
MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.1

OBJECT ORIENTED
ANALYSIS and DESIGN

Project Management &
Inception &

Analysis
UNIT II

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.2

Learning Objectives
Project Management & Inception Phase

Analysis
• Introduction
• The requirements model
• The analysis model
UML: Use case Diagram, Class Diagram, Object Diagram,

Activity Diagram, Sequence Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.3

Project Management
& Inception phase

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.4

A lot of computer science people think:

“I don’t want to code for the rest of my life.
Maybe I would enjoy managing the project.”

What do you think are some of the tasks you would
be doing if you were a project manager?

Would you still code?

Would you miss coding ?

Is it important the project manager be able to
code?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.5

What is Project Management?
Project management encompasses all the activities
needed to plan and execute a project:
 Deciding what needs to be done

 Estimating costs

 Ensuring there are suitable people to undertake the
project

 Defining responsibilities

 Scheduling

 Making arrangements for the work

 continued ...

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.6

What is Project Management?
 Directing

 Being a technical leader

 Reviewing and approving decisions made by others

 Building morale and supporting staff

 Monitoring and controlling

 Co-ordinating the work with managers of other projects

 Reporting

 Continually striving to improve the process

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.7© Chapter 11anaging the 7

Software Process Models
Software process models are general approaches for
organizing a project into activities.
 Help the project manager and his or her team to decide:
What work should be done;

In what sequence to perform the work.

 The models should be seen as aids to thinking, not rigid
prescriptions of the way to do things.

 Each project ends up with its own unique plan.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.8

The waterfall model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.9

The waterfall model
The classic way of looking at S.E. that accounts for the
importance of requirements, design and quality
assurance.
 The model suggests that software engineers should work

in a series of stages.

 Before completing each stage, they should perform quality
assurance (verification and validation).

 The waterfall model also recognizes, to a limited extent,
that you sometimes have to step back to earlier stages.

 QUESTION: What is wrong with getting all the
requirements completed upfront (like I have done for
you with our project)?

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.10

Limitations of the waterfall model
 The model implies that you should attempt to complete a

given stage before moving on to the next stage
Does not account for the fact that requirements constantly

change.

It also means that customers can not use anything until the
entire system is complete.

 The model makes no allowances for prototyping.

 It implies that you can get the requirements right by
simply writing them down and reviewing them.

 The model implies that once the product is finished,
everything else is maintenance.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.11

Reengineering
Periodically project managers should set aside some
time to re-engineer part or all of the system
 The extent of this work can vary considerably:
Cleaning up the code to make it more readable.

Completely replacing a layer.

Re-factoring part of the design.

 In general, the objective of a re-engineering activity is to
increase maintainability.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.12

Cost estimation
To estimate how much software-engineering
time will be required to do some work.
 Elapsed time
The difference in time from the start date to the

end date of a task or project.

 Development effort
The amount of labour used in person-months or

person-days.

To convert an estimate of development effort to
an amount of money:

You multiply it by the weighted average cost
(burdened cost) of employing a software
engineer for a month (or a day).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.13

Question
Assume that I gave your group the task of figuring
out how much time you needed to code your project
because you were going sell it online.

What are some techniques/ideas/concerns/thoughts
you have for estimating the timing of a large project?

i.e. How do you decide/figure out how long it takes
you to do an assignment?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.14

Principles of effective cost estimation

Principle 1: Divide and conquer.
 To make a better estimate, you should divide the project

up into individual subsystems.

 Then divide each subsystem further into the activities that
will be required to develop it.

 Next, you make a series of detailed estimates for each
individual activity.

 And sum the results to arrive at the grand total estimate
for the project.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.15

Principles of effective cost estimation
Principle 2: Include all activities when making
estimates.
 The time required for all development activities must be

taken into account.

 Including:
Prototyping

Design

Inspecting

Testing

Debugging

Writing user documentation

Deployment.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.16

Principles of effective cost estimation

Principle 3: Base your estimates on past
experience combined with knowledge of the
current project.
 If you are developing a project that has many

similarities with a past project:
 You can expect it to take a similar amount of work.

 Base your estimates on the personal judgement of
your experts

or

 Use algorithmic models developed in the software
industry as a whole by analyzing a wide range of
projects.
They take into account various aspects of a project’s

size and complexity, and provide formulas to compute
anticipated cost.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.17

Algorithmic models
Allow you to systematically estimate development
effort.
 Based on an estimate of some other factor that you can

measure, or that is easier to estimate:
The number of use cases

The number of distinct requirements

The number of classes in the domain model

The number of widgets in the prototype user interface

An estimate of the number of lines of code

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.18

Algorithmic models
 A typical algorithmic model uses a formula like the

following:
COCOMO:

Functions Points:
E = a + bNc

S = W1F1 + W2F2 +W3F3 + …

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.19

Principles of effective cost estimation

Principle 4: Be sure to account for differences when
extrapolating from other projects.
 Different software developers

 Different development processes and maturity levels

 Different types of customers and users

 Different schedule demands

 Different technology

 Different technical complexity of the requirements

 Different domains

 Different levels of requirement stability

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.20

Principles of effective cost estimation

Principle 5: Anticipate the worst case and plan for
contingencies.
 Develop the most critical use cases first
If the project runs into difficulty, then the critical features

are more likely to have been completed

 Make three estimates:
Optimistic (O)

Imagining a everything going perfectly

Likely (L)
Allowing for typical things going wrong

Pessimistic

Accounting for everything that could go wrong

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.21

Principles of effective cost estimation

Principle 6: Combine multiple independent
estimates.
 Use several different techniques and compare

the results.
 If there are discrepancies, analyze your

calculations to discover what factors causing the
differences.

 Use the Delphi technique.
Several individuals initially make cost estimates in

private.
They then share their estimates to discover the

discrepancies.
Each individual repeatedly adjusts his or her

estimates until a consensus is reached.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.22

Principles of effective cost estimation

Principle 7: Revise and refine estimates as work
progresses
 As you add detail.

 As the requirements change.

 As the risk management process uncovers problems.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.23

Skills needed on a team
 Architect

 Project manager

 Configuration management and build specialist

 User interface specialist

 Technology specialist

 Hardware and third-party software specialist

 User documentation specialist

 Tester

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.24

Project Scheduling and Tracking
 Scheduling is the process of deciding:
In what sequence a set of activities will be performed.

When they should start and be completed.

 Tracking is the process of determining how well you are
sticking to the cost estimate and schedule.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.25

Some Basic Project Management Terminology

•Deliverable: some concrete thing which is to be delivered, to the
client or internally to the development team; e.g.

 Specifications reports
 Executable program
 Source code

•Task/Activity: something we have to do during the project; e.g.
 Defining user requirements
 Coding a module
 Doing system testing

•Each task or activity will take some length of time
 Referred to as duration of task
 Sometimes measured in days, weeks, etc.
 Sometimes measured in person-days, person-weeks, etc.
 Person-day = number of people X number of days

 Example: 12 person days for writing all code could mean 1
person 12 days or 4 people 3 days

Note: not always true that a task that takes 1 programmer 12
days would take 12 programmers 1 day

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.26

Dependencies and Milestones
•For a given task or activity, may be impossible to start it without some
other task(s) or activity(ies) having been completed; e.g.

 Cannot start coding without completing design
 Cannot start system testing without completing code integration and

test plan
•If task B cannot start without A being completed, we say

 B depends on A
 There is a dependency between A and B

•Milestone: some achievement which must be made during the project; e.g.
 Delivering some deliverable
 Completing some task

•Note, delivering a deliverable may be a milestone, but not all milestones
are associated with deliverables

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.27

Setting and Making Deadlines
•Deadline time by which milestone has to be met

 Some deadlines are set by the client
 Others are set by us on project to make sure project stays on

track
•To set a deadline for completing task T, we must consider how long it
will take to:

 Complete the tasks that task T depends on
 Complete task T itself

•If we miss a deadline, we say (euphemistically) “the deadline has
slipped”

 This is virtually inevitable
•Important tasks for project managers

 Monitor whether past deadlines have slipped
 Monitor whether future deadlines are going to slip
 Allocate or reallocate resources to help make deadlines

•PERT chart and Gantt charts help project managers do these things
(among others)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.28

PERT Charts
•PERT = Project Evaluation and Review Technique
•PERT chart = graphical representation of the scheduling of events
in a project
•Sample PERT Chart:

•A PERT chart is a graph
 Edges are tasks/activities that need to be done
 Nodes are the events or milestones

•Task edge T from event node E1 to event node E2 signifies:
 Until event E1 happens, task T cannot be started
 Until task T finishes, event E2 cannot happen

•Events often simply represent completion of tasks associated with
arrows entering it

1 0
0

2 4
4

3 1
0

6

4 7
7

A
4

B
2

C
3 5 1

0

10D
3

6 1
3

1
3

E
3

F3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.29

PERT Chart Task Edges

•Parts of a task/activity edge

•Task letter:

 Often keyed to a legend to tell which task it represents

•Task duration = how long (e.g. days, hours) task will take

D

5

Task
duration

Task letter

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.30

PERT Chart Event Nodes

5
9

19

Event Number:

Sequence number
assigned

Only task edges
indicate
dependencies

Earliest Completion
Time (ECT):

Earliest time this event
can be achieved, given

durations and
dependencies

Latest Completion Time (LCT):

Latest time that this event could be safely achieved

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.31

Building a PERT Chart

1. Make a list of all project tasks (and events if possible).

2. Find interrelated task dependencies (what task has to be
completed before other tasks)

3. Draw initial PERT without durations, ECTs or LCTs

4. Estimate duration of each task

5. Fill in durations

6. Calculate ECTs and LCTs

•We will do this for an example system:

 Generic software system with 3 modules

Steps:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.32

Example: Generic Software Project
TASK ID Task Description

A Specification
B High Level Design
C Detailed Design
D Code/Test Main module
E Code/Test DB module
F Code/Test UI module
G Write test plan
H Integrate/System Test
I Write User Manual
J Typeset User Manual

• To start PERT chart: identify dependencies between tasks

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.33

Dummy Tasks
Sometimes it is necessary to use dummy tasks:

 Shows the dependency between 2 events where no activity
is performed

Example:

 Events 3, 4 signify the compilation of separate modules.

 Create an event 5 to signify “all modules compiled together”.
Denote dummy tasks using dash lines

3
9

10

4
9

12

5
9

12

T

3

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.34

Example: Tasks with Dependencies

To start the PERT, identify the dependencies amongst tasks

TASK ID Task Description Preceed ID Succ. ID

A Specification 1 2
B High Level Design 2 3
C Detailed Design 3 4
D Code/Test Main 4 5
E Code/Test DB 4 6
F Code/Test UI 4 7
G Write test plan 4 8

Dummy Task 5 8
Dummy Task 6 8
Dummy Task 7 8

H Integrate/System Test 8 9
I Write User Manual 8 10

J Typeset User Manual 10 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.35

Software Example: Skeleton PERT Chart

1
A

2
B

3
C

4
E

5

6

7

8
H

9

1

JF

D

I

G

Note: dummy tasks connecting events 5, 6 and 7
to 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.36

Estimating Durations
Suggestions for estimating durations of tasks:

 Don’t just make up a number

 Look at previous similar tasks from other projects and use those as
guidelines

 Try to identify factors such as difficulty, skill level

Each weighting factor will help you make a better
estimate

Factors to consider:

 Difficulty of task

 Size of team

 Experience of team

 Number, attitude and availability of end users

 Management commitment

 Other projects in progress

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.37

PERT Chart With Durations

1
A

2
B

3
C

4
E

5

6

7

8 H 9

1

JF

D

I

G

3 2 2

7

2

3

6

2 1

5

•Say we have estimated durations of all tasks (in days)

•New PERT chart, with durations filled in:

•Note, dummy tasks (dashed lines) always have a duration of zero

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.38

Calculating ECTs
ECT = earliest time event can be completed

To calculate:

 For an event not depending on others: ECT = 0

Usually this is the first event

 For an event E depending on one or more others:

Calculate ECTs of event(s) that E depends on

Add duration(s) of task(s) leading to E

 If E depends on more than one event, take MAX

Proceed left to right () through the chart

Exercise: calculate the ECT for our example.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.39

Calculating LCT
LCT = latest time event can be completed, while still finishing last ask at indicated time

To calculate:

 For an event which no other events depend on: LCT = ECT

Generally there will only be one such event

 For an event E which one or more others depend on:

 Calculate LCTs of event(s) that depend on E

 Subtract duration(s) of task(s) leading from E

 If more than one event depends on E, take MINIMUM

Proceed right to left () through PERT chart

Exercise: calculate LCT for our example

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.40

Critical Path

Red line is the critical path

What does it represent?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.41

Uses of PERT Charts
We can use PERT charts for:

 Determining the estimated time to complete a project

 Deriving actual project dates

 Allocating resources

 Identifying potential and current problems (is one task behind schedule?, can we
shuffle people?)

Critical Path: Path through chart such that if any deadline slips, the final deadline slips (where
all events have ECT = LCT (usually there is only one)

In software example:

 Task I is not on the critical path: even if we don’t finish it until time 18, we’re still okay

 Task D is on the critical path: if we don’t finish it until for example, time 16, then:

We can’t start task H (duration 3) until time 16

 So we can’t complete task H until time 21

We can use PERT charts for

 Identifying the critical path

 Reallocating resources, e.g. from non-critical to critical tasks.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.42

PERT Chart Exercise

Task Prec Tasks Description Time(hrs)

A none decide on date for party 1
B A book bouncy castle 1
C A send invitations 4
D C receive replies 7
E D buy toys and balloons 1
F D buy food 3
G E blow up balloons 2
H F make food 1
I H, G decorate 1
J B get bouncy castle 1
K J, I have party 1
L K clean up 4
M K send back bouncy castle 1
N L send thank you letters 3
O M donate unwanted gifts 3

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.43

Gantt Charts
•Graphical Representation of a schedule

•Helps to plan, coordinate and track specific tasks in a
project

•Named after Henry Gantt who invented them in 1917

•Depicts some of the same information as on a PERT
chart

•Also depicts new information

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.44

Example Gantt Chart
TASKS

A Study current email system
B Define end-user requirements
C Design Class diagram
D Acquire computer technology
E Plan & code email modules
F Acceptance test new system
G Deliver new system

1 2 3 4 5 6 7 8 9 10 11 12
TodayQuestions: From the above, can you guess:

•Which, if any, tasks should have been completed by today and aren’t
even started? ______

•Which, if any, tasks have been completed? ______

•Which, if any, tasks have been completed ahead of schedule:?

•Which, if any, tasks are on or ahead of schedule? _________

•Which, if any, tasks are behind schedule? ________

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.45

Building and Using a Gantt Chart

Steps for building a Gantt Chart

1. Identify the tasks to be scheduled
2. Determine the durations of each task
3. List each task down the vertical axis of chart

1. In general, list tasks to be performed first at the top and
then move downward as the tasks will happen

4. Use horizontal axis for the dates
5. Determine start and finish dates for activities

1. Consider which tasks must be completed or partially
completed before the next task

To use the Gantt chart to report progress:

 If the task has been completed, completely shade in the bar
corresponding to the task

 If the task has been partially completed, shade in the
percentage of the bar that represents the percentage of the
task that has been completed

 Unshaded bars represents tasks that have not been started.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.46

Gantt Chart: Exercise

Task Prec Tasks Description Time(hrs)

A none decide on date for party 1
B A book bouncy castle 1
C A send invitations 4
D C receive replies 7
E D buy toys and balloons 1
F D buy food 3
G E blow up balloons 2
H F make food 1
I H, G decorate 1
J B get bouncy castle 1
K J, I have party 1
L K clean up 4
M K send back bouncy castle 1
N L send thank you letters 3
O M donate unwanted gifts 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.47

Gantt Chart: Exercise
Draw the Gantt chart using the following criteria:

 label hours 0 to 30 across the horizontal axis

 Mark a review stage at hour 14 to monitor the progress

 Assume and illustrate that tasks A, B, C and D have been
completed at hour 14

 State which tasks are ahead and which tasks are behind
schedule

 NOTE: if you are using MS Project and want a different
unit of time, just type 2 hours (instead of 2 days). ALSO, if
you want to have a milestone, like Handing in Group
Assignment 1, then give it a ZERO duration.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.48

PERT vs. Gantt
PERT chart

 All us to show dependencies explicitly

 Allow us to calculate critical path

 Can tell us how one task falling behind affects other tasks
Gantt charts

 Allow us to record progress of project

 Allow us to see what tasks are falling behind

 Allow us to represent overlapping tasks
Project Management Tools, e.g. MS Project

 Allow us to specify tasks, dependencies, etc

 Allow us to specify progress on tasks, etc

 Can generate either PERT or Gantt charts (whichever we want) from
data entered

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.49

Difficulties and Risks in Project Management
 Accurately estimating costs is a constant challenge
Follow the cost estimation guidelines.

 It is very difficult to measure progress and meet
deadlines
Improve your cost estimation skills so as to account for the

kinds of problems that may occur.
Develop a closer relationship with other members of the

team.
Be realistic in initial requirements gathering, and follow an

iterative approach.
Use earned value charts to monitor progress.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.50

Difficulties and Risks in Project Management

 It is difficult to deal with lack of human
resources or technology needed to
successfully run a project
When determining the requirements and the project

plan, take into consideration the resources available.

If you cannot find skilled people or suitable
technology then you must limit the scope of your
project.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.51

Difficulties and Risks in Project Management

 Communicating effectively in a large project is hard
Take courses in communication, both written and oral.

Learn how to run effective meetings.

Review what information everybody should have, and
make sure they have it.

Make sure that project information is readily available.

Use ‘groupware’ technology to help people exchange the
information they need to know

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.52

Difficulties and Risks in Project Management

 It is hard to obtain agreement and commitment
from others
Take courses in negotiating skills and leadership.

Ensure that everybody understands
The position of everybody else.

The costs and benefits of each alternative.

The rationale behind any compromises.

Ensure that everybody’s proposed responsibility is
clearly expressed.

Listen to everybody’s opinion, but take assertive
action, when needed, to ensure progress occurs.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.53

Review
Draw a PERT Chart for the following activities:

Activity Description Predecessor Estimated
Time

A Drive home None 0.5

B Wash Clothes A 4.0

C Pack B 0.5

D Go to bank A 1.0

E Pay bill D 0.5

F Pack car C,E 0.5

G Drive to bus F 0.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.54

• Object-oriented software engineering (OOSE) proposes two
analysis models for understanding the problem domain

• Requirements Model

• Analysis Model

The requirements model serves two main purposes

• To delimit the system

• To define the system functionality

OOSE Analysis Models

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.55

• Conceptual model of the system is developed using:

• Problem domain objects

• Specific interface descriptions of the system (if
meaningful to the system being developed)

⊗ The system is described as a number of use cases that are
performed by a number of actors

• Actors constitute the entities in the environment of the
system

• Use cases describe what takes places within the system

• A use case is a specific way of using the system by
performing some part of the system functionality

Requirement Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.56

Requirement Model

Class..
OK
OK

Fail

Domain
Object Model

Analysis
model

Design Model Implementation
Model

Testing
Model

Use Case Model

May be expressed in
terms of

Structured by

Realiz ed by

Impleme nted by

Tested in

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.57

 The requirements model for the will comprise three main
models of representation:

• The use case model

• The problem domain model

• User interface descriptions

Requirement Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.58

Requirement Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.59

 In order to identify use cases to be performed in the system,
we need to first identify system users

 The system users are referred to as actors.

 Actors model the prospective ‘users’ of the system.

 An actor is a user type or category. When an actor does
something, the actor acts as an occurrence of that type.

 An actor may represent a person or another system
interacting with the intended system

Actors

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.60

One person can instantiate (play the roles of) several
different actors

 Actors define the roles that users can play

 Actors model anything that needs to exchange information
with the system.

 Actors can model human users but they can also model
other systems communicating with the intended system

Actors and Role Play

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.61

 Actors constitute anything external to the system

 Identifying all the relevant actors for a system may require
several iterations

General guidelines include the following:

• Ask yourself why the system is been developed

• Who are people the system is intended to help?

• What other systems are likely to interface with new
system?

Identifying Actors

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.62

 Actors who use the system directly (or in their daily work)
are known as Primary actors

 Primary actors are associated with one or more of the main
tasks of the system

 Primary actors govern the system structure. Thus when
identifying use cases, we first start with the primary actors

 Actors who are concerned with supervising and
maintaining the system are called secondary actors

 The distinction between the primary and secondary actors
has a bearing on the system structuring

Primary and Secondary Actors

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.63

 After the actors have been identified the next step is to
define the functionality of the system. This is done by
specifying use cases.

 Actors are a major tool in finding use cases. Each actor will
perform a number of use cases in the system.

 Each use case constitutes a complete course of events
initiated by an actor and specifies the interaction that takes
place between the actor and the system

 A use case is a special sequence of related transactions
performed by an actor and the system in dialogue.

 The collective use cases should specify all the existing
ways of using the system

Use Cases

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.64

Recycling Machine Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.65

Recycling Machine Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.66

Recycling Machine Example

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.67

Use Case Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.68

Use Case Description

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.69

Case Study
Consider a telephone exchange:

• One actor is a subscriber and a typical use case to make a
local telephone call. This use starts when the subscriber lifts
his telephone receiver.

• Another use case is to order a wake-up call.

• Both use cases start when the subscriber lifts the telephone.

• However, when the subscriber lifts his telephone, its not
obvious which use case he would like to perform.

• Thus uses cases may begin in a similar manner but we may
not know which use case is to be carried out until its over.

• The actor should be viewed as someone who initiates a
course of events that eventually results in a complete use
case. Rather than someone who demands that a use case be
performed.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.70

Use Case Relationships- Include

• Use case include is a directed relationship between two use
cases which is used to show that behaviour of
the included use case (the addition) is inserted into
the behaviour of the including (the base) use case.

• The include relationship could be used:
 To simplify large use case by splitting it into several use cases,

 To extract common parts of the behaviours of two or more use cases.

• A large use case could have some behaviours which might be
detached into distinct smaller use cases to be included back
into the base use case using the UML include relationship.

• The purpose of this action is modularization of behaviours,
making them more manageable.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.71

Use Case Relationships- Extend

• Extend is a directed relationship that specifies how and when
the behaviour defined in usually supplementary
(optional) extending use case can be inserted into
the behaviour defined in the extended use case.

• Extended use case is meaningful on its own, it
is independent of the extending use case.

• Extending use case typically defines optional behaviour that
is not necessarily meaningful by itself.

• The extension takes place at one or more extension points
defined in the extended use case.

• Extend relationship is shown as a dashed line with an open
arrowhead directed from the extending use case to
the extended (base) use case.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.72

Use Case Relationships

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.73

Banking System Use Case Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.74

A Comparative Study

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.75

Requirement Engineering

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.76

Requirement Elicitation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.77

Requirement Analysis

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.78

Requirement Analysis Principles

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.79

Problem Domain Object Model

Provides a logical view of the system, which is
used to specify the use cases for use case
diagrams

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.80

Object Oriented Analysis

 Identifying objects: Using concepts, CRC cards, stereotypes,
etc.

 Organising the objects: classifying the objects identified, so
similar objects can later be defined in the same class.

 Identifying relationships between objects: this helps to
determine inputs and outputs of an object.

 Defining operations of the objects: the way of processing
data within an object.

 Defining objects internally: information held within the
objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.81

Object Oriented Analysis Approaches

1.Analysis model with stereotypes (Jacobson)

 Boundaries, entities, control.

2.CRC cards (Beck, Cunningham)

 Index cards and role playing.

3.Conceptual model (Larman)

 Produce a “light” class diagram.

A good analyst knows more than one strategy and even
may mix strategies

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.82

The Analysis Phase
• Begins with a problem statements generated during

system conception.
• In software engineering, analysis is the process of

converting the user requirements to system specification
(system means the software to be developed).

• System specification, also known as the logic structure, is
the developer’s view of the system.

• Function-oriented analysis
 Concentrating on the decomposition of complex

functions to simply ones.
• Object-oriented analysis
 Identifying objects and the relationship between

objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.83

⊗ The analysis model gives a conceptual configuration of the
system.

It consists of:
• The entity objects

• Control objects

• Interface objects

⊗ The analysis model forms the initial transition to object-
oriented design

Analysis Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.84

Dimensions of Analysis Model

Dimensions of the analysis model

Behavior

Information

presentation

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.85

Analysis Model- Objects

Entity object

 Information about an entity object is stored even after a
use case is completed.

Control object

 A control object shows functionality that is not contained in
any other object in the system

Interface object

 Interface objects interact directly with the environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.86

Requirement Model Structured in Analysis
Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.87

Design Model

• Developed based on the analysis model
 Implementation environment is taken into consideration

• The considered environment factors includes
 Platform

 Language

 DBMS

 Constraints

 Reusable Components

 Libraries

 so on..

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.88

Design Model

• Design objects are different from analysis objects

• Models
 Design object interactions

 Design object interface

 Design object semantics
(i.e., algorithms of design objects’ operations)

• More closer to the actual source code

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.89

Design Model Dimensions

Dimensions of the Design model

Behavior

Information

presentation

Implementation

Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.90

Design Model
• Use block term in place of object
• Sent from one block to another to trigger an execution
• A typical block is mapped to one file
• To manage system abstractly subsystem concept is

introduced
• Analysis Model is viewed as conceptual and logical

model, whereas the design model should take as closer to
the actual source code

• Consist of explained source code

• OO language is desirable since all fundamentals concepts
can easily be mapped onto language constructs

• Strongly desirable to have an easy match between a block
and the actual code module

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.91

Implementation Model

• Consists of annotated source code.

• Object oriented language is desirable since all
fundamental concepts can be easily mapped
onto language constructs.

• Strongly desirable to have an easy match between
a block and the actual code module.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.92

Test Model

Fundamental concepts are test specifications and
the test results

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.93

Analysis

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.94

Learning Objectives
• The Analysis Phase
• Analysis Model
• Meta Model of Analysis Model
• Analysis workflow details
• Analysis model-rules of thumb
• Object Oriented Analysis
• Three ways to do Object Oriented Analysis
• Conceptual Model – Overview
• The Concept Category List
• Finding Concepts with

Noun Phrase Identification

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.95

Learning Objectives
• Exercise
• How to make a conceptual model
• Drawing of Concepts
• Adding Associations
• Adding Attributes
• The Object Oriented Analysis Model (Jacobson)
• Subsystem
• Good Analysis class
• Bad Analysis class

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.96

• The analysis model is intended to define a first structure of
the system to be designed in the form of a class and/or an
object diagram.

• The analysis model, gives the system its initial structure
which is subject to further refinement in later development
steps.

• According to the Unified Process, the development of the
analysis model has to occur on the basis of the use case
specifications.

• The analysis model has to be capable to fulfill the functional
requirements stated in the use case descriptions.

Analysis Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.97

Meta Model of Analysis Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.98

• 50 to 100 analysis classes in analysis model in an average
system

• Include classes from the vocabulary of the problem domain

• Do not make implementation decisions

• Focus on classes and associations- minimize coupling

• Use inheritance whenever needed

• Keep it simple

Analysis Model- Rule of Thumb

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.99

The Object Oriented Analysis Model (Jacobson)

• An analysis model is used to represent the system
specification.

• To achieve robustness and stability the model must be
implementation environment independent.

• Any change in the implementation environment will not affect
the logical structure of the system.

• The model must be able to capture information, behaviour
(operations) and presentation (inputs and outputs).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.100

behaviour

information

presentation

Behaviour - Information - Presentation

• The model is defined in information - behaviour -
presentation space.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.101

Entity

Boundary / Interface

Control

On information – behaviour plane and

incline to information axis

On information – behaviour

plane but incline towards
behaviour axis

On the presentation axis

OO Analysis Model Syntax

• Within an use case, we employ three types of objects
• In Rational Rose, known as three types of entities or

stereotypes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.102

Entity, Control, Interface

behaviour

information

presentation

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.103

Pragmatics of OO Analysis Model

Identifying interface objects

 functions directly related to actors.

Identifying entity objects

 information used in an use case and functions of
processing the information.

Identifying control objects

 functions that link interface objects and entity
objects

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.104

Semantics of OO Analysis Model

• An entity object models information that shows the
state of a system.
 This information is often used to record the effects of

operations
 Related to the behaviour of the system.

• A boundary/interface object models inputs and
outputs and operations that process them.

• A control object models functionality/operations
regarding to validate and decide whether to process
and pass information from the interface object to the
entity object or the way around.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.105

 Interface objects: Mediate the communication with the
actors. They directly correspond to the actor/system
interfaces.

 Entity objects: are objects to hold information. They often
correspond to the objects in reality and can be found by
conceptual domain modeling.

 Control objects: are those objects which coordinate and
allocate work between the different objects in fulfillment of a
particular use case.

Semantics of OO Analysis Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.106

Noun-Verb Conjunction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.107

Analysis Model Structure

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.108

Another Representation…

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.109

Recycling Machine Case Study

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.110

Recycling Machine Case Study

Identifying interface objects
 Printer, Customer Panel

Identifying entity objects
 Long term information: Crate, Bottle, Can
 Superclass: Deposit item
 Short term information: Receipt basis

Identifying control objects
 Deposit item receiver

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.111

Recycling machine: Interface Objects

Customer panel Receipt printer

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.112

Recycling machine: Entity Objects

Receipt basis Deposit items

Can Bottle Crate

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.113

Link Interface and Entity Objects by a Control
Object

Customer panel Receipt printer

Receipt basis Deposit items

Can Bottle Crate

Deposit item receiver

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.114

ATM Machine Analysis Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.115

Telephonic System Analysis Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.116

Television Control Analysis Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.117

Subsystem in Analysis Model
• Package the objects so that complexity is reduced

• Lowest level is service package

• Little communication between different subsystem as
possible

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.118

Subsystem in Analysis Model

• The aim is to have strong functional coupling
within the subsystem and a weak coupling
between subsytem

 Whether two objects are strongly functionally?
 Will changes in one object lead to changes in the other

object?
 Do they communicate with the same actor?
 Are both of them dependent on a third object, such as an

interface object or an entity object?
 Does one object perform several operations on the other?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.119

Subsystem in Recycling machine

Receipt printer

Customer panel

Receipt basis
Deposit items

Deposit item receiver
Deposit

Report Generator

Operator Panel

Administrator
Alarmist

Alarm Device

Alarm

extends

Can Bottle
Crate

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.120

Good Analysis Class Characteristic

• Name reflects its goal

• Hard abstraction that models one specific element of the
problem domain

• Maps to a clearly identifiable feature of the problem
domain

• Has a small, well-defined set of responsibilities

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.121

Drawing of Concepts

Customer panel Deposit item receiver

Receipt basis
Deposit item Receipt printer

Can Bottle Crate

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.122

Adding Associations

• If one concept needs to know of a another concept for
some duration they should be linked by an association.

• Also use the Common Association list in order to identify
associations.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.123

Adding Associations

The Deposit item receiver manages
Deposit items:

The items are classified.

Customer panel Deposit item receiver

Receipt basis
Deposit item

Receipt printer

Can Bottle Crate

initiate action

classifies

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.124

• The Deposit item receiver communicates to Receipt
basis:

• Items received and classified are stored.
• It also creates the receipt basis when it is needed for

the first time.

Customer panel Deposit item receiver

Receipt basis
Deposit item

Receipt printer

Can Bottle Crate

initiates action

classifiescreates & inform

Adding Associations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.125

The Receipt basis collects Deposit items.

Customer panel Deposit item receiver

Receipt basis
Deposit item

Receipt printer

Can Bottle Crate

initiates action

classifiescreates & notifies

captures

Adding Associations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.126

• On request by the Customer Panel the Deposit item
receiver initiates printing of a receipt on the printer.

Customer panel Deposit item receiver

Receipt basis
Deposit item

Receipt printer

Can Bottle Crate

initiates action

classifiescreates & notifies

captures prints on

Adding Associations

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.127

• Adding multiplicities

• Only one association here is a 1 to many relationship

• All others are 1 to 1.

Customer panel Deposit item receiver

Receipt basis
Deposit item

Receipt printer

Can Bottle Crate

initiates action

classifiescreates & notifies

captures prints on
1..*

Adding Associations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.128

Adding Attributes

• An attribute is a logical data value of an object.

• Attributes in a conceptual model are simple data values
as

 Boolean, Date, Number, String (Text), Time, Address,
Colour, Price, Phone Numbers, Product Codes, etc.

• Sometimes it is difficult to distinguish between attributed
and concepts

 E.g. Concept “Car” vs. attribute “Reg. Number”.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.129

• The Deposit item has a value.
• Also it will be assigned a number that shows later on the

receipt.

Customer panel Deposit item receiver

Receipt basis
Deposit item
number
value

Receipt printer

Can Bottle Crate

initiates action

classifiescreates & notifies

captures prints on
1..*

Adding Attributes

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.130

• In order to be classified by the Deposit item receiver each item has also
a weight and a size.

• However this is the same for each type of item, but different between
the types.

Customer panel Deposit item receiver

Receipt basis
Deposit item
number
value

Receipt printer

initiates action

classifiescreates & notifies

captures prints on
1..*

Bottle
weight
size

Crate
weight
size

Can
weight
size

Adding Attributes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.131

Conceptual Model

• Representation of concepts in a problem domain.

• In UML it is basically a “class diagram” without
operations.

• It may show

Concepts

Associations

Attributes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.132

The Concept Category List
• physical or tangible

objects
• specifications, designs,

descriptions of things
• places
• transactions
• transaction line items
• roles of people

• abstract noun concepts
• organisations
• events
• processes
• rules and policies
• catalogues
• records
• services
• manuals, books

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.133

Noun Phrase Identification

• Identify the noun and noun expression in textual
descriptions of a problem domain

• Consider them as concepts and attributes.

• Mechanical noun-to-concept mapping isn’t possible

• Words in usual languages are ambiguous (especially
English).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.134

The “return item” Use case-Exercise: Find the Nouns!

• The system controls a recycling machine for returnable
bottles, cans and crates. The machine can be used by
several customers at the same time and each customer can
return all three types of item on the same occasion. The
system has to check, for each item, what type has been
returned.

• The system will register how many items each customer
returns and when the customer asks for a receipt, the
system will print out what was deposited , the value of the
returned items and the total return sum that will be paid to
the customer.

• An operator also … (not in “return item” Use Case)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.135

Case Study: Nouns found in the description

• recycling machine

• bottles, cans, and crates

• customers, customer

• types of item, item, type, returned items

• system

• receipt

• return sum

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.136

Case Study: Discussion of “recycling machine”.

recycling machine

bottles, cans and crates

machine

customers, customer

types of item, item, type, returned
items

system

receipt

return sum

• This concept is the “overall system”

• As we consider only one single use case,

• better to name this concept in the context of
this use case, e.g.

 Deposit item receiver

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.137

Case Study: Discussion of “bottles, cans, and
crates”.

deposit item receiver

bottles, cans, and crates

machine

customers, customer

types of item, item, type returned
items

system

receipt

return sum

• Usually better to use singular and
multiplicities instead of plural.

• As bottle, can and crate have much in
common (they are processed as items),

• they could be generalised to an “item”. We
should remember this for later
(inheritance).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.138

Case Study: Discussion of “machine” and “system”

deposit item receiver

bottle, can, crate

machine

customers, customer

types of item, item, type, returned
items

system

receipt

return sum

“Machine” and “System” mean here
the same, namely the “Recycling
machine”, i.e. the

 Deposit item receiver

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.139

Case Study: Discussion of “customers” and
“customer”.

deposit item receiver

bottle, can, crate

customers, customer

types of item, item, type, returned
items

receipt

return sum

• The customer has already been
identified as an actor.

• They are outside of the system.

• We establish a concept, that interfaces
with the customer (and is inside the
system):

 Customer panel

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.140

Case Study: Discussion of “item” (etc.)

deposit item receiver

bottle, can, crate

customer panel

types of item, item, type, returned
items

receipt

return sum

• The items that are inserted in
the machine.

• Good candidate as
superclass for bottle, can,
crate.

• Let’s call it

 Deposit item

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.141

Case Study: Discussion of “receipt”

deposit item receiver

bottle, can, crate

customer panel

deposit item

receipt

return sum

• The concept that “remembers”
all items inserted in the
machine.

• To distinguish it from the piece
of paper returned to the
customer, call it

 Receipt basis

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.142

Case Study: Discussion of “return sum”

deposit item receiver

bottle, can, crate

customer panel

deposit item

receipt basis

return sum

• The sum that it is returned to the
customer is actually computed by adding
up all values of the items stored in the
receipt basis.

• The sum itself is only a primitive data
value, and may therefore not be
considered as a concept.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.143

Case Study: Discussion of Other Concepts

deposit item receiver

bottle, can, crate

customer panel

deposit item

receipt basis

• These are the concepts identified
by nouns. Did we forget
something?

• Check the
“Concept Category List” !

• The system “interfaces” with the
physical object “printer”, so we add
an interface concept

 Receipt printer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.144

Case Study: Summary of Concepts Identified in
the Analysis

deposit item receiver

bottle, can, crate

customer panel

deposit item

receipt basis

receipt printer

• So far we have identified:

 Concepts

 A generalisation relationship.

• Next step: Finding associations.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.145

Summary - Object Oriented Analysis

The main task is identifying the objects.

Also: Relationships between objects.

Three strategies:
 Conceptual Model (concepts as objects)

 CRC cards (index cards as objects)

 Analysis Model (Stereotypes as objects)

Next step: Design.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.146

Objective Questions
Q1. Define Architecture.

Q2. Justify the statement System Development is a Model Building.

Q3. At what time, you will decide to start System Development.

Q4. In what way specifications can be used?

Q5. Define Conceptual modeling.

Q6. Define block design.

Q7. Define requirement model.

Q8. Define analysis model.

Q9. Define design model

Q10. Define Implementation Model.

Q11. Define Test Model.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.147

Short Questions
Q1. Suggest some heuristics for identifying objects during object oriented

analysis of problem.

Q2. Differentiate between analysis objects with examples.

Q3. Consider air ticket reservation system. Identify entity, control and

interface objects.

Q4. Write short note on Architecture.

Q5. Differentiate Method and Process

Q6. What are the five different models for system development, as per the

Jacobson approach?

Q7. How models are tightly coupled to the architecture? Discuss.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U2.50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.148

Long Questions
Q1. What are the features of analysis model and design? Explain with

examples.

Q2. For a library management system make analysis model, design model

and construction model.

Q3. Justify the statement “System development is model building”.

Q4. ”The goal if analysis model is to develop a model of what the system

will do.” Explain the statement with the help of the steps that an

analyst will follow throughout the analysis.

Q5. Describe what is done in Analysis with example?

Q6. Describe the system development process with model building.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.149

Research Problems
Q1.Many people invest their money in a number of securities (shares).

Generally, an investor has multiple portfolios of investments, each

portfolio having investments in many securities. From time to time an

investor sells or buys some securities and gets dividends for the

securities. There is a current value of each security-many sites give this

current value. It is proposed to build a personal investment management

system (PIMS) to help investors keep track of their investments as well

as on the overall portfolios. The system should also allow an investor to

determine the net-worth of the portfolios.

• Discuss the problem analysis for the PIMS problem statement/

• Provide the use case based requirement analysis and specification

• Identify the conceptual objects and draw the Analysis model for PIMS

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, BVICAM U2.150

References
1. Ivar Jacobson, “Object Oriented Software Engineering”, Pearson,

2004.
2. Grady Booch, James Runbaugh, Ivar Jacobson, “The UML User

Guide”, Pearson, 2004
3. R. Fairley, “Software Engineering Concepts”, Tata McGraw Hill, 1997.
4. P. Jalote, “An Integrated approach to Software Engineering”, Narosa,

1991.
5. Stephen R. Schach, “Classical & Object Oriented Software

Engineering”, IRWIN, 1996.
6. James Peter, W Pedrycz, “Software Engineering”, John Wiley & Sons
7. Sommerville, “Software Engineering”, Addison Wesley, 1999.
8. http://www.gentleware.com/fileadmin/media/archives/userguides/posei

don_users_guide/userguide.html
9. http://www.gentleware.com/fileadmin/media/archives/userguides/posei

don_users_guide/statemachinediagram.html
10. http://www.developer.com/design/article.php/2238131/State-Diagram-

in-UML.htm

