBalance H

1.2: balance

[1.3: decrementBalance(amount

L.4: dispenseManeylamount)

/

1.5 printReceipt

|
|
1.7: Eject Card |

|

L.8: End transaction I

|

|

|

-

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3217

Return Values

» Optionally indicated using a dashed arrow with a label
indicating the return value.
= Don’t model a return value when it is obvious what is
being returned, e.g. getTotal()
= Model a return value only when you need to refer to it
elsewhere, e.g. as a parameter passed in another

message.

doYoullnderstand () i

EeeAi| =
Blocked iSRS e A8 L

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.218

Object Creation

An object may create another object via a <<create>> message.

A :B A

<<create>> <<create>>

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U219

U3.73
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

* An object may destroy another object via a <<destroy>>
message.
= An object may destroy itself.
= Avoid modeling object destruction unless memory management

is critical.

<<destroy>>

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.220

: - —] the ShoppingCart an
already exist wheni

addtemnti)
new(i) N ol:Orderline | ------ ‘|;

=

removelol) i

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM u3.221

Repeated Interaction

* When a message is prefixed with an asterisk (the *'-symbol), it
means that the message is sent repeatedly.

» Aguard indicates the condition that determines whether or not the
message should be sent (again). As long as the condition holds,
the message is repeated.

] =

* [condition] message(parameters) N !

As long as
message is

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U222

U3. 74
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Components: alt/else

getBalancs ¢)l

| '
balancp
|
T
alt
o ! |
[balance »= amount] |
addDebitTransactjon (check
Number , amaunt X

storePhotoOft h»—!ll‘ (theCheck)

|
[else] [
addinsuffientsy \m{F—wﬂ C)

noteRetrnedcheck (theCheck)

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.223

Components: option

register : RegisterOffice

I \
| \

ar : AccountsReceivabile

getPastDuebalance (studentld)

e |

[pastbueBalance = 0]
addStudent (studentld)

opt

getCostOfClass ()

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof,

Components: loop

hasnctherRppart)

hasanotherR eport

true)
vetRepgt

guRequredsecutyLevel ()

requredSen.ritylevel

[userCearanceLevel p = requred
Level] add (aReport)

hasAnctherRepart {)

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.225

U3.75
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Loctor

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.226

User
.
input search criteria |
see detailed info
load page "
!

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM

Customer :
1: buy a product |
2: create an order Order
|
loop 3 get produd détal's

T
4: add an tem |

=

heck in all product]

1
5 calculate a total |

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.228

U3.76
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Diagram- Summary

Sequence diagrams model object interactions w
emphasis on time ordering . s SheregLe Heights b o
* Method call lines
= Must be horizontall
= Vertical height matters!
“Lower equals Later””
= Label the lines
« Lifeline — dotted vertical line
« Execution bar — bar around lifeline when code ig

+ Arrows
= Synchronous call (you're waiting for a return value) —

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.229

= Collaboration/ Communication Diagram

Collaboration diagrams model the interactions between objects.
This type of diagram is a cross between an object diagram and a
sequence diagram.

Unlike the Sequence diagram, which models the interaction in a
column and row type format, the Collaboration diagram uses the
free-form arrangement of objects as found in an Object diagram.
This makes it easier to see all interations involving a particular
object.

Here in collaboration diagram the method call sequence is
indicated by some numbering technique as shown below.

The number indicates how the methods are called one after
another.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.230

Communication Diagram

* The method calls are similar to that of a sequence diagram. But the
difference is that the sequence diagram does not describe the object
organization where as the collaboration diagram shows the object
organization.

« If the time sequence is important then sequence diagram is used
and if organization is required then collaboration diagram is used.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.231

Us. 77
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

=4 Communication Diagram Elements

» Collaboration Diagrams describe interactions among classes and
associations. These interactions are modeled as exchanges of
messages between classes through their associations.
Collaboration diagrams are a type of interaction diagram.
Collaboration diagrams contain the following elements.

« Class roles, which represent roles that objects may play within
the interaction.

« Association roles, which represent roles that links may play
within the interaction.

+ Message flows, which represent messages sent between objects
via links. Links transport or implement the delivery of the message.

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.232

Communication Diagram Example

User'alidator

2.1 ValidateUser

1_Find User
2. Upclate User \WebApp
User Interface 1.1 LookUpUser
o=

—=

Administrator
UserDB

2.2 UpdateUser

—=

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.233

&Z Communication Diagram- OMS

Collaboration diagram of an order managemant systom

l_p’/ Object Sequence number
:Customer, /

et
l 1:3endOrder() Note: Sequence s ir
numbering the message
:Order

l 2:confirm() «———Message

:SpecialOrder| 3:dispateh(}

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.234

U3.78
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

MCA-104, Object Oriented Software Engineering

Sequence vs. Communication

= Semantically both are the same

= Express different sides of the model

= Sequence diagram expresses time ordering

= Collaboration diagram is used to define class behavior

©Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.235

U3.79
© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason

