
MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.1

OBJECT-ORIENTED
SOFTWARE ENGINEERING

UNIT III

Design and Construction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.2

Learning Objectives

• Construction: Introduction, the design model, block
design, working with construction. Use case realization:
the design discipline within UP iterations.

• Designing the Subsystem: Mapping design to code,
Designing the data access layer, UI interfaces and
system interfaces.

• Reusable Design Patterns: Importance of design
patterns, Basic design patterns –Singleton, Multiton,
Iterator, Adapter, Observer.

• UML: Communication Diagrams, Design Class
Diagram, State Transition Diagram, Package Diagram,
Component Diagram and Deployment Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.3

CONSTRUCTION

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.4

Learning Objectives

• What is Construction Phase
• Why Construction
• Add a Dimension
• Artifacts for Construction
• Design (What, Purpose, Goals, Levels)
• Implementation Environemnt
• Traceability
• Interaction Diagram
• Block design
• Block Behavior
• Implementation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.5

What is Construction Phase?
• All about “BUILDING” the system from model of analysis &

requirement phase.

• Consists of Design and Implementation.

• Start from elaboration & continues to construction.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.6

What is Construction Phase?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.7

Construction Goals
 The primary goal of the Construction phase is to build a system

capable of operating successfully in beta customer
environments.

 During Construction, the project team performs tasks that involve
building the system iteratively and incrementally making sure
that the viability of the system is always evident in executable
form.

 The major milestone associated with the Construction phase is
called Initial Operational Capability.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.8

Why Construct?
 For seamless transition to source code; analysis model is not

sufficient.

 The actual system must be adapted to the implementation
environment.

 Must explore into more dimensions.

 To validate the analysis result.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.9

Adding A Dimension: Analysis To Design Space

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.10

Artifacts of Construction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.11

Design

“There are two ways of constructing a software design:

– make it so simple that there are obviously no
deficiencies.

– make it so complicated that there are no obvious
deficiencies.”

- C.A.R. Hoare

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.12

What is Design?
• Specification Is about What, and Design is the start of

the How?
• Inputs to the design process

– Specification document, including models etc.
• Outputs of the design process

– A design document that describes how the code will
be written.
• What subsystems, modules or components are

used
• How these integrate (i.e. work together)

– Information allowing testing of the system.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.13

Purpose of System Design

• Bridging the gap between
desired and existing system
in a manageable way.

• Use Divide and Conquer

• We model the new system to
be developed as a set of
subsystems.

Problem

Existing System

New
System

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.14

Why is Designing so difficult?

Analysis: Focuses on the application domain

Design: Focuses on the solution domain
 Design knowledge is a moving target
 The reasons for design decisions are changing very

rapidly
Half-time knowledge in software engineering
Things will be out of date in 3 years
Cost of hardware rapidly sinking

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.15

Design Goals
Qualities of a Good Design:
 Correct

 Complete

 Changeable

 Efficient

 Simple

Correctness:

 It Should Lead To A Correct Implementation

Completeness:

 It Should Do Everything. Everything? It should follow the
specifications.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.16

Design Goals
Changeable:

It Should Facilitate Change—Change Is Inevitable

Efficiency
– It Should Not Waste Resources.
– Better is a Working Slow Design Than a Fast Design That Does

Not Work.

Simplicity
– It Should Be As Understandable As Possible.
– Designs are blue-prints for code construction.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.17

Design Goals to Sub-systems

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.18

Levels of Design

Three possible levels:
• System Design,

–Part of Systems Engineering.

• High-level Software Design
–Architecture, architectural design.

• Low-level Software Design
–Detailed Design, Module Design.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.19

Develop the Design Model
• Create detailed “plans” (like blueprints) for implementation.

• Identify the “Implementation Environment” & draw
conclusions.

• Incorporate the conclusions & develop a “First approach to a
design model” from requirement models.

• Use analysis model as base & translate analysis objects
to design objects in design model fit for current
implementation

• Why can’t this be incorporated in analysis model?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.20

Develop the Design Model
• Describe how the “Object Interact” in each specific use

case & how stimuli between objects is exchanged.

• Create design models before coding so that we can:
 Compare different possible design solutions

 Evaluate efficiency, ease of modification,
maintainability, etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.21

Analysis to Design Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.22

Implementation Environment
• Identify the actual technical constraints under

which the system should be built like
– The target environment
– Programming language
– Existing products that should be used (DBMSs,

etc)

• Strategies:
– As few objects as possible should be aware of the

constraints of the actual implementation
environment.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.23

Implementation Env. : Target Env.

Several
implementations of
the file manager
block

File Manager

Application Objects

MS-DOS Mac-OSUNIX

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.24

Implementation Environment

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.25

Implementation Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.26

Implementation Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.27

Implementation Environment

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.28

Implementation Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.29

Traceability
• Refines the analysis model in light of actual

implementation environment.

• Explicit definition of interfaces of objects, semantics of
operation. Additionally, different issues like DBMS,
programming language etc. can be considered.

• The model is composed of “BLOCKS ” which are the
design objects.

• One block is implemented as one class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.30

Traceability

• The blocks abstract the
actual implementation.

• Traceability is extremely
important aspect of the
system.

– Changes made will be
only local to a module.

– Provides high functional
localization (high
cohesion).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.31

Traceability Matrix
• A traceability matrix is a document, usually in the form of a table,

used to assist in determining the completeness of a relationship
by correlating any two baseline documents using a many-to-
many relationship comparison.

• It is often used with high-level requirements (these often consist of
marketing requirements) and detailed requirements of the product
to the matching parts of high level design, detailed design, test
plan, and test cases.

• A requirements traceability matrix may be used to check to see if the
current project requirements are being met, and to help in the
creation of a request for proposal, software requirement
specification various deliverable documents, and project plan tasks.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.32

Traceability Matrix

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.33

Recycling Machine Analysis Model

Receipt
printer

Customer panel

Receipt basis
Deposit items

Deposit item receiver

Deposit

Report Generator

Operator Panel

Administrator

Alarmist

Alarm Device

Alarm

extends

Can
Bottle

Crate

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.34

Recycling Machine Design Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.35

Working with Design Model
• Changes can and should occur, but all changes should

be justified and documented (for robustness reason).

• We may have to change the design model in various
way:
– To introduce new blocks which don’t have any

representation in the analysis model.
– To delete blocks from the design model.
– To change blocks in the design model (splitting and

joining existing blocks).

• To change the associations between the blocks in the
design model.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.36

Working with Design Model
• Changes can and should occur, but all changes should

be justified and documented (for robustness reason).

• We may have to change the design model in various
way:
– To introduce new blocks which don’t have any

representation in the analysis model.
– To delete blocks from the design model.
– To change blocks in the design model (splitting and

joining existing blocks).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.37

Change in Environment
• Changing the associations between the blocks in the

design model.

 extensions to stimuli.

 inheritance to delegation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.38

Interaction Diagram
• The interaction diagram describes how each use case is offered by

communicating objects

The diagram shows how the participating objects realize the use

case through their interaction

The blocks send stimuli between one another

All stimuli are defined including their parameters

• For each concrete use case, we draw an interaction diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.39

Interaction Diagram

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.40

Interaction Diagram
• Using interaction diagrams, we can clarify the sequence of

operation calls among objects used to complete a single use
case

• Collaborations have the added advantage of interfaces and
freedom of layout, but can be difficult to follow, understand and
create.

• Interaction diagrams are used to diagram a single use case.

• When you want to examine the behaviour of a single instance
over time use a state diagram, and if you want to look at the
behaviour of the system over time use an activity diagram.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.41

Building an Interaction Diagram
• Identify blocks

• Draw skeleton, consist of:

 System border

 Bars for each block that participates

• Describes the sequences

 Structured text or pseudo-code

• Mark the bar to which operations belongs with a rectangle

representing operation

• Define a stimulus

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.42

Building an Interaction Diagram
• Draw a stimulus as a horizontal arrow

 Start: bar of the sending block

 End: bar of the receiving block

• Structure the interaction diagram

 Fork diagram

 Stair diagram

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.43

Skeleton of Interaction Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.44

Interaction Diagram for returning item use case

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.45

Interaction Diagram for returning item use case

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.46

Advanced Interaction Diagram
• A synchronous message/signal is a control which has to wait for

an answer before continuing.

• The sender passes the control to the receiver and cannot do

anything until the receiver sends the control back.

• An asynchronous message is a control which does not need to

wait before continuing.

• The sender actually does not pass the control to the receiver.

• The sender and the receiver carry on their work concurrently.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.47

Synchronous and Asynchronous

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.48

Probe Condition
• Use case with extension is described by a probe position

in the interaction diagram

• The probe position indicates a position in the use case to
be extended
 Often accompanied by a condition which indicates under what

circumstances the extension should take place

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.49

Example of a Probe Condition

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.50

Homogenization
• In parallel design process, several stimuli with the

same purpose or meaning are defined by several
designers.

• These stimuli should be consolidated to obtain as few
stimuli as possible.
 Called homogenization.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.51

Example-Homogenization

What_is_your_phone_number?

Where_do_you_live?

Get_address

Get_address_and_phone_number

Homogenized into:
 Get_address

 Get_phone_number

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.52

Sequence Diagram

• The sequence diagram describes the flow of messages being
passed from object to object.

The purposes of interaction diagram can be describes as:
• To capture dynamic behavior of a system.
• To describe the message flow in the system.
• To describe structural organization of the objects.
• To describe interaction among objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.53

Sequence Diagram Elements
• Class roles, which represent roles that objects may play within the

interaction.

• Lifelines, which represent the existence of an object over a
period of time.

• Activations, which represent the time during which an object is
performing an operation.

• The white rectangles on a lifeline are called activations and
indicate that an object is responding to a message. It starts when
the message is received and ends when the object is done handling
the message.

• Messages, which represent communication between objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.54

Sequence Diagram

Syntax and Semantics

Distinguishing a
system and the
outside world

Use Actors

Block’s life line
(showing life
cycle)

Events occurring
within a block

message

feedback
signal

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.55

Sequence Diagram- Fork Structure

• Centralised structure -- Fork: Everything is handled and
controlled by the left-most block.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.56

Sequence Diagram- Structure

• Decentralised structure -- Stair: There is no central
control block.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.57

Structure of Sequence Diagram
Decentralized structure is appropriate:

• If the sub-event phases are tightly coupled. This will be the case if
the participating objects:

– Form a part-of or consists-of hierarchy, such as Country - State
- City;

– Form an information hierarchy, such as CEO - Division
Manager - Section Manager;

– Represent a fixed chronological progression (the sequence of
sub-event phases will always be performed in the same order),
such as Advertisement - Order - Invoice -Delivery - Payment; or

– Form a conceptual inheritance hierarchy, such as Animal -
Mammal - Cat.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.58

Structure of Sequence Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.59

Structure of Sequence Diagram
A centralized structure is appropriate:

– If the order in which the sub-event phases will be performed

is likely to change.

– If you expect to insert new sub-event phases.

– If you want to keep parts of the functionality reusable as

separate piece

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.60

Structure of Sequence Diagram

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.61

Structure of Sequence Diagram
Fork

– Indicates a centralized structure and is

characterized by the fact that it is an object controls

the other objects interacted with it.

– This structure is appropriate when:

• The operations can change order

• New operations could be inserted

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.62

Structure of Sequence Diagram
Stair

– Indicates decentralized structure and is characterized by
delegated responsibility.

– Each object only knows a few of the other objects and knows
which objects can help with a specific behavior.

– This structure is appropriate when:

– The operation have a strong connection. Strong connection
exists if the objects:

• form a ‘consist-of’ hierarchy

• form an information hierarchy

• form a fixed temporal relationship

• form a (conceptual) inheritance relationship

– The operation will always be performed in the same order

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.63

Structure Control in Sequence Diagram

• Optional Execution

• Conditional Execution

• Parallel Execution

• Loop Execution

• Nested

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.64

Sequence Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.65

Block Design
• Block design can start when all the block have been

identified.
• For block designing it is important to identify the

interface and operation of each block.
• The implementation (code) for the block can start when

the interfaces are stable and are frozen.
• When the implementation of the block starts, normally

ancestor block should be implemented prior to
descendent blocks.

Ex : the deposit item will design prior to can & bottle.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.66

Block Design
• By taking INTERACTION diagrams where a block

participates & extracting all the operation defined on that
block.

• Using this diagram we are clear about the interface of
the each block..

• The interface for Deposit Item:
exists, incr, getName, getValue

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.67

Block Design Comments

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.68

Object Behavior
• An intermediate level of object internal behavior may

be described using a state machine.

• To provide a simplified description that increases
understanding of the block without having to go down to
source code.

• State represents modes of operations on object.

• Less dependant on programming language.

• This is particularly important in reactive systems.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.69

Object Behavior
Machine stack

State init

input createinstance

nextstate empty

otherwise error;

State empty

input push

do store on top

nextstate loaded

otherwise error;

..

endmachine

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.70

State transition diagram of a stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.71

State transition diagram of a stack

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.72

Stimulus Control Object
Stimulus Control Object

• An object that perform the same operation independent of
state when a certain stimulus is received.

• Entity objects

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.73

State Controlled Object

State Control Object

• Objects that select operations not only from the stimulus
received, but also from the current state

• Control object.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.74

State Controlled Object

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.75

Internal Block Structure

• In case of OOPL object-module becomes classes

otherwise module unit

• Generally more classes than object

• split class when required

• 5-10 times longer to design a component class than an

ordinary class

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.76

Implementation

• Now, need to write code for each block.

• Implementation strategy depends on the programming

language.

• In an OOP language, the implementation of a block starts

with one class.

• Sometimes there is a need for additional classes, that are

not seen by other blocks.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.77

Mapping
Analysis Design Source code C++

Analysis objects Block 1..N classes

Behavior in objects Operations Member functions

Attributes(class) Attributes(class) Static variables

Attributes(instance) Attributes(instance) Instance variables

Interaction between objects Stimulus Call to a function

Use case Designed use case Sequence of calls

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.78

Implementation Environment
Everything that does not come from analysis phase, including

performance requirements.

 Design must be adapted to implementation environment.

 Use of existing products must be decided. Includes previous

version of the system.

 To use an existing product we must adapt our design.

 Tradeoff - less development vs. more complex architecture.

 Also consider testing costs.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.79

Other Considerations in Construction

• Subsystems defined in analysis phase are used to guide the

construction phase.

• Developed separately as much as possible.

• Incremental development - start construction phase in parallel

with analysis phase - to identify implementation environment.

• How much refinement to do in analysis phase? (How early/late to

move from analysis to design) - decided in each project

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.80

Designing the Subsystem

• The interaction diagrams and the design class diagrams
created during design provide some of the necessary input for
generating code.

• We now see how to map those artifacts to code in an object-
oriented language. The following interaction and class diagram
will be used to show the mapping process.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.81

Design Class Diagram

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.82

Designing the Data Access Layer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.83

Table-Class Mapping

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.84

Table-Class Mapping

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.85

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.86

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.87

REUSABLE DESIGN
PATTERNS

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.88

The Beginning of Patterns

• Christopher Alexander, architect
 A Pattern Language--Towns, Buildings, Construction

 Timeless Way of Building (1979)

 “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.”

• Other patterns: novels (tragic, romantic, crime),
movies genres (drama, comedy, documentary)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.89

“Gang of Four” (GoF) Book
• Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley Publishing
Company, 1994

• Written by this "gang of four"
 Dr. Erich Gamma, then Software Engineer, Taligent, Inc.

 Dr. Richard Helm, then Senior Technology Consultant, DMR
Group

 Dr. Ralph Johnson, then and now at University of Illinois,
Computer Science Department

 Dr. John Vlissides, then a researcher at IBM
Thomas J. Watson Research Center
 See John's WikiWiki tribute page http://c2.com/cgi/wiki?JohnVlissides

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.90

Object-Oriented Design Patterns

• This book defined 23 patterns in three categories
 Creational patterns deal with the process of object creation
 Structural patterns, deal primarily with the static composition

and structure of classes and objects
 Behavioral patterns, which deal primarily with dynamic

interaction among classes and objects

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.91

Documenting Discovered Patterns
• Many other patterns have been introduced documented
 For example, the book Data Access Patterns by Clifton Nock

introduces 4 decoupling patterns, 5 resource patterns, 5 I/O
patterns, 7 cache patterns, and 4 concurrency patterns.

 Other pattern languages include telecommunications patterns,
pedagogical patterns, analysis patterns

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.92

GoF Patterns
 Creational Patterns

 Abstract Factory

 Builder

 Factory Method

 Prototype

 Singleton

 Structural Patterns
 Adapter

 Bridge

 Composite

 Decorator

 Façade

 Flyweight

 Proxy

 Behavioral Patterns
 Chain of Responsibility

 Command

 Interpreter

 Iterator
Mediator

Memento

 Observer

 State

Strategy
 Template Method

 Visitor

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.93

Why Study Patterns?

• Reuse tried, proven solutions
 Provides a head start

 Avoids gotchas later (unanticipated things)

 No need to reinvent the wheel

• Establish common terminology
 Design patterns provide a common point of reference

 Easier to say, “We could use Strategy here.”

• Provide a higher level prospective
 Frees us from dealing with the details too early

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.94

Other advantages

• Most design patterns make software more
modifiable, less brittle
 we are using time tested solutions

• Using design patterns makes software systems
easier to change—more maintainable

• Helps increase the understanding of basic object-
oriented design principles
 encapsulation, inheritance, interfaces, polymorphism

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.95

Style for Describing Patterns

• We will use this structure:
 Pattern name

 Recurring problem: what problem the pattern addresses

 Solution: the general approach of the pattern

 UML for the pattern
Participants: a description as a class diagram

 Use Example(s): examples of this pattern, in Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.96

A few OO Design Patterns
• Coming up:
 Singleton
 Multiton
 Iterator

access the elements of an aggregate object
sequentially without exposing its underlying
representation

 Adaptor
A means to define a family of algorithms, encapsulate

each one as an object, and make them
interchangeable

 Observer
One object stores a list of observers that are updated

when the state of the object is changed

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.97

Singleton Pattern

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.98

Usage Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.99

Multiton Pattern
• The multiton pattern is a design pattern which generalizes

the singleton pattern. Whereas the singleton allows only one
instance of a class to be created, the multiton pattern allows for
the controlled creation of multiple instances, which it manages
through the use of a map.

• Rather than having a single instance per application (e.g.
the java.lang.Runtime object in the Java programming language)
the multiton pattern instead ensures a single instance per key.

• Drawback: This pattern, like the Singleton pattern, makes unit
testing far more difficult, as it introduces global state into an
application.

• With garbage collected languages it may become a source of
memory leaks as it introduces global strong references to the
objects.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.100

Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.101

Pattern: Iterator
• Name: Iterator (a.k.a Enumeration)

• Recurring Problem: How can you loop over all
objects in any collection. You don’t want to
change client code when the collection changes.
Want the same methods

• Solution: 1) Have each class implement an
interface, and 2) Have an interface that works
with all collections

• Consequences: Can change collection class
details without changing code to traverse the
collection

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.102

GoF Version of Iterator page 257

ListIterator

First()

Next()

IsDone()

CurrentItem()

// A C++ Implementation

ListIterator<Employee> itr = list.iterator();

for(itr.First(); !itr.IsDone(); itr.Next()) {

cout << itr.CurrentItem().toString();

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.103

Java version of Iterator

interface Iterator

boolean hasNext()
Returns true if the iteration has more elements.

Object next()
Returns the next element in the iteration and updates the

iteration to refer to the next (or have hasNext() return false)

void remove()
Removes the most recently visited element

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.104

Java’s Iterator interface

// The Client code// The Client code
List<List<BankAccountBankAccount> bank = > bank =

new new ArrayListArrayList<<BankAccountBankAccount>(); >();

bank.addbank.add(new (new BankAccountBankAccount("One", 0.01));("One", 0.01));

// ...// ...

bank.addbank.add(new (new BankAccountBankAccount("Nine thousand", 9000.00));("Nine thousand", 9000.00));

String ID = "Two";String ID = "Two";

IteratorIterator<<BankAccountBankAccount>> itritr = = bank.bank.iteratoriterator()();;

while(while(itritr..hasNexthasNext()()) {) {

if(if(itritr..nextnext()()..getIDgetID().equals(().equals(searchAcct.getIDsearchAcct.getID()))()))

System.out.printlnSystem.out.println("Found " + ("Found " + ref.getIDref.getID());());

} }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.105

UML Diagram of Java's Iterator with a few Collections

<<interface>>
Iterator

hasNext()
next()

<<interface>>

List

iterator(): Iterator
…

Client

Vector

iterator()
Iterator

hasNext()
next()

LinkedList

iterator()

ArrayList

iterator()

http://download.oracle.com/javase/6/docs/api/java/util/List.html

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.106

The Observer Design Pattern
• Name: Observer

• Problem: Need to notify a changing number of objects
that something has changed

• Solution: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.107

Examples
• From Heads-First: Send a newspaper to all who

subscribe
 People add and drop subscriptions, when a new version

comes out, it goes to all currently described

• Spreadsheet
 Demo: Draw two charts—two views--with some changing

numbers--the model

16-107

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.108

Examples
• File Explorer (or Finders) are registered observers (the

view) of the file system (the model).

• Demo: Open several finders to view file system and
delete a file

• Later in Java: We'll have two views of the same model
that get an update message whenever the state of the
model has changed

16-108

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.109

Observer Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.110

Adapter (Non software example)

Convert the

interface of a

class into another

Interface clients

expect.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.111

Adapter (Software counterpart)

Java module C++ module
Java Native

Interface
(JNI)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.112
112

3 basic building blocks of UML - Diagrams
Graphical representation of a set of elements.
Represented by a connected graph: Vertices are things; Arcs are relationships/behaviors.
5 most common views built from
UML 1.x: 9 diagram types.

UML 2.0: 12 diagram types

Behavioral Diagrams

Represent the dynamic aspects.

– Use case

– Sequence;

Collaboration

– Statechart

– Activity

Structural Diagrams

Represent the static aspects of a system.

– Class;

Object

– Component

– Deployment

Behavioral Diagrams

– Use case

– Statechart

– Activity

Structural Diagrams

– Class;

Object

– Component

– Deployment

– Composite Structure

– Package Interaction Diagrams

– Sequence;

Communication

– Interaction Overview

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.113
113

Class Diagrams

Structural Diagrams

– Class;

Object

– Component

– Deployment

– Composite Structure
– Package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.114

Class Diagram

Three modeling perspectives for Class Diagram
 Conceptual: the diagram reflects the domain
 Specification: focus on interfaces of the software (Java supports interfaces)

 Implementation: class (logical database schema) definition to be implemented in code
and database.

The basis for all object modeling
All things lead to this

Most users of OO methods take an implementation perspective, which is a shame because the other perspectives
are often more useful. -- Martin Fowler

• Most common diagram.
• Shows a set of classes, interfaces, and collaborations and their relationships

(dependency, generalization, association and realization); notes too.
• Represents the static view of a system (With active classes, static process view)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.115
115

Names

Customer

Account

Bank

Java::awt::Polygon

simple name - start w. upper case

path name = package name ::package name::name

only the name compartment, ok

Attributes

short noun - start w. lower case

balance: Real = 0

type/class

default value

<<constructor>>

+addAccount()
<<process>>

+setBalance(a : Account)
+getBalance(a: Account): Amount
…
<<query>>

isValid(loginID : String): Boolean

signature
Operations

may cause object to
change state

Classes

ellipsis for additional
attributes or operations

stereotypes to categorize

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.116
116

Responsibilities

• A collaborator is also a class which the (current) class interacts with to fulfill a responsibility

Responsibilities
-- handles deposits
-- reports fraud to managers

Account

• anything that a class knows or does

(Contract or obligation)

• An optional 4th item carried out by attributes and operations.

• Free-form text; one phrase per responsibility.
• Technique - CRC cards (Class-Responsibility-Collaborator); Kent Beck and Ward

Cunningham’89

Customer

AccountOpens account
Knows name
Knows address

Account

ManagerKnows interest rate
Knows balance
Handles deposits
Reports fraud to
manager

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.117

Scope & Visibility

+ addMessage(m : Message) : Status
setCheckSum()
- encrypt()

header : FrameHeader
uniqueID : Long

Frame

class scope

public

protected

private

• Public - access allowed for any outside classifier (+).
• Protected - access allowed for any descendant of the classifier (#).
• Private - access restricted to the classifier itself (-).
• (using adornments in JBuilder)

Instance scope

• Instance Scope — each instance of the classifier holds its own value.

• Class Scope — one value is held for all instances of the classifier (underlined).

- getClassName()

Public
class

Private
class

Protected
class

Public
method

Public
attribute

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.118

consolePort [2..*] : Port

NetworkController 1

ControlRod
3

multiplicity
singleton

public class Singleton {
private static Singleton instance = null;

private Singleton() {}
public static Singleton getInstance() {

if (instance == null) {
instance = new Singleton();

}
return instance;

}
}

Multiplicity

Singleton

- instance

+ getInstance():Singleton

consolePort [2..*] : Port

NetworkController

Using Design Pattern

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.119
119

Relationships

Window

open()
close()

ConsoleWindow DialogBox Control

Event

association

dependency

generalization

SetTopController
authorizationLevel

startUp()
shutDown()
Connect()

<<interface>>
URLStreamHandler

openConnection()
parseURL()
setURL()
toExternalForm()

PowerManager

ChannelIterator

Controller EmbeddedAgent

<<friend>>

generalization
(multiple inheritance)

association navigation

stereotyped dependencyrealization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.120
120

AudioClip

Dependency
• A change in one thing may affect another.

record(m:Microphone)
start()
stop()

Microphone
name

dependency

• The most common dependency between two classes is one where one class
<<use>>s another as a parameter to an operation.

CourseSchedule

addCourse(c : Course)
removeCourse(c : Course

Course

Usually initial class diagrams will not have any significant number of dependencies in the
beginning of analysis but will as more details are identified.

Using relationship

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.121

Dependency – Among Classes
AbstractClass {abstract}

attribute

concreteOperation()
abstractOperation()

<<metaclass>>

MetaClassName

<<interface>>

InterfaceName

operation()

ClassName

-simpleAttribute: Type = Default
#classAttribute: Type

+/derivedAttribute: Type

+operation(in arg: Type = Default): ReturnType

objectName: ClassName

Attribute = value
simpleAttribute: Type = Default
classAttribute: Type
/derivedAttribute: Type

ClientClass

<<use>>

<<instanceOf>>

<<instanceOf>>

realizationgeneralization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.122

Dependency –Among Classes

• Eight Stereotypes of Dependency Among Classes
 bind: the source instantiates the target template using the given actual

parameters

 derive: the source may be computed from the target

 friend: the source is given special visibility into the target

 instanceOf : the source object is an instance of the target classifier

 instantiate: the source creates instances of the target

 powertype: the target is a powertype of the source; a powertype is a
classifier whose objects are all the children of a given parent

 refine: the source is at a finer degree of abstraction than the target

 use: the semantics of the source element depends on the semantics of the
public part of the target

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.123
123

Dependency –Among Use Cases
• Two Stereotypes of Dependency Among Use Cases:
 extend: the target use case extends the behavior of the source

 include: the source use case explicitly incorporates the behavior of another use case
at a location specified by the source

Use Case A

Use Case B Use Case C

<<extend>><<include>>

System

Actor

<<actor>>
Actor

Supply Customer Info.

Request Catalog<<extend>>

<<include>>

Order Processing System

SalesPerson

Order ItemMake Payment

<<include>> <<include>>

The sales person
asks for the catalog

Place
OrderExtension points

Additional requests:
after creation of
the order

1 *

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.124

Generalization

• Four Standard Constraints

 complete: all children in the generalization have been
specified; no more children are permitted

 incomplete: not all children have been specified; additional
children are permitted

 disjoint: objects of the parent have no more than one of the
children as a type

 overlapping: objects of the parent may have more than one of
the children as a type

• One Stereotype
 implementation: the child inherits the implementation of the parent

but does not make public nor support its interfaces

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.125

Generalization – Along Roles

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.126

Generalization –Among Actors

SalesPerson

Place
Order

Extension points
Additional requests:

after creation of the order
1 *

SalesManager

Grant
Credit

1 *

Sales person can do only “Place Order”;
Sales manager can do both “Place Order”
and “Grant Credit”

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.127

Associations

Professor Courseteaches

relationship name

direction indicator:
how to read relation name

teacher class

role names Multiplicity
defines the number of objects associated with
an instance of the association.

Default of 1;
Zero or more (*);
n..m; range from n to m inclusive

1..**

• Represent conceptual relationships between classes
(cf. dependency with no communication/message passing)

navigability

{visibility} {/} role name {: interface name}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.128
128

Associations – A Question
• How would you model the following situation?

“You have two files, say homework1 and myPet, where homework1 is read-
accessible only by you, but myPet is write-accessible by anybody.”

You could create two classes, File and User.
Homework1 and MyPet are files, and you are a user.

File User

Approach 1: Now, would you associate the file access right with File?
Approach 2: Or, would you associate the file access right with User?

homework1:File

myPet:File

<<instanceOf>>

u:User

<<instanceOf>>

anyoneElse: User

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.129
129Association generalization is not automatic, but should be explicit in UML

Associations – Links

– link is a semantic connection among objects.

– A link is an instance of an association.

Company
1..* *

employee employer

: Company
assign(development)

w : Worker

link
named object anonymous object

class
association class

Worker

+setSalary(s : Salary)
+setDept(d : Dept)

works for

association name

<<instanceOf>>
<<instanceOf>>?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.130
130

Associations – Link Attributes
• Link Attributes

The most compelling reason for having link attributes is for-many-to-many
relationships

File User

access permission

File User

access permission

• Association Class

AccessRight

* 1..*

link attribute

association class

• With a refactoring

File User*1..*
access permission

AccessRight
1 1

visual tie

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.131

Modeling Structural Relationships

The model above is from Rational Rose. How did the composite symbol ()get loaded
versus the aggregation? Use the Role Detail and select aggregation and then the “by
value” radio button.

School

InstructorCourse

Department

Student

*

1..*

1..*

1

has

5member

*

*attends 4

*

1..*3 teaches

1..*

1..* 1..*

1..*

0..1

1 chairperson

5
assigned to

 Considering a bunch of classes and their association relationships

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.132
132

Modeling Structural Relationships

Composite is a stronger form of aggregation.
Composite parts live and die with the whole.
Composite parts may belong to only one composite.

Liver

Body

Heart Wheel

Car

Engine

Composite

CompanyDepartment
1..*

association

multiplicity

aggregation

part whole

- structural association representing “whole/part” relationship.
- “has-a” relationship.

Aggregation

Part -> whole?

Body
Liver

Heart

Can aggregations of objects be cyclic?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.133

WorkDesk jobId : int returnedItem
* 0..1

Qualifier,
cannot access person without knowing the account #

Bank
account #

Person

Square

*

0..1

1

1

Association – Qualification

Chessboard
rank:Rank

file:File

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.134

Association – Interface Specifier

worker : IEmployee

supervisor : IManager

*
1Person

Interface Specifier

association

Realization
• A semantic relationship between classifiers in which one classifier specifies a contract

that another guarantees to carry out.

• In the context of interfaces and collaborations
• An interface can be realized by many classes/components

• A class/component may realize many interfaces

IManager

getProject()
getSchedule()

Person

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.135
135

Modeling a Logical Database
• Class diagrams to provide more semantics
• From a general class diagram, first identify classes whose state must be persistent (e.g. after you turn

off the computer, the data survives, although the program doesn’t).
• Create a class diagram using standard tagged value, (e.g. {persistent}).
• Include attributes and associations.
• Use tools, if available, to transform logical design (e.g., tables and attributes) into physical design

(e.g., layout of data on disk and indexing mechanisms for fast access to the data).

1..*

School
{ persistent}

name : Name

address : String

phone : Number

addStudent()

removeStudent()

getStudent()

getAllStudents()

addDepartment()

removeDepartment()

getDepartment()

getAllDepartments()

Student
{ persistent}

name : Name

studentId : Number

Instructor
{ persistent}

name : Name

Department
{ persistent}

name : Name

addInstructor()

removeInstructor()

getInstructor()

getAllInstructors()

Course
{ persistent}

name : Name

courseId : Number

1..*

1..*

1..*

1..*

1..*

1..**

0..1

0..1 chairperson

** *

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.136

Forward/ Reverse Engineering
• translate a collaboration into a logical database schema/operations

• transform a model into code through a mapping to an implementation language.

• Steps
 Selectively use UML to match language semantics (e.g. mapping multiple inheritance in a collaboration diagram

into a programming language with only single inheritance mechanism).

 Use tagged values to identify language..

public abstract class EventHandler
{

private EventHandler successor;
private Integer currentEventId;
private String source;

EventHandler() {}
public void handleRequest() {}

}

successor

EventHandler
{ Java}

currentEventId : Integer
source : Strings

handleRequest() : void

Client
{ Java}

• translate a logical database schema/operations into a collaboration

• transform code into a model through mapping from a specific implementation language.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.137

Object Diagrams

Structural Diagrams

– Class;

Object
– Component

– Deployment

– Composite Structure
– Package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.138

Instances & Object Diagrams

 “instance” and “object” are largely synonymous; used interchangeably.

 difference:
 instances of a class are called objects or instances; but
 instances of other abstractions (components, nodes, use cases, and associations) are not

called objects but only instances.

What is an instance of an association called?

Object Diagrams
 very useful in debugging process.

– walk through a scenario (e.g., according to use case flows).
– Identify the set of objects that collaborate in that scenario (e.g., from use case

flows).
– Expose these object’s states, attribute values and links among these objects.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.139

: keyCode

Instances & Objects - Visual Representation

: Multimedia :: AudioStream
t : Transaction

myCustomer

r : FrameRenderThread

c : Phone
[WaitingForAnswer]

myCustomer

id : SSN = “432-89-1738”
active = True

agent :

named instance

instance with current state

instance with attribute values

active object
(with a thicker border; owns a thread
or process and can initiate control
activity)

multiobject orphan instance
(type unknown)

anonymous instance

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.140

Instances & Objects - Modeling Concrete Instances

• Expose the stereotypes, tagged values, and attributes.
• Show these instances and their relationships in an object diagram.

current: Transaction

primaryAgent
[searching]

: Transaction

LoanOfficer
<<instanceOf>>

current := retrieve()

Instances & Objects - Modeling Prototypical Instances

• Show these instances and their relationships in an interaction diagram or an activity
diagram.

a: CallingAgent c: Connection

1 : create

2: enableConnection

2.1 : startBilling

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.141

Instances & Objects – More Examples

client servers

1: aServer := find(criteria)

d: Directory
1: sort()list()

contents: File

d: Directory
1: addElement(f)addFile(f:File)

contents: File

:Server

aServer:Server

2: process(request)

c : Company

s : Department

name = “Sales”

uss : Department

name = “US Sales”

erin : Person

name = “Erin”
employeeID = 4362
title = “VP of Sales”

rd : Department

name = “R&D”

: ContactInfomation

address = “1472 Miller St.”

manager

call ::= label [guard] [“*”] [return-val-list “:=“] msg-name “(“ arg-list “)”

d: Directory
1*: changeMode(readOnly)secureAll()

f: File *

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.142
142

Component Diagrams

Structural Diagrams

– Class;

Object

– Component
– Deployment

– Composite Structure
– Package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.143

Component Diagram

 Shows a set of components and their relationships.

 Represents the static implementation view of a system.

 Components map to one or more classes, interfaces, or collaborations.

classes

loanOfficer.dll component

LoanOfficer

LoanPolicy

CreditSearch

Registrar.exe

Course.dll
Student.dll

Components and their RelationshipsMapping of Components into Classes

UML1.x – implementation view

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.144

Component Diagram UML2.0 – architectural view

• Short history behind architecture

• Architecture still an emerging discipline

• Challenges, a bumpy road ahead

• UML and architecture evolving in parallel

• Component diagram in need of better formalization and
experimentation

Big demand, hmm…

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.145
145

Component Diagram – another example
(www.cs.tut.fi/tapahtumat/olio2004/richardson.pdf)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.146
146

Component Diagram – another example
(www.cs.tut.fi/tapahtumat/olio2004/richardson.pdf)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.147
147

Component Diagram UML2.0 – architectural view

ComponentComponent

Explicit description of interfaces:
 provided services to other components

 requested services from other components

 An interface is a collection of 1..* methods, and 0..* attributes

 Interfaces can consist of synchronous and / or asynchronous operations

 A port (square) is an interaction point between the component and its environment.

 Can be named; Can support uni-directional (either provide or require) or bi-directional
(both provide and require) communication; Can support multiple interfaces.

 possibly concurrent interactions

 fully isolate an object’s internals from its environment

lollipop

socket

Student
StudentAdministration

StudentSchedule

AccessControl

Encription

Persistence

DataAccess

security

Data[1..*]

Incoming
signals/calls

Incoming
signals/calls Outgoing

signals/calls
Outgoing

signals/calls

caller or callee?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.148
148

Component Diagram: UML 1.x and UML 2.0
(http://www.agilemodeling.com/artifacts/componentDiagram.htm)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.149
149

Component Diagram: UML 1.x and UML 2.0
(http://www.agilemodeling.com/artifacts/componentDiagram.htm)

So, how many different conventions for components in UML2.0?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.150
150

Building a Component

 simplified the ports to either provide or require a single interface
 relationships between ports and internal classes in three different ways:

i) as stereotyped delegates (flow), as delegates, and as realizes (logical->physical) relationships
Cohesive reuse and change of classes; acyclic component dependency ???
.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 51

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.151
151

Component Diagram – Connector & Another Example

delegation

Left delegation: direction of arrowhead indicates
“provides”

delegation

assembly
connector

 a connector: just a link between two or more connectable elements (e.g., ports or interfaces)
 2 kinds of connectors: assembly and delegation. For “wiring”

An assembly connector: a binding between a provided interface and a required interface
(or ports) that indicates that one component provides the services required by another;
simple line/ball-and-socket/lollipop-socket notation
A delegation connector binds a component’s external behavior (as specified at a port) to
an internal realization of that behavior by one of its parts (provide-provide, request-request).

Right delegation: direction of arrowhead indicates
“requests”

store

So, what levels of abstractions for connections?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.152
152

Structured Class
 A structured class(ifier) is defined, in whole or in part, in terms of a number of parts - contained instances

owned or referenced by the structured class(ifier).

 With a similar meaning to a composition relation

 A structured classifier’s parts are created within the containing classifier (either when the structured classifier
is created or later) and are destroyed when the containing classifier is destroyed.

 Like classes and components, combine the descriptive capabilities of structured classifiers with ports and
interfaces

Components extend classes with additional features such as
 the ability to own more types of elements than classes can; e.g., packages, constraints, use cases, and
artifacts
 deployment specifications that define the execution parameters of a component deployed to a node

label /roleName : type

connector

Any difference?

component or
class?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.153
153

move()
resize()
display()

origin

Shape

IUnknown
<<type>>

Int
{ values range from
-2**31 to +2**31 - 1 }

<<signal>>
OffHook

Process loan

<<subsystem>>
Customer Service

egb_server

kernel32.dll

class interface

data type

signal

use case

subsystem
nodecomponent

move()
resize()
display()

origin

Shape

<<type>>
Int

{ values range from
-2**31 to +2**31 - 1 }

<<signal>>
OffHook

Process loan

<<subsystem>>
Customer Service

membership_server
kernel32.dll

class interface

data type

signal

use case

nodecomponent

an asynchronous stimulus
communicated between instances

Classifiers
• Classifier—mechanism that describes structural (e.g. class attributes) and

behavioral (e.g. class operations) features. In general, those modeling elements
that can have instances are called classifiers.

• cf. Packages and generalization relationships do not have instances.

Generalizable Element, Classifier, Class, Component?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.154
154

Structured Class – Another Example

what kind?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.155
155

Deployment Diagrams

Structural Diagrams

– Class;

Object

– Component

– Deployment
– Composite Structure
– Package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.156
156

Deployment Diagram

J2EE
Server

Membership
Server

IIS + PhP Server

Tomcat
Server

TCP/IP

TCP/IP

DecNet

• Shows a set of processing nodes and their relationships.

• Represents the static deployment view of an architecture.

• Nodes typically enclose one or more components.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 53

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.157
157

Structural Diagrams - Deployment Diagram
(http://www.agilemodeling.com/artifacts/deploymentDiagram.htm)

Student administration application
Physical nodes - stereotype device
WebServer - physical device or

software artifact
RMI/message bus: connection type
Nodes can contain other nodes

or software artifacts recursively
 Deployment specs: configuration files:

name and properties

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.158
158

Structural Diagrams - Deployment Diagram
(http://www.agilemodeling.com/artifacts/deploymentDiagram.htm)

Is this better?
More concrete
Implementation-oriented

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.159

Composite Structure Diagrams

Structural Diagrams

– Class;

Object

– Component

– Deployment

– Composite Structure
– Package

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 54

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.160
160

Composite Structure Diagrams
(http://www.agilemodeling.com/artifacts/compositeStructureDiagram.htm)

Enroll in Seminar

Enroll

Student
prereq:
Seminar

Enrollment

Seminar
seats: Integer
waitList: Student

Course
req: Course

constrainer

desired seminarapplicant

registration

Add to
Wait list

Determine
eligibility

Determine
Seat
availability

applicant seminar

existing
students

desired course

• Depicts the internal structure of a classifier (such as a class, component,
or collaboration), including the interaction points of the classifier to other parts
of the system.

structured class, structured component, structured use case, structured node, structured interface, …

Enroll in Seminar

Enroll

Student
prereq:
Seminar

Enrollment

Seminar
seats: Integer
waitList: Student

Course
req: Course

constrainer

desired seminarapplicant

registration <<refine>>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.161

Variations [Rumbaugh – UML 2.0 Reference: p234]

Sale

buyer: Agent

item: Property

seller: Agent

role name

role type

role

collaboration name

Collaboration definition

ShiloPurchase: Sale

Shilo: Land

item

Edward: Architect Bala: Analyst

buyer seller
role name

Collaboration use in object diagram

collaborating object

collaboration nameuse name

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.162
162

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 55

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.163
163

Structural Diagrams

– Class;

Object

– Component

– Deployment

– Composite Structure

– Package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.164

Packages
• Package — general-purpose mechanism for organizing elements into groups.

Business rules

Client

Sensors::Vision
{ version = 2.24 }

simple names

enclosing package name
package name

path names

+ OrderForm

+ TrackingForm
- Order

Client Client

+OrderForm

+TrackingForm

-Order

graphical nestingtextual nesting

visibility

• Nested Elements: Composite relationship (When the whole dies, its parts die
as well, but not necessarily vice versa)

• (C++ namespace; specialization means “derived”)

Visibility

• Packages that are friends to another may see all the elements of that package, no
matter what their visibility.

• If an element is visible within a package, it is visible within all packages nested
inside the package.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.165

Dependency –Among Packages
• Two Stereotypes of Dependency Among Packages:

 access: the source package is granted the right to reference the elements of the
target package (:: convention)

 import: a kind of access; the public contents of the target package enter the flat
namespace of the source as if they had been declared in the source

packageName

packageName

subPackageName

packageName

PackageClass

<<import>> <<access>>

+ OrderForm
+ TrackingForm
- Order

Client

+OrderRules
-GUI:Window

Policies <<import>>

+Window
+Form
#EventHandler

GUI

<<import>>

imports

exports

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 56

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.166

Modeling Groups of Elements
• Look for “clumps” of elements that are semantically close to one another.

• Surround “clumps” with a package.

• Identify public elements of each package.

• Identify import dependencies.

utd.administration

Tools.db

registration

db interfaces

Cloudscape Oracle

Java.awt

Use Case package Diagram
• Included and extending use cases belong in the same

package as the parent/base use case
• Cohesive, and goal-oriented packaging
• Actors could be inside or outside each package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.167

Class Package Diagrams
(http://www.agilemodeling.com/artifacts/packageDiagram.htm)

• Classes related through inheritance, composition or communication often
belong in the same package

Seminar
Registration
<<application>>

Schedule

Student

Professor

Java
Infrastructure
<<technical>>

<<import>>

Contact
Point

<<import>>

<<import>>
<<import>>

<<import>>

• A frame depicts the contents of a package (or components, classes, operations, etc.)
• Heading: rectangle with a cut-off bottom-right corner, [kind] name [parameter]

Seminar Course

Enrollment LocationTime

1

0..*

1..* 1

1..*

1
held at

Package Schedule
A frame encapsulates
a collection of collaborating instances or
refers to another representation of such

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.168
168

Common Mechanisms

•Adornments

Notes & Compartments

•Extensibility Mechanisms
–Stereotypes - Extension of the UML metaclasses.

–Tagged Values - Extension of the properties of a UML element.

–Constraints - Extension of the semantics of a UML element.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 57

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.169
169

Adornments
• Textual or graphical items added to an element’s basic notation.

• Notes - Graphical symbol for rendering constraints or comments attached to an element
or collection of elements; No Semantic Impact

Rendered as a
rectangle with a dog-
eared corner.

See smartCard.doc for
details about this
routine.
May contain combination of
text and graphics.

May contain URLs linking to
external documents.

See http://www.rational.com
for related info.

Additional Adornments
• Placed near the element as

– Text

– Graphic

• Special compartments for adornments in

– Classes

– Components

– Nodes

Transaction

Exceptions

addAction()

Resource Locked

named
compartment

anonymous
compartment

Client
bill.exe
report.exe
contacts.exe

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.170

Stereotypes

• Allow controlled extension of metamodel classes.
[UML11_Metamodel_Diagrams.pdf]

• Graphically rendered as
 Name enclosed in guillemets (<< >>)

 <<stereotype>>

 New icon

«metaclass»
ModelElement

Internet

• The new building block can have

• its own special properties through a set of tagged values

• its own semantics through constraints

• Mechanisms for extending the UML vocabulary.

• Allows for new modeling building blocks or parts.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.171

Tagged Values

Server
{channels = 3}

<<library>>
accounts.dll

{customerOnly}

tagged values

• a (name, value) pair describes a property of a model element.

• Properties allow the extension of “metamodel” element attributes.

• modifies the semantics of the element to which it relates.

• Rendered as a text string enclosed in braces { }

• Placed below the name of another element.

«subsystem»
AccountsPayable

{ dueDate = 12/30/2002
status = unpaid }

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 58

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.172

Constraints

Portfolio

BankAccount

{secure}

A simple constraint

• Extension of the semantics of a UML element.
• Allows new or modified rules
• Rendered in braces {}.

– Informally as free-form text, or
– Formally in UML’s Object Constraint Language (OCL):

E.g., {self.wife.gender = female and self.husband.gender = male}

Constraint across multiple elements

Corporation

BankAccount {or}

Person
id : {SSN, passport}

Department

Person

**

1..* 1member manager

{subset}

Person

age:
Integer

Compan
yemployersemployees

0..* 0..*

Company
self.employees.forAll(Person p |

p.age >= 18 and p.age <= 65)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.173

Classes: Notation and Semantics

Class - Name

attribute-name-1 : data-type-1 = default-value-1
attribute-name-2 : data-type-2 = default-value-2

operation-name-1 (argument-list-1) : result-type-1
operation-name-2 (argument-list-2) : result-type-2

responsibilities

To model the <<semantics>> (meaning) of a class:
 Specify the body of each method (pre-/post-conditions and invariants)
 Specify the state machine for the class
 Specify the collaboration for the class
 Specify the responsibilities (contract)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.174

Attributes
• Syntax

[visibility] name [multiplicity] [: type] [= initial-value] [{property-string }]
• Visibility

+ public; - private; # protected; {default = +}

• type
 There are several defined in Rational Rose.
 You can define your own.

• property-string
Built-in property-strings:

 changeable—no restrictions (default)
 addOnly—values may not be removed or altered, but may be added
 frozen—may not be changed after initialization

Or you can define your own: e.g. {leaf}

origin Name only

+ origin Visibility and name

origin : Point Name and type

head : *Item Name and complex type

name [0..1] : String Name, multiplicity, and type

origin : Point = { 0, 0 } Name, type, and initial value

id : Integer { frozen } Name and property

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 59

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.175

Operations
• Syntax

[visibility] name [(parameter-list)] [: return-type] [(property-string)]

• Visibility
+ public; - private; # protected; {default = +}

• parameter-list syntax
[direction] name : type [= default-value]

• direction
 in—input parameter; may not be modified
 out—output parameter; may be modified
 inout—input parameter; may be modified

• property-string
– leaf
– isQuery—state is not affected
– sequential—not thread safe
– guarded—thread safe (Java synchronized)
– concurrent—typically atomic; safe for multiple flows of control

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.176

Template Classes; Primitive Types

• A template class is a parameterized element and defines a family of classes
• In order to use a template class, it has to be instantiated
• Instantiation involves binding formal template parameters to actual ones, resulting in a concrete

class

+ bind(in i : Item; in v : Value) : Boolean
+ isBound(in i : Item) : Boolean {isQuery}

Map

Item
Value
Buckets : int

Map< Customer, Order, 3 >

OrderMap

false
true

<<dataType>>
Int

{ value range
–2**31 to
+2**31-1
}

<<bind>> (Customer, Order, 3)

explicit binding

implicit binding

template class
template parameters

Uses <<bind>>

Item Value Buckets

Primitive Types
using a class notation

constraint

stereotype

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.177

Interface: A Java Example

public interface SoundFromSpaceListener extends EventListener {
void handleSoundFromSpace(SoundFromSpaceEventObject sfseo);

}

public class SpaceObservatory implements SoundFromSpaceListener
public void handleSoundFromSpace(SoundFromSpaceEventObject sfseo) {

soundDetected = true;
callForPressConference();

}

Can you draw a UML diagram corresponding to this?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 60

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.178

Package Diagrams: Standard Elements

• Façade — only a view on some other package.

• Framework — package consisting mainly of patterns.

• Stub — a package that serves as a proxy for the public
contents of another package.

• Subsystem — a package representing an independent part of
the system being modeled.

• System — a package representing the entire system being
modeled.

Is <<import>> transitive?
Is visibility transitive?
Does <<friend>> apply to all types of visibility: +, -, #?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.179

Dependency –Among Objects

• 3 Stereotypes of Dependency in Interactions among Objects:
 become: the target is the same object as the source but at a later point in

time and with possibly different values, state, or roles
 call: the source operation invokes the target operation
 copy: the target object is an exact, but independent, copy of the source

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.180

State Machine Diagram
• UML state machine diagrams depict the various states that an

object displays.

• And the transitions between those states

• State diagrams show the change of an object over time

• Very useful for concurrent and real-time systems

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 61

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.181

State Machine Diagram Notations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.182

State Machine Diagram (Login)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.183

State Machine
• “The state machine view describes the dynamic behavior of

objects over time by modeling the lifecycles of objects of each
class.

• Each object is treated as an isolated entity that communicates
with the rest of the world by detecting events and responding to
them.

• Events represent the kinds of changes that objects can detect...
Anything that can affect an object can be characterized as an
event.”

- The UML Reference Manual, [Rumbaugh,99]

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 62

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.184

State Chart Diagram
• It shows a machine consisting of states, transitions,

events and activities.

• It addresses the dynamic view of the system.

• It is depicted as follows in rational rose.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.185

State Diagram Features
• Event – something that happens at a specific point
 Alarm goes off

• Condition – something that has a duration
 Alarm is on
 Fuel level is low

• State – an abstraction of the attributes and
relationships of an object (or system)
 The fuel tank is in a too low level when the fuel level is

below level x for n seconds

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.186

State Diagram Features
• State. A condition during the life of an object in which it satisfies

some condition, performs some action, or waits for some event.

• Event. An occurrence that may trigger a state transition. Event
types include an explicit signal from outside the system, an
invocation from inside the system, the passage of a designated
period of time, or a designated condition becoming true.

• Guard. A boolean expression which, if true, enables an event to
cause a transition.

• Transition. A transition represents the change from one state
to another:

• Action. One or more actions taken by an object in response to a
state change.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 63

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.187

Composite States

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.188

State Chart Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.189

State Diagram- Case Study

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 64

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.190

Object Diagram
• Object diagram is a pictorial representation of the

relationships between the instantiated classes at any
point in time.

• It’s depicted as follows in Rational Rose-

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.191

Object Diagram Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.192

Object Diagram Example

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 65

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.193

Activity Diagram
• Activity diagrams are typically used for business process

modeling

• For modeling the detailed logic of a business rule

• Model the internal logic of a complex operation

• An activity diagram is a special case of a state chart diagram in
which states are activities (“functions”)

• Activity diagrams are the object-oriented equivalent of flow charts
and data flow diagrams (DFDs)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.194

Activity Diagram Structuring
These diagrams are similar to state chart diagrams and use similar
conventions, but activity diagrams describe the behavior of a class in
response to internal processing.

Swimlanes, which represent responsibilities of one or more objects
for actions within an overall activity; that is, they divide the activity
states into groups and assign these groups to objects that must
perform the activities.

• Action States, which represent atomic, or non-interruptible,
actions of entities or steps in the execution of an algorithm.

•Action flows, which represent relationships between the different
action states of an entity.

•Object flows, which represent the utilization of objects by action
states and the influence of action states on objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.195

Activity Diagram Notations
• Rounded rectangles represent activities;

• Diamonds represent decisions;

• Bars represent the start (split) or end (join) of concurrent activities;

• A black circle represents the start (initial state) of the workflow;

• An encircled black circle represents the end (final state).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 66

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.196

Activity Diagram Notations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.197

Activity Diagram Notations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.198

Activities
An activity is the specification of a parameterized sequence of behaviour. An
activity is shown as a round-cornered rectangle enclosing all the actions, control
flows and other elements that make up the activity.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 67

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.199

Control Flow
A control flow shows the flow of control from one action to the next. Its notation is a
line with an arrowhead.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.200

Initial Node
An initial or start node is depicted by a large black spot, as shown below.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.201

Final Node
The activity final node is depicted as a circle with a dot inside.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 68

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.202

Object and Object Flows
An object flow is a path along which objects or data can pass. An object is shown as
a rectangle.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.203

Decision and Merge Nodes
Decision nodes and merge nodes have the same notation: a diamond shape. They
can both be named. The control flows coming away from a decision node will have
guard conditions which will allow control to flow if the guard condition is met.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.204

Fork and Join Nodes
Forks and joins have the same notation: either a horizontal or vertical bar (the
orientation is dependent on whether the control flow is running left to right or top to
bottom). They indicate the start and end of concurrent threads of control.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 69

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.205

Steps to create an AD

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.206

Steps to create an AD

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.207

Activity Diagram- ATM Machine

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 70

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.208

Activity Diagram- Quote System

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.209

Activity Diagram- Flight Mgt. System

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.210

Dynamic Diagram Types

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 71

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.211

Interaction Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.212

Interaction Diagram Details
• Using interaction diagrams, we can clarify the sequence of

operation calls among objects used to complete a single use
case

• Collaborations have the added advantage of interfaces and
freedom of layout, but can be difficult to follow, understand and
create.

• Interaction diagrams are used to diagram a single use case.

• When you want to examine the behaviour of a single instance
over time use a state diagram, and if you want to look at the
behaviour of the system over time use an activity diagram.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.213

Sequence Diagram

• The sequence diagram describes the flow of messages being
passed from object to object.

The purposes of interaction diagram can be describes as:
• To capture dynamic behavior of a system.
• To describe the message flow in the system.
• To describe structural organization of the objects.
• To describe interaction among objects.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 72

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.214

Sequence Diagram Elements
• Class roles, which represent roles that objects may play within the

interaction.

• Lifelines, which represent the existence of an object over a
period of time.

• Activations, which represent the time during which an object is
performing an operation.

• The white rectangles on a lifeline are called activations and
indicate that an object is responding to a message. It starts when
the message is received and ends when the object is done handling
the message.

• Messages, which represent communication between objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.215

Messages
• An interaction between two objects is performed as a message

sent from one object to another (simple operation call, Signaling,
RPC)

• If object obj1 sends a message to another object obj2 some link
must exist between those two objects .

• A message is represented by an arrow between the life lines of two
objects.

 Self calls are also allowed

 The time required by the receiver object to process the message
is denoted by an activation-box.

• A message is labeled at minimum with the message name.

 Arguments and control information (conditions, iteration) may
be included.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.216

Message to Self
• A message that an object sends itself can be shown as follows:

• Keep in mind that the purpose of a sequence diagram is to show
the interaction between objects, so think twice about every self
message you put on a diagram.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 73

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.217

Asynchronous Messages

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.218

Return Values
• Optionally indicated using a dashed arrow with a label

indicating the return value.
 Don’t model a return value when it is obvious what is

being returned, e.g. getTotal()
 Model a return value only when you need to refer to it

elsewhere, e.g. as a parameter passed in another
message.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.219

Object Creation

An object may create another object via a <<create>> message.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 74

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.220

Object Destruction
• An object may destroy another object via a <<destroy>>

message.
 An object may destroy itself.

 Avoid modeling object destruction unless memory management
is critical.

:A :B

<<destroy>>

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.221

Creation and Destruction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.222

Repeated Interaction
• When a message is prefixed with an asterisk (the '*'-symbol), it

means that the message is sent repeatedly.
• A guard indicates the condition that determines whether or not the

message should be sent (again). As long as the condition holds,
the message is repeated.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 75

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.223

Components: alt/else

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.224

Components: option

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.225

Components: loop

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 76

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.226

Sequence Diagram Notations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.227

Sequence Diagram- Search Engine

:User

ECDSH's
main web page

input search criteria

display
pick up a disk

Deta iled info
page

Database

search songs/disks by criteria

sumbit

verifyreturn

load page
sumbit

returndisplay
verify

T im e

see deta iled info

Seacrh
engine

search det. in fo

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.228

Sequence Diagram- OMS

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 77

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.229

Sequence Diagram- Summary

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.230

Collaboration/ Communication Diagram

 Collaboration diagrams model the interactions between objects.

 This type of diagram is a cross between an object diagram and a
sequence diagram.

 Unlike the Sequence diagram, which models the interaction in a
column and row type format, the Collaboration diagram uses the
free-form arrangement of objects as found in an Object diagram.

 This makes it easier to see all interations involving a particular
object.

 Here in collaboration diagram the method call sequence is
indicated by some numbering technique as shown below.

 The number indicates how the methods are called one after
another.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.231

Communication Diagram
• The method calls are similar to that of a sequence diagram. But the

difference is that the sequence diagram does not describe the object
organization where as the collaboration diagram shows the object
organization.

• If the time sequence is important then sequence diagram is used
and if organization is required then collaboration diagram is used.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 78

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.232

Communication Diagram Elements

• Collaboration Diagrams describe interactions among classes and
associations. These interactions are modeled as exchanges of
messages between classes through their associations.
Collaboration diagrams are a type of interaction diagram.
Collaboration diagrams contain the following elements.

• Class roles, which represent roles that objects may play within
the interaction.

• Association roles, which represent roles that links may play
within the interaction.

• Message flows, which represent messages sent between objects
via links. Links transport or implement the delivery of the message.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.233

Communication Diagram Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.234

Communication Diagram- OMS

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason
U3. 79

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U3.235

Sequence vs. Communication
 Semantically both are the same

 Express different sides of the model

 Sequence diagram expresses time ordering

 Collaboration diagram is used to define class behavior

