
MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.1

OBJECT-ORIENTED
SOFTWARE ENGINEERING

UNIT I

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.2

Learning Objectives

• Object Oriented Concepts- Review of Object and Classes,
Links and association, Generalization and specialization,
Inheritance and Grouping concepts, Aggregation and
Composition, Abstract Classes and Polymorphism, Metadata,
Constraints, Reuse.

• Object Oriented Methodologies- Introduction to Rational
Unified Process, Comparison of traditional life cycle models
versus object oriented life cycle models.

• UML- Origin of UML, 4+1 view architecture of UML

• Architecture- Introduction, system development is model
building, architecture, requirements model, analysis model,the
design model, the implementation model, test model.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.3

• The idea of object-oriented programming gained momentum in the
1970s and in the early 1980s.

• Bjorn Stroustrup integrated object-oriented programming into the
C language. The resulting language was called C++ and it became
the first object-oriented language to be widely used commercially.

• In the early 1990s a group at Sun led by James Gosling
developed a simpler version of C++ called Java that was meant to be
a programming language for video-on-demand applications.

• This project was going nowhere until the group re-oriented its
focus and marketed Java as a language for programming Internet
applications.

• The language has gained widespread popularity as the Internet
has boomed, although its market penetration has been limited by its
inefficiency.

Evolution of Object Orientation

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.4

Evolution of Object Orientation
1. Monolithic Programming Approach: In this approach, the

program consists of sequence of statements that modify data.

• All the statements of the program are Global throughout the
whole program. The program control is achieved through the use
of jumps i.e. goto statements.

• In this approach, code is duplicated each time because there is
no support for the function. Data is not fully protected as it can be
accessed from any portion of the program.

• So this approach is useful for designing small and simple
programs. The programming languages like ASSEMBLY and
BASIC follow this approach.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.5

Evolution of Object Orientation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.6

Evolution of Object Orientation
2. Procedural Programming Approach: This approach is top down
approach. In this approach, a program is divided into functions that
perform a specific task.

• This approach avoids repetition of code which is the main
drawback of Monolithic Approach.

• The basic drawback of Procedural Programming Approach is that
data is not secured because data is global and can be accessed
by any function.

• This approach is mainly used for medium sized applications. The
programming languages: FORTRAN and COBOL follow this
approach.

•3. Structured Programming Approach: The basic principal
of structured programming approach is to divide a program in
functions and modules.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.7

Evolution of Object Orientation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.8

Evolution of Object Orientation
• The use of modules and functions makes the program more

comprehensible (understandable). It helps to write cleaner code
and helps to maintain control over each function. This approach
gives importance to functions rather than data.

• It focuses on the development of large software applications. The
programming languages: PASCAL and C follow this approach.

4. Object Oriented Programming Approach: The basic principal of
the OOP approach is to combine both data and functions so that
both can operate into a single unit. Such a unit is called an Object.

• This approach secures data also. Now a days this approach is
used mostly in applications. The programming languages: C++
and JAVA follow this approach. Using this approach we can write
any lengthy code.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.9

Object Orientation Paradigm
• An approach to the solution of problems in which all computations

are performed in context of objects.

• The objects are instances of programming constructs, normally
called as classes which are data abstractions with procedural
abstractions that operate on objects.

• A software system is a set of mechanism for performing certain
action on certain data

Algorithm + Data structure = Program

• Data Abstraction + Procedural Abstraction

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.10

• Object orientation refers to a special type of programming
paradigm that combines data structures with functions to create
re-usable objects.

• The object-oriented (OO) paradigm is a development strategy
based on the concept that systems should be built from a
collection of reusable components called objects.

• Instead of separating data and functionality as is done in the
structured paradigm, objects encompass both.

• Why object orientation?
To create sets of objects that work together concurrently to

produce s/w that better, model their problem domain that similarly
system produced by traditional techniques.

Object Orientation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.11

Object orientation adapts to the following criteria's-

1. Changing requirements
2. Easier to maintain
3. More robust
4. Promote greater design
5. Code reuse
6. Higher level of abstraction
7. Encouragement of good programming techniques
8. Promotion of reusability

Object Orientation Adaptation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.12

Object Orientated Features

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.13

Object Orientated Features

Object orientation adapts to the following criteria's-

1. Changing requirements
2. Easier to maintain
3. More robust
4. Promote greater design
5. Code reuse
6. Higher level of abstraction
7. Encouragement of good programming techniques
8. Promotion of reusability

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.14

Object Orientated Features
1. OBJECT - Object is a collection of number of entities. Objects

take up space in the memory. Objects are instances of classes.
When a program is executed , the objects interact by sending
messages to one another. Each object contain data and code to
manipulate the data. Objects can interact without having know
details of each others data or code. Each instance of an object
can hold its own relevant data.

2. CLASS - Class is a collection of objects of similar type. Objects
are variables of the type class. Once a class has been defined,
we can create any number of objects belonging to that
class. Classes are user define data types. A class is a blueprint
for any functional entity which defines its properties and its
functions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.15

Object Orientated Features
3. DATA ENCAPSULATION – Combining data and functions into a
single unit called class and the process is known as Encapsulation.
Class variables are used for storing data and functions to specify
various operations that can be performed on data. This process of
wrapping up of data and functions that operate on data as a single
unit is called as data encapsulation. Data is not accessible from the
outside world and only those function which are present in the class
can access the data.

4. DATA ABSTRACTION- Abstraction (from the Latinn abs means
away from and trahere means to draw) is the process of taking
away or removing characteristics from something in order to
reduce it to a set of essential characteristics. Advantage of data
abstraction is security.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.16

Object Orientated Features
5. INHERITANCE- It is the process by which object of one class
acquire the properties or features of objects of another class. The
concept of inheritance provide the idea of reusability means we can
add additional features to an existing class without modifying it.
This is possible by driving a new class from the existing one.
Advantage of inheritance is reusability of the code.

6. MESSAGE PASSING - The process by which one object can
interact with other object is called message passing.

7. POLYMORPHISM - A greek term means ability to take more
than one form. An operation may exhibit different behaviours in
different instances. The behaviour depends upon the types of data
used in the operation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.17

Object Orientated Features
8. PERSISTENCE - The process that allows the state of an object to
be saved to non-volatile storage such as a file or a database and
later restored even though the original creator of the object no longer
exists.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.18

• Code Reuse and Recycling:

Objects created for Object Oriented Programs can easily be
reused in other programs.The code and designs in object-oriented
software development are reusable because they are modeled
directly out of the real-world problem-domain.

• Design Benefits:

Large programs are very difficult to write. Object Oriented
Programs force designers to go through an extensive planning
phase, which makes for better designs with less flaws.

• Ease out development: In addition, once a program reaches a
certain size, Object Oriented Programs are actually easier to program
than non-Object Oriented ones.

Benefits of OOPs

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.19

• Object orientation works at a higher level of abstraction
One of our most powerful techniques is the form of selective

amnesia called 'Abstraction'. Abstraction allows us to ignore the
details of a problem and concentrate on the whole picture.

• Software life cycle requires no vaulting
The object-oriented approach uses essentially the same

language to talk about analysis, design, programming and (if using
an Object-oriented DBMS) database design. This streamlines the
entire software development process, reduces the level of
complexity and redundancy, and makes for a cleaner system
architecture and design.

Benefits of OOPs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.20

• Data is more stable than functions

Functions are not the most stable part of a system, the data
is. Over a period of time, the requirements of a system undergo
radical change. New uses and needs for the software are
discovered; new features are added and old features are removed.
During the course of all this change, the underlying heart- data of
the system remains comparatively constant.

• Software Maintenance:

Legacy code must be dealt with on a daily basis, either to be
improved upon or made to work with newer computers and
software. An Object Oriented Program is much easier to modify and
maintain. So although a lot of work is spent before the program is
written, less work is needed to maintain it over time.

Benefits of OOPs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.21

Application Areas of OOPS

 Real time systems.
 Simulation & Modelling.
 Object-oriented database system.
 Object-oriented Operating System.
 Graphical User Interface.
 Window based O.S. design.
 Multimedia Design.

 CIM/CAD/CAM Systems.

 Computer based Training & Education System.
 AI and Expert System.
 Neural Networks and parallel programming.
 Decision support and office automation system.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.22

o “An object is an entity which has a state and a defined set of
operations which operate on that state.”

o The state is represented as a set of object attributes. The
operations associated with the object provide services to other
objects (clients) which request these services when some
computation is required

o Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

o An Object is anything, real or abstract, about which we store data
and those methods that manipulate the data.

o An object is a component of a program that knows how to perform
certain actions and how to interact with other elements of the
program.

Object- The CRUX of the matter!!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.23

• Each object is an instance of a particular class or subclass with
the class's own methods or procedures and data variables. An
object is what actually runs in the computer.

• Objects are the basic run time entities in an object oriented
system.

• They match closely with real time objects.

• Objects take up space in memory and have an associated
address like a Record in Pascal and a Structure in C.

• Objects interact by sending Message to one other. E.g. If
“Customer” and “Account” are two objects in a program then the
customer object may send a message to the account object
requesting for bank balance without divulging the details of each
other’s data or code.

• Code in object-oriented programming is organized around objects.

Object- The CRUX of the matter!!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.24

Object- A representation

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.25

Object- Key Goals!!

Goals of Object definition-

• Define Objects and classes
• Describe objects‘ methods, attributes and how objects respond to
messages
• Define Polymorphism, Inheritance, data abstraction, encapsulation,
and protocol
• Describe objects relationships
• Describe object persistence
• Understand meta-classes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.26

Object- An Example

Example:

Attributes
 I am a Car.
 I know my color,
 manufacturer, cost,
 owner and model.

It does things (methods)
 I know how to
 compute
 my payroll.
Attributes or properties describe object‘s state (data) and methods
define its behaviour.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.27

Object’s Attributes
 Attributes represented by data type.
 They describe objects states.
 In the Car example the car‘s attributes are: color, manufacturer,
cost, owner, model, etc.
Object’s Methods
 Methods define objects behavior and specify the way in which an
Object‘s data are manipulated.
 In the Car example the car‘s methods are: drive it, lock it, carry
passenger in it.
Objects- blueprints of classes
 The role of a class is to define the state and behavior of its
instances.
 The class car, for example, defines the property color.
 Each individual car will have property such as "maroon," "yellow"

Object- Attributes and Methods

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.28

Classes – The Blueprint !!
• A class is a blueprint of an object.

• A class is a group of objects that share common properties &
behavior/ relationships.

• In fact, objects are the variables of the type class.

• Classes are user defined data types and behaves like the built-in
types of a programming language.

• Class are a concept, and the object is the embodiment of that
concept.

• Each class should be designed and programmed to accomplish
one, and only one, thing, in accordance to single responsibility
principle of SOLID design principles.

• In the OOPs concept the variables declared inside a class are
known as "Data Members" and the functions are known as
"Member Functions"

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.29

Class Members
• A class has different members, and developers in Microsoft

suggest to program them in the following order:

• Namespace: The namespace is a keyword that defines a
distinctive name or last name for the class. A namespace
categorizes and organizes the library (assembly) where the class
belongs and avoids collisions with classes that share the same
name.

• Class declaration: Line of code where the class name and type
are defined.

• Fields: Set of variables declared in a class block.

• Constants: Set of constants declared in a class block.

• Constructors: A method or group of methods that contains code
to initialize the class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.30

Class Members
• Properties: The set of descriptive data of an object.

• Events: Program responses that get fired after a user or
application action.

• Methods: Set of functions of the class.

• Destructor: A method that is called when the class is destroyed.
In managed code, the Garbage Collector is in charge of destroying
objects; however, in some cases developers need to take extra
actions when objects are being released, such as freeing handles
or deallocating unmanaged objects.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.31

Classes – A Classification

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.32

Attributes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.33

Data Abstraction
• General: Focus on the meaning

Suppress irrelevant “implementation” details

• It refers to the act of representing essential features without
including the background details or explanations.

• Through the process of abstraction, a programmer hides all but the
relevant data about an object in order to reduce complexity and
increase efficiency.

• Abstraction tries to minimize details so that the programmer can
focus on a few concepts at a time. This programming technique
separates the interface and implementation.

• Once you have modelled your object using Abstraction , the same
set of data could be used in different applications.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.34

Data Abstraction- The Motivation
• Client/user perspective (Representation Independence)

– Interested in what a program does, not how.
– Minimize irrelevant details for clarity.

• Server/implementer perspective (Information Hiding)
– Restrict users from making unwarranted assumptions
about the implementation.
–Reserve right to change representation to improve
performance, … (maintaining behavior).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.35

Data Abstraction- Advantageous!!
Advantages Of Abstraction

• The programmer does not have to write the low-level code.

• The programmer does not have to specify all the register/binary-
level steps or care about the hardware or instruction set details.

• Code duplication is avoided and thus programmer does not have
to repeat fairly common tasks every time a similar operation is to be
performed.

• It allows internal implementation details to be changed without
affecting the users of the abstraction.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.36

Data Encapsulation
• The wrapping up of data & functions (that operate on the data)

into a single unit (called class) is known as ENCAPSULATION.

• Encapsulation is the mechanism that binds together code and
the data it manipulates and keeps both safe from outside
interference and misuse.

• Enables enforcing data abstraction

Conventions are no substitute for enforced constraints.

• Enables mechanical detection of typos that manifest as “illegal”
accesses. (Cf. problem with global variables).

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.37

Data Encapsulation- An Insight!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.38

Inheritance
• Inheritance allows the reusability of an existing operations and

extending the basic unit of a class without creating from the
scratch.

• Inheritance is the capability of one class of things to inherent
properties from other class.

• Supports the concept of Hierarchical classification.

• Ensures the closeness with real world models.

• Provides Multiple Access Specifiers across the modules
(Public, Private & Protected)

• Supports Reusability that allows the addition of extra features to
an existing class without modifying it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.39

Inheritance : Sub-classing
• Code reuse

derive Colored-Window from Window (also adds
fields/methods)

• Specialization: Customization

derive bounded-stack from stack (by overriding/redefining
push)

• Generalization: Factoring

Commonality – code sharing to minimize duplication – update
consistency

• Using two concepts of inheritance, subclassing (making a new
class based on a previous one) and overriding (changing how a
previous class works), you can organize your objects into a
hierarchy.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.40

SOLID Design Principles

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.41

SOLID Design Principles
S- A class should have one and only one reason to change, meaning that a
class should have only one job.

O- Objects or entities should be open for extension, but closed for
modification.

L- All this is stating is that every subclass/derived class should be
substitutable for their base/parent class.

I- A client should never be forced to implement an interface that it doesn’t
use or clients shouldn’t be forced to depend on methods they do not use.

D- Entities must depend on abstractions not on concretions. The high level
module must not depend on the low level module, but they should depend
on abstractions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.42

Open-Closed Principle
• Open-closed principle

• A class is closed because it can be compiled, stored in a
library, and made available for use by its clients.

• Stability

• A class is open because it can be extended by adding new
features (operations/fields), or by redefining inherited features.

- Inheritance allows the developers for reusing the available code
- A subclass can be treated as if it is a super class
- Objects of both super class and subclass can be created in the
applications
- A class an be extended in which the additional and exclusive
functionality can be placed without altering the super class
- Relationships among objects can easily be established

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.43

Polymorphism
• In object oriented programming, polymorphism refers to

a programming language’s ability to process objects differently
depending on their data types or class.

• Polymorphism is the quality that allows one name to be used for
two or more related but technically different purposes. In the
following, each graphical object has the same services, although
they are implemented differently.

• If you think about the Greek roots of the term, Polymorphism is the
ability (in programming) to present the same interface for differing
underlying forms (data types).

• For example, integers and floats are implicitly polymorphic since
you can add, subtract, multiply and so on, irrespective of the fact
that the types are different. They're rarely considered as objects in
the usual term.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.44

Polymorphism
• In object oriented programming, polymorphism refers to

a programming language’s ability to process objects differently
depending on their data types or class.

• Polymorphism is the quality that allows one name to be used for
two or more related but technically different purposes. In the
following, each graphical object has the same services, although
they are implemented differently.

• If you think about the Greek roots of the term, Polymorphism is the
ability (in programming) to present the same interface for differing
underlying forms (data types).

• For example, integers and floats are implicitly polymorphic since
you can add, subtract, multiply and so on, irrespective of the fact
that the types are different. They're rarely considered as objects in
the usual term.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.45

Polymorphism- It’s Variants!!

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.46

• The UML effort started officially in October 1994, when Rumbaugh
joined Booch at Rational.

• The Unified Modeling Language (UML) is a standard language for
writing software blueprints. The UML may be used to visualize,
specify, construct, and document the artifacts of a software
intensive system.

• The UML is appropriate for modelling systems ranging from
enterprise information systems to distributed Web-based
applications and even to hard real time embedded systems.

• The UML is process independent, although optimally it should be
used in a process that is use case driven, architecture-centric,
iterative, and incremental.

Unified Object Modelling

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.47

Paradigm Shift

Traditional paradigm:
Jolt between analysis (what) and design (how)

Object-oriented paradigm:
Objects enter from very beginning

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.48

Paradigm Shift

 Objects enter here

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.49

Analysis/Design Analogue

System analysis
 Determine what has to be done

 Determine the objects

Design
 Determine how to do it

 Design the objects

 Detailed design—design each module

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.50

Object Oriented Thinking

• Identify all objects in this classroom and articulate their
object diagrams. Specify each objects attributes and
behaviors through this diagram. Correspondingly
identify relationships between the objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.51

Benefits of OO Thinking
• Ease to develop complex systems

• Systems are prone to change

• Systems with user interfaces

• Systems that are based on client/servermodel

• To build e-commerce/web based applications

• For enterprise application integration

• Improved quality, reusability, extensibility

• Reduce maintenance burden

• Financial benefits

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.52

Challenges in OO Thinking

• Mind-set transition

• Investment in training and tools

• Insist on testing

• More time and cost to analysis and design

• User involvement

• Provides only long term benefits

• Still the success is greatly depends on people involved

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.53

Links and Associations
• Links and association are the means for building the relationship

among the objects and classes.

• Links and association , both are quite same feature but links
establishing among the objects (instance) and association
establishing among the class.

“Link is related to objects whereas association is related to classes”

• Class diagrams contain associations, and object diagrams
contain links.

• Both associations and links represent relationships.

• Links as well as associations appear as verbs in a problem
statement.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.54

•Can link and Association applied interchangeably?

• No, You cannot apply the link and Association interchangeably.

• Since link is used represent the relationship between the two
objects.

• But Association is used represent the relationship between
the two classes.

Link :: student:Abhilash course:MCA
Association:: student course

Links and Associations

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.55

Links
• In object modelling links provides a relationship between the

objects.

• These objects or instance may be same or different in data
structure and behaviour.

• Therefore a link is a physical or conceptual connection between
instance (or objects).

• For example: Ram works for HCL company. In this example “works
for” is the link between “Ram” and “HCL company”. Links are
relationship among the objects(instance).

• Types of links:

1.One to one links

2.one to many and many to one links

3. many to many

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.56

Associations
• The object modelling describes as a group of links with common

structure and common semantics.

• “Association is a relationship between classifiers which is used
to show that instances of classifiers could be either linked to each
other or combined logically or physically into some aggregation.”

• All the links among the object are the forms of association among
the same classes.

• The association is the relationship among classes.

• UML specification categorizes association as semantic
relationship. Some other UML sources also categorize association
as a structural relationship. Wikipedia states that association
is instance level relationship and that associations can only be
shown on class diagrams.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.57

Degree of Association
• Unary Association: the association can be defined on a single

class. This type of association called unary (or singular)
association.

• Binary Association: The binary association contain the degree of
two classes. The association uses two class.

• Ternary Association: The association which contain the degree of
three classes is called ternary association. The ternary
Association is an atomic unit and cannot be subdivided into binary
association without losing information.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.58

Degree of Association
• Quaternary Association: The Quaternary Association exists when

there are four classes associated.

• Higher degree Association: The higher order association are more
complicated to draw , implement because when more than four
class need to be associated then it seems a hard task.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.59

Association Classes
• Association classes may be applied to both binary and n-ary

associations.

• Similar to how a class defines the characteristics of its objects,
including their structural features and behavioural features,
an association class may be used to define the characteristics of
its links, including their structural features and behavioural
features. These types of classes are used when you need to
maintain information about the relationship itself.

• In a UML class diagram, an association class is shown as a class
attached by a dashed-line path to its association path in a binary
association or to its association diamond in an n-ary association.

• The name of the association class must match the name of the
association.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.60

Binary Association Classes
The following example shows association classes for the binary
associations in the most basic notation for binary association classes.

The association classes track the following information:
•The reason a worker is responsible for a work product
•The reason a worker performs a unit of work
•A description of how a unit of work consumes a work product
•A description of how a unit of work produces a work product.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.61

n-ary Association Classes
• The following example shows an association class for the n-ary

association in the most basic notation for n-ary association classes.
• The association class tracks a utilization percentage for workers,

their units of work, and their associated work products.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.62

Association Ends
• An association end is an endpoint of the line drawn for an

association, and it connects the association to a class.

• An association end may include any of the following items to
express more detail about how the class relates to the other class
or classes in the association:

Role name

Navigation arrow

Multiplicity specification

Aggregation or composition symbol

Qualifier

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.63

I. Rolenames
• A rolename is optional and indicates the role a class plays relative

to the other classes in an association, how the other classes "see"
the class or what "face" the class projects to the other classes in
the relationship.

• A rolename is shown near the end of an association attached to a
class.

• For example, a work product is seen as input by a unit of work
where the unit of work is seen as a consumer by the work product;
a work product is seen as output by a unit of work where the unit of
work is seen as a producer by the work product, as shown in the
figure

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.64

I. Rolenames

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.65

II. Navigation
• Navigation is optional and indicates whether a class may be

referenced from the other classes in an association.
• Navigation is shown as an arrow attached to an association end

pointing toward the class in question.
• If no arrows are present, associations are assumed to be navigable

in all directions, and all classes involved in the association may
reference one another.

• For example, given a worker, you can determine his work products
and units of work. Thus, arrows pointing towards work product and
units of work. Given a unit of work, you can determine its input and
output work products

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.66

II. Navigation

• Given a worker, you can reference his work products and units
of work to determine his utilization, but given a work product or
unit of work, you are unable to determine its utilization by a
worker.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.67

III. Multiplicity
• Multiplicity (which is optional) indicates how many objects of a

class may relate to the other classes in an association. Multiplicity
is shown as a comma-separated sequence of the following:
 Integer intervals

 Literal integer values

• Intervals are shown as a lower-bound .. upper-bound string in
which a single asterisk indicates an unlimited range. No asterisks
indicate a closed range.

• For example- 1means one, 1..5means one to five, 1, 4means one
or four, 0..*and *mean zero or more (or many), and 0..1and 0,

1mean zero or one.
• There is no default multiplicity for association ends. Multiplicity is

simply undefined, unless you specify it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.68

III. Multiplicity Indicators

2..4

0..1

1..*

0..*

1

• Unspecified
• Exactly one
• Zero or more (many,

unlimited)

• One or more
• Zero or one (optional

scalar role)
• Specified range
• Multiple, disjoint ranges

2, 4..6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.69

III. Multiplicity
• Multiplicity is the number of instances of one class relates to

instance of another class.
• For the following association, there are two multiplicity decisions to

make, one for each end of the association.
 For each instance of Professor, many Course Offerings may be

taught.
 For each instance of Course Offering, there may be either one or

zero Professor as the instructor.

Professor
<<entity>>

CourseOffering
<<entity>>

0..1 0..*0..1 0..*

instructor

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.70

Labelling Associations

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.71

Reflexive Associations
• It is possible for an association to connect a class to itself.
• There are two main types:

• Symmetric and Asymmetric.
• Asymmetric Reflexive Associations: The ends of the association

are semantically different from each other, even though the
associated class is the same. Examples include parent-child,
supervisor-subordinate and predecessor-successor.

• Symmetric Reflexive Associations: There is no logical
difference in the semantics of each association end. In other words,
students who have taken one course cannot take another in the set.
Umple uses the keyword 'self' to identify this case.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.72

Association Nomenclature

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.73

Association- Further more!
• The most abstract way to describe static relationship between

classes is using the Association link, which simply states that there
is some kind of a link or a dependency between two classes or
more.

• Weak Association - ClassA may be linked to ClassB in order to
show that one of its methods includes parameter of ClassB
instance, or returns instance of ClassB.

• Strong Association - ClassA may also be
linked to ClassB in order to show that it holds
a reference to ClassB instance.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.74

Association- Further more!
• In Object-oriented programming, one object is related to other to

use functionality and service provided by that object.
• This relationship between two objects is known as

the association in object oriented general software design and
depicted by an arrow in Unified Modelling language or UML.

• Both Composition and Aggregation are the form of association
between two objects, but there is a subtle difference between
composition and aggregation, which is also reflected by their UML
notation.

• The composition is stronger than Aggregation.
• In Short, a relationship between two objects is referred as an

association, and an association is known as composition when
one object owns other while an association is known as
aggregation when one object uses another object.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.75

Aggregation (Shared Association)
• Aggregation is whole-part relationship between an aggregate, the

whole, and its parts where the part can exist independently from
the aggregate.

• This relationship is often known as a has-a relationship, because the
whole has its parts.

• Aggregation is shown using a hollow diamond attached to the class
that represents the whole.

• Creating a circular relationship to allow for sub-teams is known as
a reflexive relationship, because it relates two objects of the same
class.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.76

weight

Automobile

serial number
year
manufacturer
model
color

drive
purchase

Aggregation Scenario

Engine

horsepower
volume

on
off

3,4,5

Wheel

diameter
number of bolts

2,4

Door

open
close

Battery

amps
volts

charge
discharge

*

Brakelight

on
off

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.77

Aggregation- When to use!
• As a general rule, you can mark an association as an aggregation if

the following are true:

 You can state that

 The parts ‘are part of’ the aggregate
 The aggregate ‘is composed of’ the parts

 When something owns or controls the aggregate, then they also own
or control the parts.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.78

Composition (Non-shared)
• Composition, also known as composite aggregation, is a whole-

part relationship between a composite (the whole) and its parts,
in which the parts must belong only to one whole and the whole is
responsible for creating and destroying its parts when it is created
or destroyed.

• This relationship is often known as a contains-a relationship,
because the whole contains its parts.

• Composition is shown using a filled diamond attached to the class
that represents the whole.

• For example, an organization contains teams and workers, and if the
organization ceases to exist, its teams and workers also cease to
exist.

• Composition also may be shown by graphically nesting classes, in
which a nested class's multiplicity is shown in its upper-right corner
and its rolename is indicated in front of its class name.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.79

Composition
• Separate the rolename from the class name using a colon.
• A composition indicates a strong ownership and coincident

lifetime of parts by the whole (i.e., they live and die as a whole).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.80

Aggregation vs. Composition

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.81

• Aggregation is the relationship between the whole and a part. We
can add/subtract some properties in the part (slave) side. It won't
affect the whole part.

• Best example is Car, which contains the wheels and some extra
parts. Even though the parts are not there we can call it as car.

• But, in the case of containment the whole part is affected when
the part within that got affected.

• The human body is an apt example for this relationship. When the
whole body dies the parts (heart etc.) are dead.

Aggregation vs. Containment

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.82

System Complexity Measure
• System complexity can be measured simply by looking at a UML

class diagram and evaluating the association, aggregation, and
composition relationship lines.

• The way to measure complexity is to determine how many classes
can be affected by changing a particular class.

• If class A exposes class B, then any given class that uses
class A can theoretically be affected by changes to class B.

• The sum of the number of potentially affected classes for every
class in the system is the total system complexity.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.83

• Generalization is the process of extracting shared characteristics
from two or more classes, and combining them into a
generalized superclass.

• Shared characteristics can be attributes, associations, or
methods.

• Generalization is a process of defining a super class from a given
set of semantically related entity set.

• Generalization uses a “is-a” relationship from a specialization
to the generalization class.

• Common structure and behaviour are used from the
specialization to the generalized class.

Generalization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.84

Generalization Example

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.85

Generalisation Hierarchy

E m p loy ee

P rogram mer

p ro jec t
p ro gL an gu ag e

Ma na ge r

P ro je c t
Ma nag e r

bud ge tsC on tro lled

dateA p po in te d

p ro jec ts

De pt.
Ma na ge r

S t ra teg ic
Ma nag e r

dept res ponsib ilit ie s

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.86

Avoid unnecessary Generalization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.87

Improvised Hierarchy

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.88

Specialization
• Specialization means creating new subclasses from an existing

class.
• If it turns out that certain attributes, associations, or methods only

apply to some of the objects of the class, a subclass can be created.
• The most inclusive class in a generalization/specialization is called

the superclass and is generally located at the top of the diagram.
• The more specific classes are called subclasses and are

generally placed below the superclass.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.89

Specialization Example

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.90

Inheritance
• The generalization/specialization relationship is implemented in
object oriented programming languages through inheritance.
• Object-oriented programming allows classes to inherit commonly

used state and behaviour from other classes.
• A class that is derived from another class is called a subclass (also

a derived class, extended class, or child class). The class from
which the subclass is derived is called a superclass (also a base
class or a parent class).

• When you want to create a new class and there is already a class
that includes some of the code that you want, you derive it.

• A subclass inherits all the members (fields, methods, and nested
classes) from its superclass.

• Constructors are not members, so they are not inherited by
subclasses, but the constructor of the superclass can be invoked
from the subclass.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.91

Inheritance
• Models "kind of" hierarchy

• Powerful notation for sharing similarities among classes while
preserving their differences

• UML Notation: An arrow with a triangle
Cell

MuscleCellBloodCell NerveCell

StriateSmoothRed White PyramidalCortical

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.92

• The generalized class at the top and the specialized classes
below.
• The specialized class names should reflect the class they were
specialized from.
• For example, employee was specialized from Person.

Inheritance Hierarchy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.93

Aggregation vs Inheritance
• Both associations describe trees (hierarchies)

 Aggregation tree describes a-part-of relationships (also called
and-relationship, Has –a Relationship, containership)

 Inheritance tree describes "kind-of" relationships (also called
or-relationship, is-a relationship)

• Aggregation relates instances (involves two or more different
objects)

• Inheritance relates classes (a way to structure the description of
a single object)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.94

Realization
• Realization is a relationship between the blueprint class and the

object containing its respective implementation level details.
• This object is said to realize the blueprint class.
• In other words, you can understand this as the relationship

between the interface and the implementing class.

• Example: A particular model of a car ‘GTB Fiorano’ that
implements the blueprint of a car realizes the abstraction.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.95

Dependency
• Change in structure or behaviour of a class affects the other

related class, then there is a dependency between those two
classes. It need not be the same vice-versa.

• When one class contains the other class it this happens.

• Example: Relationship between shape and circle is dependency

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.96

• It is the relationship between dependent and independent
classes.

• Any change in the independent class will affect the states of the
dependent class.

• A dependency is a relation between two classes in which a
change in one may force changes in the other although there is
no explicit association between them.

• A stereotype may be used to denote the type of the dependency.
 Indicates a semantic relationship between two (or more) classes
 It indicates a situation in which a change to the target element may require

a change to the source element in the dependency
 A dependency is shown as a dashed arrow between two model elements

Dependency

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.97

• A mechanism where an operation in an aggregate is implemented
by having the aggregate perform the operation on its parts.

• At the same time, properties of the parts are often propagated
back to the aggregate.

• Propagation is to aggregation as inheritance is to generalization.

• The major difference is-
 Inheritance is an implicit mechanism
 Propagation has to be programmed when required.

Propagation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.98

• To restrict ways in which a class can operate we add constraints.
• OCL is a specification language designed to formally specify
constraints in software modules.
• Types of constraints

 Invariant
Must be always true
 Defined on class attributes

 Pre-condition
 Defined on a method
 Checked before execution
 Frequently used to validate input parameter

 Post-condition
 Defined on a method
 Checked after method execution
 Frequently used to describe how values were changed by method

Constraints

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.99

• Constraint defines some functional relationship between entities
of an object.
• The term entity includes objects , classes , attributes , links and
association.
• It mean constraints can be implemented on the objects, classes ,
attributes , links as well as on association too.

Constraints

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.100

• For the following cases, indicate whether the relationship should be
an ordinary association, a standard aggregation, a composition, a
dependency, a Realization. Justify your answer.

a. Student taught by teacher
b. Department has Teachers
c. House and Rooms
d. Person and electric switch (to start a fan).
e. Code snippet
import B;
public class A { public void method1(B b) { // . . . }..}
f. Code snippet
import B3;
public class A3 implements B3 { // . . .}

Think about it!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.101

• Identify a first set of candidate classes
• Add associations and attributes
• Find generalizations
• Find specializations
• List the main responsibilities of each class
• Decide on specific operations
• Iterate over the entire process until the model is satisfactory

 Add or delete classes, associations, attributes, generalizations,
responsibilities or operations

 Identify interfaces

• Don’t be too disorganized.
• Don’t be too rigid either.

Suggested Sequence

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.102

• Object Oriented Methodology (OOM) is a system development
approach encouraging and facilitating re-use of software
components.

• The object-oriented systems analysis and design methodology
classification emerged in the mid- to late 1980s as businesses
began to seriously consider object-oriented-programming
languages for developing and implementing systems.

• The Object Oriented Methodology of Building Systems takes the
objects as the basis.

• For this, first the system to be developed is observed and
analyzed and the requirements are defined as in any other
method of system development.

• Once this is done, the objects in the required system are identified.
For example in case of a Banking System, a customer is an object,
and even an account is an object.

Object Oriented Lifecycle Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.103

OOLCM - Representation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.104

Object Oriented Lifecycle Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.105

Software Development- Usecase Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.106

Software Development- Simple Object Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.107

Software Development- Object Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.108

OOLCM- Analysis
• Object Modelling is based on identifying the objects in a system

and their interrelationships.
• As in any other system development model, system analysis is

the first phase of development in case of Object Modelling too.
• In this phase, the developer interacts with the user of the system

to find out the user requirements and analyses the system to
understand the functioning.

• Based on this system study, the analyst prepares a model of the
desired system.

• This model is purely based on what the system is required to do.
• At this stage the implementation details are not taken care of.

Only the model of the system is prepared based on the idea that
the system is made up of a set of interacting objects.

• The important elements of the system are emphasized.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.109

OOLCM- Design
• System Design is the next development stage where the overall

architecture of the desired system is decided.
• The system is organized as a set of sub systems interacting

with each other.
• While designing the system as a set of interacting subsystems,

the analyst takes care of specifications as observed in system
analysis as well as what is required out of the new system by the
end user.

• As the basic philosophy of Object-Oriented method of system
analysis is to perceive the system as a set of interacting objects,
a bigger system may also be seen as a set of interacting
smaller subsystems that in turn are composed of a set of
interacting objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.110

OOLCM- Design
• While designing the system, the stress lies on the objects

comprising the system and not on the processes being carried
out in the system as in the case of traditional Waterfall Model
where the processes form the important part of the system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.111

Object Orientation in Design
• In this phase, the details of the system analysis and system

design are implemented.
• The Objects identified in the system design phase are designed.
• Here the implementation of these objects is decided as the data

structures get defined and also the interrelationships between
the objects are defined.

• Object Oriented Philosophy is very much similar to real world and
hence is gaining popularity as the systems here are seen as a set
of interacting objects as in the real world.

• To implement this concept, the process-based structural
programming is not used; instead objects are created using data
structures.

• Just as every programming language provides various data types
and various variables of that type can be created, similarly, in case
of objects certain data types are predefined.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.112

Object Orientation in Design
• For example, we can define a data type called pen and then create

and use several objects of this data type. This concept is known as
creating a class.

• Class: A class is a collection of similar objects. It is a template
where certain basic characteristics of a set of objects are defined.
The class defines the basic attributes and the operations of the
objects of that type. Defining a class does not define any object, but it
only creates a template. For objects to be actually created instances
of the class are created as per the requirement of the case.

• Abstraction: Classes are built on the basis of abstraction, where a
set of similar objects are observed and their common
characteristics are listed. Of all these, the characteristics of concern
to the system under observation are picked up and the class
definition is made. The attributes of no concern to the system are left
out. This is known as abstraction.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.113

Object Orientation in Design
The abstraction of an object varies according to its application. For
instance, while defining a pen class for a stationery shop, the
attributes of concern might be the pen color, ink color, pen type etc.,
whereas a pen class for a manufacturing firm would be containing
the other dimensions of the pen like its diameter, its shape and size
etc.

• Inheritance: Inheritance is another important concept in this regard.
This concept is used to apply the idea of reusability of the objects. A
new type of class can be defined using a similar existing class with
a few new features. For instance, a class vehicle can be defined with
the basic functionality of any vehicle and a new class called car can
be derived out of it with a few modifications. This would save the
developers time and effort as the classes already existing are reused
without much change.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.114

OOLCM- Implementation
• During this phase, the class objects and the interrelationships of

these classes are translated and actually coded using the
programming language decided upon.

• The databases are made and the complete system is given a
functional shape.

• The complete OO methodology revolves around the objects
identified in the system.

• When observed closely, every object exhibits some
characteristics and behaviour.

• The objects recognize and respond to certain events.
• For example, considering a Window on the screen as an object,

the size of the window gets changed when resize button of the
window is clicked.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.115

OOLCM- Implementation
• Here the clicking of the button is an event to which the window

responds by changing its state from the old size to the new size.
While developing systems based on this approach, the analyst
makes use of certain models to analyse and depict these objects.
The methodology supports and uses three basic Models:
• Object Model - This model describes the objects in a system

and their interrelationships. This model observes all the
objects as static and does not pay any attention to their
dynamic nature.

• Dynamic Model - This model depicts the dynamic aspects of
the system. It portrays the changes occurring in the states of
various objects with the events that might occur in the system.

• Functional Model - This model basically describes the data
transformations of the system. This describes the flow of data
and the changes that occur to the data throughout the system.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.116

OOLCM- Detailing!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.117

OOLCM – Step-wise flow

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.118

O
O
A

O
O
D

O
O
I

Identify
Actors

Identify
Use

cases

Build Use
Case Model

Identify
Classes

Identify
Objects

Examine
Reusable
Objects

Build
Prototype

Build OO
System
Design

Build
Interface
Objects

Build
Dynamic

Model

Test Usage
Scenario

(Use Case)

Build
Detail

Design

Use Tools &
Program for

Implementation

Test for QA
Acceptance

Post Implementation Hand Over

Domain
Application
Scenario

Test

Do Object Analysis

Life Cycle Model OOSAD

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.119

Object Orientation- Advantages
 Object Oriented Methodology closely represents the problem

domain. Because of this, it is easier to produce and understand
designs.

 The objects in the system are immune to requirement changes.
Therefore, allows changes more easily.

 Object Oriented Methodology designs encourage more re-use.
New applications can use the existing modules, thereby reduces
the development cost and cycle time.

 Object Oriented Methodology approach is more natural. It
provides nice structures for thinking and abstracting and leads
to modular design.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.120

Software Development- Industrial Process

• Process must yield a foreseeable result, irrespective of which
individual performed the job.

• Volume of output doesn’t effect the process.
• Possibility to allocate parts of the process to several

manufacturers and subcontractors.
• Possible to make use of pre-defined building blocks and

components.
• Possible to plan and calculate the process with great precision.
• Each person trained for an operation must perform it in a

similar manner.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.121

Rational Enterprise Philosophy

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.122

Multiple Activities- R.E.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.123

Unified Approach

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.124

Unified Approach

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.125

RUP implements best practices

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.126

One language for all practitioners

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.127

Unified Approach Phases

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.128

Disciplines of RUP
1. Business Modelling
2. Requirements
3. Analysis and Design
4. Implementation
5. Test
6. Deployment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.129

System Development Characteristics

 Part of a larger activity
 System development
 Transition from analysis to construction
 Requirements are inputs to system development
 A system is output system development
 Parties interested in system development are customer, direct

and indirect users, etc.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.130

System Development

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.131

• In Responsibility-Driven Design, a model is developed from the
requirements specification by the extraction of nouns and verbs
from the specification.
• This provides a basis for the actual implementation.
• In RDD, for each class, different responsibilities are defined which
specify the roles of the objects, and their actions.
• In order to fulfill these responsibilities, classes need to collaborate
with each other. Collaborations are defined to show how the objects
will interact.
• The responsibilities are further grouped into contracts which define a
set of requests that objects of the class can support.
• These contracts are further refined into protocols, which show the
specific signature of each operation.

Responsibility-Driven Design

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.132

•The RDD modelling process includes two phases:

•Exploratory: The exploratory phase has three goals-- finding the
classes, determining responsibilities, and identifying
collaborations. This is commonly done with the CRC Cards.

•Analysis: The analysis phase involves refining the object’s
behaviour and the service definitions specified in the exploratory
phase. These activities include defining interfaces (protocols) and
constructing implementation specifications for each class.

Responsibility-Driven Design

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.133

Classes
- Extract noun phrases from the specification and build a list
- Identify candidates for abstract super classes
- Use categories to look for missing classes
- Write a short statement for the purpose of each class
Responsibilities
- Find responsibilities
- Assign responsibilities to classes
- Find additional responsibilities by looking at the relationships between
classes
Collaborations
- Find and list collaborations by examining responsibilities associated with
classes
- Identify additional collaborations by looking at relationships between
classes
- Discard and classes that take part in no collaboration (as client or server)

Class Responsibility Collaboration

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.134

• Object-oriented software engineering (OOSE) is an object
modeling language and methodology.
• Object-Oriented Software Engineering (OOSE) is a software
design technique that is used in software design in object-oriented
programming.
• OOSE is developed by Ivar Jacobson in 1992. OOSE is the first
object-oriented design methodology that employs use cases in
software design. OOSE is one of the precursors of the Unified
Modeling Language (UML), such as Booch and OMT.
• It includes a requirements, an analysis, a design, an
implementation and a testing model.
• Interaction diagrams are similar to UML's sequence diagrams.
State transition diagrams are like UML statechart diagrams.

Object-Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.135

Object-Oriented Software Engineering

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.136

Jacobson OOSE
• Object-Oriented Software Engineering (OOSE) is a software

design technique that is used in software design in object-
oriented programming.Originated from Objectory (Object Factory
for software development)

• OOSE is developed by Ivar Jacobson in 1992. OOSE is the first
object-oriented design methodology that employs use cases in
software design. OOSE is one of the precursors of the Unified
Modeling Language (UML), such as Booch and OMT.

• It includes a requirements, an analysis, a design, an
implementation and a testing model.

• Interaction diagrams are similar to UML's sequence diagrams.
State transition diagrams are like UML statechart diagrams.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.137

Jacobson OOSE
• Aim to fit the development of large real-time system

• Stress traceability among the different phases (Backward &
forward)

• Supports OO concepts of classification, encapsulation and
inheritance.

• Abstraction is promoted by levels.
• Adds “use cases” to the OO approach.
• Composite data and activity definition is not strongly enforced

and services are also regarded as objects.
• Reuse is supported by component libraries.
• Guidance for analysis is less comprehensive.
• Target applications: like HOOD real-time systems and

engineering systems.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.138

Jacobson’s Use Case Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.139

Jacobson’s Use Case Diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.140

Objectory

• Discipline process for the industrialized development of
software, based on a use case driven design

• Built around several different models

 Requirement Model

 Domain object model

 Analysis Model

 Design Model

 Implementation model

 Test model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.141

OOSE Models

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.142

Object Oriented System Dev

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.143

• Two different models are developed in OOSE; the Requirements
Model and the Analysis Model.
• These are based on requirement specifications and discussions
with the prospective users.
• The first model, the Requirements Model, should make it
possible to define the system and to define what functionality
should take place within it.
• For this purpose we develop a conceptual picture of the system
using problem domain objects and also specific interface
descriptions of the system if it is meaningful for this system.
• We also describe the system as a number of use cases that are
performed by a number of actors.

OOSE- Requirement Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.144

• The Analysis Model consisting of various object classes: control
object, entity objects, and interface objects.
• The purpose of this model is to find a robust and extensible
structure for the system as a base for construction.
• Each of the object types has its own special purpose for this
robustness, and together they will offer the total functionality that was
specified in the Requirements Model.

OOSE- Analysis Model

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.145

• We build our system through construction based on the
Analysis Model and the Requirements Model created by the
analysis process.

• The construction process lasts until the coding is completed
and the included units have been tested.

• There are three main reasons for a construction process:
1) The Analysis Model is not sufficiently formal.
2) Adaptation must be made to the actual implementation

environment.
3) We want to do internal validation of the analysis results.

OOSE- Construction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.146

• The construction activity produces two models, the Design Model
and the Implementation Model.
• Construction is thus divided into two phases; design and
implementation, each of which develops a model.
• The Design Model is a further refinement and formalization of
the Analysis Model where consequences of the implementation
environment have been taken into account.
• The Implementation model is the actual implementation (code)
of the system.

OOSE- Construction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.147

• Testing is an activity to verify that a correct system is being built.
• Testing is traditionally an expensive activity, primarily because

many faults are not detected until late in the development.
• To do effective testing we must have as a goal that every test

should detect a fault

OOSE- Testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.148

Object Model Notation

Class Name

(Class Name)

InstanceVariable1
InstanceVariable2: type

InstanceVariable1 = value
InstanceVariable2: type

Method1()
Method2(arguments) return type

Method1()
Method2(arguments) return type

Classes are represented as rectangles;

The class name is at the top, followed by
attributes (instance variables) and methods
(operations)

Depending on context some information can
be hidden such as types or method
arguments

Objects are represented as rounded rectangles;

The object’s name is its classname surrounded by
parentheses
Instance variables can display the values that they
have been assigned; pointer types will often point
(not shown) to the object being referenced

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.149

OMT Instantiation Notation

Class Name

attribute_1: data_type_1 = default_1
attribute_2: data_type_2 = default_2

. . .
attribute_m: data_type_m = default_m

(Class Name)

attribute_1 = value_1
attribute_2 = value _2

. . .
attribute_m = value _m

Class

Instance

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.150

Instantiation - Example

Person

name
age

weight

(Person)

(Person)

Joe Smith
age=39

weight=158

Mary Wilson
age=27

weight=121

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 51

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.151

Inheritance
Classes with similar attributes and operations may be organized

hierarchically

Common attributes and operations are factored out and assigned to
a broad superclass (generalization)

 Generalization is the “is-a” relationship

 Super classes are ancestors, subclasses are descendants

Classes iteratively refined into subclasses that inherit the attributes
and operations of the superclass (specialization)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.152

OMT Inheritance Notation

Generalization

Specialization

Superclass

Subclasses

Class
Attributes

Operations

Ball
Radius, Weight
Throw, Catch

Football
air pressure

pass, kick, hand-off

Baseball
liveness

hit, pitch, tag

Basketball
air pressure , dimples
shoot, dribble, pass

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.153

Association and Links

An association is a relation among two or more classes
describing a group of links, with common structure and semantics

A link is a relationship or connection between objects and is an
instance of an association

A link or association is inherently bi-directional

 the name may imply a direction, but it can usually be inverted

 the diagram is usually drawn to read the link or association
from left to right or top to bottom

A role is one end of an association

 roles may have names

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 52

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.154

OMT Association Notation

Person Company

Company Person

Works For

Class, Association, and Roles

Object and Link

Johnson IBM

Employer Employee

Works For

equivalent

(Company)(Person)

Employs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.155

Association and Links

Country

name

(Country)

Canada

City

name

has-capital

(City)

Ottawa

has-capital

(Country)

France

(City)

Paris

has-capital

(Country)

Austria

(City)

Vienna

has-capital

Class diagram

Instance diagram

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.156

Aggregation

Aggregation is a special form of association that indicates a “part-
of” relationship between a whole and its parts

Useful when the parts do not have independent existence

 A part is subordinate to the whole

In an aggregation, properties and operations may be propagated
from the whole to its parts

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 53

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.157

Window

TitleBar ScrollBar Border

OMT Aggregation Notation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.158

Microcomputer

Monitor

Chassis CPU

System box Mouse Keyboard

RAM Fan

1+

1+1+

OMT Multilevel Aggregation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.159

States and Transitions

A state is an interval between events (values of relevant
variables to the problem…)
 it may have an activity that can trigger starting, intermediate

and ending events

 defined in terms of a subset of object attributes and links

A state transition is a change in an object’s attributes and
links
 it is the response of an object to an event

 all transitions leaving a state must correspond to distinct
events

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 54

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.160

OMT State Notation
tates represented as nodes: rounded rectangles with state name

 initial state represented as solid circle

 final state represented as bull’s eye

transitions represented as edges between nodes and labeled with
an event name

STATE-1

STATE-3 Event-d

Event-a
Event-c

result

STATE-2
Event-b

Event-e

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.161

OMT State Diagram - Example

Start White´s
turn

Black´s
turn

black
moves

white
moves

checkmate

checkmate

stalemate

stalemate

Black wins

Draw

White wins

Chess game

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.162

Guards, Activities and Actions
Guards are Boolean conditions on attribute values

 transition can only happen when guard evaluates to “true”

 automatic transitions occur as soon as an activity is complete (check
guard!)

Activities take time to complete

 activities take place within a ‘state’

Actions are relatively instantaneous

 actions take place on a transition or within a state (entry, exit, event
actions)

 output can occur with an event

STATE-2

action-Event / action

guarded-Event [guard-2]

STATE-1A-STATE
entry / entry-action

do: activity-A
event-1 / action-1

...
exit / exit-action

output-Event / output

[guard-1]

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 55

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.163

OMT State Relationships

States can be nested or concurrent

Events can be split and merged

Superstate (nesting) Superstate (concurrency)

substate-1 substate-2 substate-1

substate-1

substate-2

substate-2

substate-3

substate-4

substate-4

substate-3
split-event-0

event-1

event-1

event-1

event-2

event-2

event-2

merged-event-3

event-3

merged-event-4

(Synchronization)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.164

State Generalization: example

Transmission

Neutral Reverse

First Second Third

Forward
stop

push N push F

push R

push N

upshift

downshift

upshift

downshift

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.165

Structured vs. Unified Process

Criteria Structured
Methodology

Object Oriented
(Unified Process)

Use of development
activities (Planning,
Analysis..)

Each activity covers a whole
phase in SDLC

All activities run in each phase,
N-times (iterations)

Names of development
phases

Planning, Analysis, Design,
Implementation,
Installation/Testing

Inception, Elaboration,
Construction, Transition

Appropriate to use When system goals certain,
static IT

When system goals less
certain, dynamic IT

Modeling technique Data Flow Diagrams,
Entity-Relationship Diagrams

Diagrams defined by Unified
Modeling Language (Use
Cases,
Class Diagrams…)

Relation to reality Predictive Adaptive

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 56

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.166

•UA based on methodologies by Booch, Rumbaugh and Jacobson
tries to combine the best practices, processes and guidelines
along with the object management groups in unified modelling
language.

•UA utilizes the unified modeling language (UML) which is a set of
notations and conventions used to describe and model an application.
Goals:

• Define Objects and classes
• Describe objects‘ methods, attributes and how objects respond

to messages
• Define Polymorphism, Inheritance, data abstraction,

encapsulation, and protocol
• Describe objects relationships

Unified Approach

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.167

Object-Oriented Software Dev

Object-Oriented Methodology

 Development approach used to build complex systems using
the concepts of object, class, polymorphism, and inheritance
with a view towards reusability

 Encourages software engineers to think of the problem in terms
of the application domain early and apply a consistent
approach throughout the entire life-cycle

Object-Oriented Analysis and Design

 Analysis models the “real-world” requirements, independent of
the implementation environment

 Design applies object-oriented concepts to develop and
communicate the architecture and details of how to meet
requirements

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.168

Visual Modelling

• Mapping real-world process of a computer system
with a graphical representation is called visual
modelling.

• Visual Modeling is a way of thinking about problems
by using graphical models of real-world ideas.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 57

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.169

Visual Modelling

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.170

Benefits of Visual Modelling
• Captures Business Process

• Enhance Communication

• Manage Complexity

• Define Architecture

• Enable Reuse

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.171

I. Capture Business Processes

• When we create use cases, visual modeling allows us to
capture business processes by defining the software system
requirements from the user's perspective.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 58

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.172

II. A Communication Tool

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.173

III. Manages Complexity
Systems today typically
have hundreds or even
thousands of classes.
These classes must be
organized in such a way
as to allow viewing by
many different groups of
people; often with their
own viewing needs.

Visual modeling provides the capability to display modeling elements in
many ways, so that they can be viewed at different levels of
abstraction.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.174

IV. Defines Software Architecture

Visual modeling
provides the capability
to capture the logical
software architecture
independent of the
implementation
language.

As system design progresses, the implementation language is
determined and the logical architecture is mapped to the
physical architecture.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 59

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.175

V. Promotes Re-use

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.176

Design Method Evolution

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.177

UML Origin
A product of the “design wars” of the 1980’s

Grady Booch, James Rumbaugh, and others had competing styles.
`94: Rumbaugh leaves GE to join Booch at Rational Software

“Method wars over. We won.” Others feared achieving
standardization the Microsoft way.

’95: Rational releases UML 0.8; Ivars Jacobson (use cases) joins
Rational“The Three Amigos”

’96: Object Management Group sets up task force on methods
’97: Rational proposed UML 1.0 to OMG. After arm twisting and

merging, UML 1.1 emerges
’99: After several years of revisions and drafts, UML 1.3 is released
Now UML 1.5….

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 60

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.178

UML Origin

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.179

What is UML
• “The Unified Modeling Language is a family of graphical

notations, that help in describing and designing software
systems, particularly software systems built using the object-
oriented style.”

• UML first appeared in 1997

• UML is standardized. Its content is controlled by the Object
Management Group (OMG), a group of companies.

• UML can be applied to diverse application domains (e.g., banking,
finance, internet, aerospace, healthcare, etc.) It can be used with all
major object and component software development methods and
for various implementation platforms (e.g., J2EE, .NET).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.180

What is UML
• UML stands for Unified Modelling Language

• The UML combines the best of the best from

 Data Modelling concepts (Entity Relationship Diagrams)

 Business Modelling (work flow)

 Object Modelling

 Component Modelling

• The UML is the standard language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system

• It can be used with all processes, throughout the development
life cycle, and across different implementation technologies

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 61

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.181

How it all begun…

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.182

UML Contributors

Meyer

Before and after
conditions

Harel

Statecharts
Gamma, et al

Frameworks and patterns,

HP Fusion

Operation descriptions and
message numbering

Embley

Singleton classes and
high-level view

Wirfs-Brock

Responsibilities

Odell

Classification

Shlaer - Mellor

Object lifecycles

Rumbaugh

OMT

Booch

Booch method

Jacobson

OOSE

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.183

UML Supports

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 62

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.184

Goals of UML
1) Provide users with a ready-to-use, expressive visual modeling

language

2) Provide extensibility and specialization mechanisms to extend the
core concepts.

3) Be independent of particular programming languages and
development processes.

4) Provide a formal basis for understanding the modeling language.

5) Encourage the growth of the OO tools market.

6) Support higher-level development concepts such as
collaborations, frameworks, patterns and components.

7) Integrate best practices.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.185

UML

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.186

UML- A language for…
• The UML is a language for

 visualizingvisualizing

 specifyingspecifying

 constructingconstructing

 documentingdocumenting

a software-intensive system

• UML can also be applied outside the domain of software
development.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 63

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.187

UML- A language for…
1. Visual Modelling

‘A picture is worth a thousand words’

• Use standard graphical notations

• Semi-formal

• Captures business processes from enterprise information
systems to distributed web-based applications and even to
hard real time embedded systems.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.188

UML- A language for…
2. Specifying

•Building models that are

 Precise

 Unambiguous

 Complete

•Symbols are based upon

• Well-defined syntax

• semantics

•Addresses the specification of all important analysis, design and
implementation decisions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.189

UML- A language for…
3. Constructing

•Models are related to object oriented programming languages

•Round-trip engineering requires tools and human invention to
information loss.

Forward engineering- direct mapping of a UML model into
code.

Reverse engineering- reconstruction of a UML model from an
implementation.

Re-engineering- Understanding existing software and modifying
it.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 64

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.190

UML- A language for…
4. Documenting

•Architecture

•Requirements

•Tests

•Activities

Project Planning

Release Management

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.191

3 basic building blocks of UML

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.192

3 basic building blocks of UML

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 65

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.193

Why model?

• Analyse the problem-domain
 simplify reality

 capture requirements

 visualize the system in its entirety

 specify the structure and/or behaviour of the system

• Design the solution
 document the solution - in terms of its structure, behavior,

etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.194

Conceptual Model of UML
• A conceptual model needs to be formed by an individual to understand

UML.
• UML contains three types of building blocks: things, relationships,

and diagrams.
• Things

 Structural things
Classes, interfaces, collaborations, use cases, components, and

nodes.
 Behavioral things

Messages and states.
 Grouping things

Packages
 Annotational things

Notes
• Relationships: dependency, association, generalization ,composition

,link ,aggregation etc..
• Diagrams: class, object, use case, sequence, collaboration, statechart,

activity, component and deployment.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.195

I. Structural Things- 7 Things

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 66

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.196

I. Structural Things

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.197

I. Structural Things

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.198

I. Structural Things

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 67

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.199

I. Structural Things

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.200

I. Structural Things

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.201

II. Behavioral Things

• Verbs of UML Model

• Dynamic parts of UML models- behaviour over time and space.

• Usually connected to structural things in UML.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 68

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.202

II. Behavioral Things

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.203

III. Grouping Things

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.204

IV. Annotational Things

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 69

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.205

Conceptual Model- Relationship

• Dependency

• Association

• Generalization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.206

Conceptual Model - Diagrams

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.207

Different perspectives of a system

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 70

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.208

Architectural Views and Diagrams

• User model view
 relies on use case diagrams to describe the problem and its

solution from the perspective of the customer or end user of a
product

• Structural model view
 describes static aspects of the system through class diagrams

and object diagrams

• Behavioral model view
 specifies dynamic aspects of the system through sequence

diagrams, collaboration diagrams, state diagrams, and
activity diagrams

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.209

Architectural Views and Diagrams
• Implementation model view

 concentrates on the specific realization of a solution, and
depicts the organization of solution components in component
diagrams

• Environment model view

 shows the configuration of elements in the environment, and
indicates the mapping of solution components to those elements
through deployment diagrams

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.210

4+1 Architecture of UML
• Architecture refers to the different perspectives from which a

complex system can be viewed.

• The architecture of a software-intensive system is best described by
five interlocking views:

 Use case view: system as seen by users, analysts and testers.

 Design view: classes, interfaces and collaborations that make
up the system.

 Process view: active classes (threads).

 Implementation view: files that include the system.

 Deployment view: nodes on which SW resides.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 71

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.211

4+1 Architecture of UML

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.212

UML Concepts- The 4+1 View
• Use Case view

Understandability
• Logical View

Functionality
• Process View

Performance
Scalable
Throughput

• Implementation View
Software management

• Deployment View
System topology
Delivery
Installation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.213

I. Use Case View(User View)

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 72

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.214

II. Design View(Logical View)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.215

III. Process View

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.216

IV. Implementation View

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 73

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.217

V. Deployment View

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.218

Representing System Architecture

Logical View

End-user

Functionality

Implementation View

Programmers
Software management

Process View

Performance
Scalability
Throughput

System integrators

Deployment View

System topology
Delivery, installation

Communication

System engineering

Use Case View

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.219

UML Concepts in a nutshell

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 74

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.220

UML Concepts in a nutshell

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.221

UML Diagram Classification
 User model view

 use case diagrams

 Structural model view

 class diagrams

 object diagrams

 Behavioral model view

 sequence diagrams

 collaboration diagrams

 state machine diagrams

 activity diagrams

 Implementation model view

 component diagrams

 Environment model view

 deployment diagrams

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.222

UML Standardized Diagrams

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 75

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.223

UML Diagram Classification

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.224

Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.225

System Architecture

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 76

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.226

System Architecture
• System development includes the development of different

models of a software system

• Aim is to find powerful modeling language, notation or
modeling technique for each model

• Set of modeling techniques defines architecture upon which the
system development method is based

• The architecture of a method is the denotation of its set of
modeling techniques

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.227

System Architecture

• Modeling technique is described by means of syntax, semantics
and pragmatics

 Syntax (How it looks)

 Semantics (What it means)

 Pragmatics (rules of thumb for using modeling technique)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.228

System Development
• System development is the work that occurs when we develop

computer support to aid an organizational procedures.

• System development is model building.

• Commences with identification of requirements.

• Specification can be used for contract and to plan and control
development process.

• Complex processes are often handled poorly. OOSE steps in
from start to end of system life cycle.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 77

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.229

Objectory Models
• Discipline process for the industrialized development of

software, based on a use-case driven design

• Built around several different models

 Requirement Model

 Domain object model

 Analysis Model

 Design Model

 Implementation model

 Test model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.230

System development is Model Building

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.231

Model Architecture

Five different models

 The requirement model
Aims to capture the functional requirements

 Analysis model
Give the system a strong and changeable object

structure
 Design model

Adopt and refine the object structure to the current
implementation environment

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 78

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.232

• Implementation model

 Implement the system designed so far
• Test model

 Verify whether the right system has been built or not

Requirement Model

Analysis Model

Analysis Construction Testing

Design Model

Implementation Model

Test Model

Model Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.233

The Analysis Model

• Consisting of various object classes: control object, entity
objects, and interface objects.

•The purpose of this model is to find a robust and extensible
structure for the system as a base for construction.

• Each of the object types has its own special purpose for this
robustness, and together they will offer the total functionality that
was specified in the Requirements Model.

Model Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.234

The Construction Model

 We build our system through construction based on the
Analysis Model and the Requirements Model created by the
analysis process.

 The construction process lasts until the coding is completed
and the included units have been tested.

 There are three main reasons for a construction process:

1) The Analysis Model is not sufficiently formal.
2) Adaptation must be made to the actual implementation

environment.
3) We want to do internal validation of the analysis results.

Model Architecture

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 79

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.235

•The construction activity produces two models, the Design Model
and the Implementation Model.

• Construction is thus divided into two phases; design and
implementation, each of which develops a model.

 The Design Model is a further refinement and formalization
of the Analysis Model where consequences of the
implementation environment have been taken into account.

 The Implementation model is the actual implementation
(code) of the system.

Model Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.236

The Testing Model

• Testing is an activity to verify that a correct system is being built.

• Testing is traditionally an expensive activity, primarily because
many faults are not detected until late in the development.

• To do effective testing we must have as a goal that every test
should detect a fault

Model Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.237

Development Processes
• Instead of focusing on how a specific project should be driven,

the focus of the process is on how a certain product should be
developed and maintained during its life cycle

• Divide the development work for a specific product into processes,
where each of the processes describes one activity of the
management of a product.

• Processes works in a highly interactively manner.

• Process handles the specific activity of the system development

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 80

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.238

• Architecture forms the basis of the method and process, that is
the concept of each model

• Development can be regard as a set of communicating
processes

• System development depends on these processes

Development Processes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.239

Development Processes

• All development work is managed by these processes.

• Each process consist of a number of communicating sub
processes.

• Main processes are
 Analysis

 Construction

Component

 Testing

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.240

Processes and Models
• Models of the system created during development

• To design models process description is required

• Each process takes one or several models and transform it into
other models

• Final model should be complete and tested, generally consists of
source code and documentation

• System development is basically concerned with developing
models of the system

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 81

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.241

I. Analysis Process
 Creates conceptual picture
 Output are requirement model and Analysis model
 Requirement Model

Done by use cases in the use case model
Form the basis of construction and testing process
Forms the basis of analysis Model

Analysis

Component

Construction Testing

Development Processes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.242

Basis of system structure

Specify all the logical objects to be included in the
system and how these are related and grouped

Provide input for the construction process

II. Construction Process
 Develops design model and implementation model

 Includes the implementation and results in complete system

 Design Model

Each object will be fully specified

Consider the implementation constraints

Development Processes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.243

III. Testing Process
 Integrates the system, verifies it and decides whether it should

be delivered

IV. Component development process
 Communicates with the construction process

 Develops and maintain components

Development Processes

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 82

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.244

Requirements

Requirements
model

Analysis
model

Requirement
Analysis

Robustness
analysis

Analysis

Development Processes - Analysis

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.245

Requirement
Model

Analysis
Model

Design
Model

Imple.
Model

Design Implem
entation

Construction Process

Development Processes- Construction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.246

Requir.
Model

Design
Model

Imple.
Model Test

Model

Unit
Testing

Integ.
Testing

System
testing

Testing Process

Development Processes- Testing

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 83

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.247

• Object-oriented software engineering (OOSE) proposes two
analysis models for understanding the problem domain

• Requirements Model

• Analysis Model

The requirements model serves two main purposes

• To delimit the system

• To define the system functionality

OOSE Analysis Models

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.248

• Conceptual model of the system is developed using:

• Problem domain objects

• Specific interface descriptions of the system (if meaningful to
the system being developed)

⊗ The system is described as a number of use cases that are
performed by a number of actors

• Actors constitute the entities in the environment of the system

• Use cases describe what takes places within the system

• A use case is a specific way of using the system by performing
some part of the system functionality

Requirement Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.249

Requirement Model

Class..
OK
OK

Fail

Domain Object
Model

Analysis model Design Model Implementation
Model

Testing
Model

Use Case Model

May be expressed in
terms of

Structured by

Realiz ed by

Impleme nted by

Tested in

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 84

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.250

 The requirements model for the will comprise three main models of
representation:

• The use case model

• The problem domain model

• User interface descriptions

Requirement Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.251

Requirement Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.252

Problem Domain Object Model

Provides a logical view of the system, which is used
to specify the use cases for use case diagrams

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 85

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.253

Object Oriented Analysis

 Identifying objects: Using concepts, CRC cards, stereotypes, etc.

 Organising the objects: classifying the objects identified, so similar
objects can later be defined in the same class.

 Identifying relationships between objects: this helps to determine
inputs and outputs of an object.

 Defining operations of the objects: the way of processing data
within an object.

 Defining objects internally: information held within the objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.254

Object Oriented Analysis Approaches

1.Analysis model with stereotypes (Jacobson)

 Boundaries, entities, control.

2.CRC cards (Beck, Cunningham)

 Index cards and role playing.

3.Conceptual model (Larman)

 Produce a “light” class diagram.

A good analyst knows more than one strategy and even may
mix strategies

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.255

The Analysis Phase
• Begins with a problem statements generated during system

conception.
• In software engineering, analysis is the process of converting

the user requirements to system specification (system means the
software to be developed).

• System specification, also known as the logic structure, is the
developer’s view of the system.

• Function-oriented analysis
 Concentrating on the decomposition of complex functions to

simply ones.
• Object-oriented analysis

 Identifying objects and the relationship between objects.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 86

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.256

⊗ The analysis model gives a conceptual configuration of the
system.

It consists of:

• The entity objects

• Control objects

• Interface objects

⊗ The analysis model forms the initial transition to object-oriented
design

Analysis Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.257

Dimensions of Analysis Model

Dimensions of the analysis model

Behavior

Information

presentation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.258

Analysis Model- Objects

Entity object

 Information about an entity object is stored even after a use
case is completed.

Control object

 A control object shows functionality that is not contained in any
other object in the system

Interface object

 Interface objects interact directly with the environment

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 87

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.259

Requirement Model Structured in Analysis Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.260

Design Model

• Developed based on the analysis model
 Implementation environment is taken into consideration

• The considered environment factors includes
 Platform

 Language

 DBMS

 Constraints

 Reusable Components

 Libraries

 so on..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.261

Design Model

• Design objects are different from analysis objects

• Models
 Design object interactions

 Design object interface

 Design object semantics
(i.e., algorithms of design objects’ operations)

• More closer to the actual source code

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 88

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.262

Design Model Dimensions

Dimensions of the Design model

Behavior

Information

presentation

Implementation

Environment

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.263

Design Model
• Use block term in place of object
• Sent from one block to another to trigger an execution
• A typical block is mapped to one file
• To manage system abstractly subsystem concept is introduced
• Analysis Model is viewed as conceptual and logical model,

whereas the design model should take as closer to the actual
source code

• Consist of explained source code

• OO language is desirable since all fundamentals concepts can
easily be mapped onto language constructs

• Strongly desirable to have an easy match between a block and
the actual code module

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.264

Implementation Model

• Consists of annotated source code.

• Object oriented language is desirable since all
fundamental concepts can be easily mapped onto
language constructs.

• Strongly desirable to have an easy match between a
block and the actual code module.

MCA-104, Object Oriented Software Engineering

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Ritika Wason U1 89

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.265

Test Model

Fundamental concepts are test specifications and the
test results

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof BVICAM U1.266

References
1. Ivar Jacobson, “Object Oriented Software Engineering”, Pearson, 2004.
2. Grady Booch, James Runbaugh, Ivar Jacobson, “The UML User Guide”,

Pearson, 2004
3. R. Fairley, “Software Engineering Concepts”, Tata McGraw Hill, 1997.
4. P. Jalote, “An Integrated approach to Software Engineering”, Narosa, 1991.
5. Stephen R. Schach, “Classical & Object Oriented Software Engineering”,

IRWIN, 1996.
6. James Peter, W Pedrycz, “Software Engineering”, John Wiley & Sons
7. Sommerville, “Software Engineering”, Addison Wesley, 1999.
8. http://www.gentleware.com/fileadmin/media/archives/userguides/poseidon_u

sers_guide/userguide.html
9. http://www.gentleware.com/fileadmin/media/archives/userguides/poseidon_u

sers_guide/statemachinediagram.html
10. http://www.developer.com/design/article.php/2238131/State-Diagram-in-

UML.htm
11. http://www.mariosalexandrou.com/methodologies/extreme-programming.asp

