

	Pre-Requisites & Co	ourse	Outcome
PRE-R 1. Pr 2. Di 3. Da	EQUISITES: ogramming Skills screte Structures ita Structures SE OUTCOMES (COs):	225	
CO #	Detailed Statement of the CO	BT Level	Mapping to PO #
CO1	Demonstrate P and NP complexity classes of the problem.	BTL2	PO1, PO2, PO3
CO2	Apply the concepts of asymptotic notations to analyze the complexities of various algorithms.	BTL4	PO1, PO2, PO3, PO4
CO3	Analyze and evaluate the searching, sorting and tree-based algorithms.	BTL5	PO1, PO2, PO3, PO4, PO5
CO4	Design efficient solutions using various algorithms for given problems.	BTL6	PO1, PO2, PO3, PO4, PO5, PO6, PO10
CO5	Develop innovative solutions for real-world problems using different paradigms.	BTL6	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO9, PO10,

Backti Graph	acking: n-Queen's Problem, Hamiltonian Circuit Problem, Subset-Sum Problem, Coloring Problem.
Brance	h and Bound: Assignment Problem, Travelling Salesman Problem.
 Introd Comp Proble Clique 	uction to Computability, Polynomial-time Verification, NP-Completeness. lexity Classes: Reducibility, NP-Completeness Proof, NP-Complete & NP-Hard, em Classification-P, NP, NPC, NP-Hard; Circuit Satisfiability, 3SAT, Vertex Cover, , Cook's Theorem
• No. of	Hours: 12
No. ofBooks	Hours: 12 :
 No. of Books T.H Characteristic 	Hours: 12 : . Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI, 2nd Edition, 2006. pipers[34-35]
 No. of Books T.H Cha S. I Cha 	Hours: 12 : Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI, 2nd Edition, 2006. pters[34-35] Jasgupta, C. Papadimitriou and U.Vazirani, "Algorithms", McGraw Hill Higher Education, 1st Edition, 2017. pters[8-9]

Branch and Bound

- Branch and Bound is a Systematic method for solving optimization problem.
- Branch and Bound applies on those optimization problem where greedy and dynamic programming fails.
- Branching: Splitting into subregion

(0)

- Bound: Computes a lower bound on the value of any candidate solution in the space represented by branching
- Pruning is the act of removing whole branches from the tree that cannot fulfill constraints.
- Backtracking is effective for decision problems, but it is not designed for optimization problem.
- Backtracking requires DFS while B&B requires BFS.

Branch and Bound

- Live Node: A node which has been generated and whose all children are not been generated.
- E-node: A live node whose children are currently being generated is called E-node (Expanding node)
- A dead node is that which is not going to be expanded further.
 - All children has been generated
 - Bounding function (which computes the lower bound) has killed live node without generating all its children.

nent, New Delhi-63 by Dr. Sa

- FIFO Branch and Bound
- LIFO Branch and Bound

(0)

• Least Cost search Branch and Bound

P, NP, NPC, NPH

- Computability: Computability is the ability to solve a problem in an effective manner.
- Some common synonyms for "computable" are "solvable", "decidable", and "recursive".
- Tractable problem, in computational complexity theory, a problem that can be solved in polynomial time.
- Intractable problems are problems for which there exist no efficient algorithms (i.e. exponential time) to solve them.
- Most intractable problems have an algorithm, and that algorithm is the brute-force search.
- Example: TSP, Graph Coloring, N-Queen's Problem, Subset Sum Problem

THE REAL PROPERTY.	P, NP, NPC, NPH	
 Problems P is the se Deterr not gu 	that can be solved in polynomial time is called easy problem. t of problem that can be solved in polynomial time deterministically. ninistic means the algorithm is aware that what will be the next step essing.	and
© Bharati Vidyapeeth's	nstitute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U3.7

