
Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.1

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

Algorithm Analysis

and

Design

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.2© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.2

Pre-Requisites & Course Outcomes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.3© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.3

Syllabus (Unit-III)

• Greedy Algorithms: General Concept, Applications, Activity Selection Problem,
Fractional Knapsack problem, Job Sequencing with Deadlines, Huffman Coding, Analysis
and Correctness of Prim’s, Kruskal Algorithm and Dijkstra Algorithm.

• Dynamic Programming: General Concept, Matrix-Chain Multiplication Problem, Longest
Common Subsequence Problem, Bellman-Ford Algorithm, Analysis and Correctness of
Floyd-Warshall Algorithm, Optimal Binary Search Trees, 0/1 Knapsack Problem, Network
Flow Problem.

• No. of Hours: 12

• Books:
▪ T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms”, PHI, 2nd Edition, 2006.

Chapters[15-16 & 23-25]

▪ S. Dasgupta, C. Papadimitriou and U.Vazirani, “Algorithms”, McGraw Hill Higher Education, 1st Edition, 2017.
Chapters[4-6]

▪ J. Kleinberg and E. Tardos, “Algorithm Design”, Pearson Education, 2nd Edition, 2009. Chapters[4-6]

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.4© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.4

Greedy Algorithm: Overview

• Most of the problem in greedy algorithm contains n inputs and we
have to find the subset of given input which gives the maximum
profit and minimum cost.

• All possible solutions for given input n are solution space.

• One of the solution, from the solution space, which satisfies the
problem condition is called feasible solutions.

• An optimization problem is one in which you want to find, not just
a feasible solution, but the best solution.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.5© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.5

Greedy Algorithm: Overview

• Being greedy for local optimization with the hope it will lead to a
global optimal solution, not always, but in many situations, it
works.

• A greedy algorithm works in phases. At each phase:

▪ We take the best you can get right now, without regard for
future consequences

▪ We hope that by choosing a local optimum at each step, you
will end up at a global optimum.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.6© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.6

Greedy Algorithm: Overview

• For example: Suppose we have to pay bill of Rs. 67.50 with
minimum number of notes.

• With greedy algorithm, we start with higher value of note.

▪ We take Rs. 50 note. [67.50 – 50 = 17.50]

▪ Then we take, Rs. 10 note. [17.50 – 10 =7.50]

▪ Then we take, Rs. 5 note. [7.50 – 5 =2.50]

▪ Then we take, Rs. 2 note. [2.50 – 2 =0.50]

▪ Then we take, Ps. 50 coin. [0.50 – 0 =0.50]

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.7© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.7

Greedy Algorithm: Overview

• In some monetary system, notes come in 1, 7, and 10.

▪ Using a greedy algorithm to count out 15, you would get

✓A 10 piece

✓Five 1 kron pieces, for a total of 15 krons

▪ This requires six coins

• A better solution would be to use two 7 pieces and one 1 piece

▪ This only requires three coins

The greedy algorithm results in a solution, but not in an optimal
solution always.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.8© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.8

Greedy Algorithm: Overview

• Greed Advantages:

▪ Greedy approach is easy to implement: Always taking the best
available choice is usually easy.

✓It usually requires sorting the choices

▪ Less time complexity: Repeatedly taking the next available best
choice is usually linear work.

✓But don't forget the cost of sorting the choices.

▪ Much cheaper than exhaustive search.

✓Much cheaper than most other algorithms.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.9© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.9

Greedy Algorithm: Overview

• Greedy Disadvantages:

▪ Greedy algorithms don't work for some problems.

▪ Despite their simplicty, correct greedy algorithms can be
complex.

• Greedy Conditions:

▪ There's no guaranteed way to recognize problems that can be
solved by a greedy algorithm. but,

▪ A problem in which, a locally optimal choice leads to a global
optimum, and each remaining subproblem also leads to an
optimal choice can be solved with a greedy algorithm.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.10© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.10

Greedy Algorithm: Overview

• Greedy Method Applications:
▪ Activity Selection Problem

▪ Fractional Knapsack problem

▪ Job Sequencing with Deadlines

▪ Huffman Coding

▪ Prim’s Algorithm

▪ Kruskal Algorithm

▪ Dijkstra Algorithm

▪ CPU Scheduling algorithms

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.11© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.11

Greedy Algorithm: Activity Selection Problem

• Problem: Let us consider we have n activities, Say A={a1, a2,…,
an). Each activity has start time and finish time.

• Objective: Find solution set having maximum number of non-
conflicting activities that can be executed in a single time frame,
assuming that only one person or machine is available for
execution.

▪ Two activities, say i and j, are said to be non-conflicting if si >= fj or sj >= fi
where si and sj denote the starting time of activities i and j respectively, and
fi and fj refer to the finishing time of the activities i and j respectively.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.12© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.12

Greedy Algorithm: Activity Selection Problem

Example1: Consider the following 3 activities sorted by finish time.

start[] = {10, 12, 20};

finish[] = {20, 25, 30};

• A person can perform at most two activities. The maximum set of
activities that can be executed is {0, 2} [Here, 0 and 2 are indexes
of activity]

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.13© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.13

Greedy Algorithm: Activity Selection Problem

Example2: Consider the following 3 activities sorted by finish time.

start[] = {1, 3, 0, 5, 8, 5};

finish[] = {2, 4, 6, 7, 9, 9};

• A person can perform at most four activities. The maximum set of
activities that can be executed is {0, 1, 3, 4} [Here, 0,1,3 and 4 are
indexes of activity]

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.14© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.14

Greedy Algorithm: Activity Selection Problem

• Solution:

▪ Step 1: Sort the activities according to finish time.

▪ Step 2:Select the first activity from the sorted array and print it.

▪ Step 3: Do the following for the remaining activities in the
sorted array.

If the start time of this activity is greater than or equal to the
finish time of the previously selected activity, then

select this activity and print it.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.15© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.15

Greedy Algorithm: Activity Selection Problem

• Solution:

▪ Step 1: Sort the activities according to finish time. O(nlogn)

▪ Step 2:Select the first activity from the sorted array and print it.
O(1)`

▪ Step 3: Do the following for the remaining activities in the
sorted array. O(n-1)

If the start time of this activity is greater than or equal to the finish time of the
previously selected activity, then

Select this activity and print it.

Total Time (Worst case)=O(nlogn) Best Case=O(n)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.16

Greedy Algorithm: Fractional Knapsack Problem

• Problem: Given a set of

items, each with a weight

and a value,

• Objective: Determine a

subset of items to include in

a collection so that the total

weight is less than or equal

to a given limit and the total

value is as large as

possible.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.17© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.17

Greedy Algorithm: Fractional Knapsack Problem

• Example 1: Items as (value, weight) pairs

arr[] = {{60, 10}, {100, 20}, {120, 30}}

Knapsack Capacity, W = 50;

• Calculate ratio= Value/Weight;

▪ ratio={6,5,4} // it is already in decreasing order otherwise we
have to sort

▪ Apply greedy,
✓ Pick item 1, weight=10, [50-10=40], now pick the next maximum profit
✓ Pick item 2, weight=20, [40-20=20], Now we cannot take all item3 because

remaining weight i.e. 20 < item 3 weight 30.
✓ So, we will take 2/3 rd of item3. Hence total value =60+100+(2/3)(120)=240

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.18© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.18

Greedy Algorithm: Fractional Knapsack Problem

• Example 2: Items as (value, weight) pairs

arr[] = {{5, 5}, {2, 4}, {2, 6} , {4, 2} , {5, 1}}

Knapsack Capacity, W = 12;

• Calculate ratio= Value/Weight;

▪ ratio={1,0.5,0.33,2,5} // Sort item into decreasing order

Total Value=16

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.19© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.19

Greedy Algorithm: Fractional Knapsack Problem

• Solution:

▪ Step 1: For each item, compute its value / weight ratio.

▪ Step 2: Arrange all the items in decreasing order of their value
/ weight ratio.

▪ Step 3: Start putting the items into the knapsack beginning
from the item with the highest ratio util we get the
Knapsack Capacity.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.20© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.20

Greedy Algorithm: Fractional Knapsack Problem

• Time Complexity:

▪ Step 1: For each item, compute its value / weight ratio. O(n)

▪ Step 2: Arrange all the items in decreasing order of their value
/ weight ratio. O(nlogn)

▪ Step 3: Start putting the items into the knapsack beginning
from the item with the highest ratio until we get the
Knapsack Capacity becomes 0. O(n)

Total Time= O(nlogn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.21

Greedy Algorithm: Job Sequencing with Deadlines

• Problem: A set of n given jobs which are associated with

deadlines and profit is earned, if a job is completed by its

deadline.

▪ Only one processor is available for processing all the jobs.

▪ Processor takes one unit of time to complete a job.

• Objective: Find a sequence of jobs, which is completed within

their deadlines and gives maximum profit.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.22

Greedy Algorithm: Job Sequencing with Deadlines

• Example 1:Four Jobs with following deadlines and profits

• Job Sequence: C, A (How?)

Job ID Deadline Profit

A 4 20

B 1 10

C 1 40

D 1 30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.23

Greedy Algorithm: Job Sequencing with Deadlines

• Example 1:Four Jobs with following deadlines and profits.
Maximum Deadline =4.

• Job Sequence: C, A

Job ID Deadline Profit

A 4 20

B 1 10

C 1 40

D 1 30

Deadline 1 2 3 4

Job C - - A

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.24

Greedy Algorithm: Job Sequencing with Deadlines

• Example 1:Six Jobs with following deadlines and profits.
Maximum Deadline =5.

• Job Sequence: B,D,C,E,A Profit=18+30+22+12+30=112

Job ID Deadline Profit

A 5 24

B 3 18

C 3 22

D 2 30

E 4 12

F 2 10

Deadline 1 2 3 4 5

Job D EC AB

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.25

Greedy Algorithm: Job Sequencing with Deadlines

• Solution:

▪ Step 1: Sort all the given jobs in decreasing order of their

profit.

▪ Step 2: Check the value of maximum deadline and Draw a

Gantt chart where maximum time on Gantt chart is the value

of maximum deadline.

▪ Step 3: Iterate on jobs in decreasing order of profit.For each

job , do the following :

✓ Find a time slot i, such that slot is empty and i < deadline and i is

greatest. Put the job in this slot and mark this slot filled.

✓ If no such i exists, then ignore the job.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.26

Greedy Algorithm: Job Sequencing with Deadlines

• Time Complexity: O(nlogn) using Max heap

▪ Step 1: Sort all the given jobs in decreasing order of their

profit. O(nlogn)

▪ Step 2: Check the value of maximum deadline and Draw a

Gantt chart where maximum time on Gantt chart is the value

of maximum deadline. O(n)

▪ Step 3: Iterate on jobs in decreasing order of profit. For each

job , do the following : (nlogn) using heap or linear search O(n2)

✓ Find a time slot i, such that slot is empty and i < deadline and i is

greatest. Put the job in this slot and mark this slot filled.

✓ If no such i exists, then ignore the job.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.27

Greedy Algorithm: Huffman Coding

• Overview

▪ Suppose we have to send data “AABBBCCDDDEEEEE”.

▪ If we send it as it is, we require 15 (length of the message) * 8 (bits

to represent single character) =120 bits.

▪ But We are sending only 5 characters i.e. A, B, C, D and E.

▪ We can choose another method to send the data with our own

code.
Character Code Frequency Total bits

A 000 2 6

B 001 3 9

C 010 2 6

D 011 3 9

E 110 5 15

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.28© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.28

Greedy Algorithm: Huffman Coding

• If we represent our message with the code, it will require 45 bits.

• But to decode this , we have to send the code table also to receiver.

• Size of the table= 5 (A-E)*8(ASCII for single character) +5*3 (3bits
each code)=40+15=55

• Therefore, total bits to send the message = Table +Message

=55+45 =100 bits

• It is less than the previous message encoding scheme.

• It can be further reduced, if we could code the character in variable
length bits.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.29© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.29

Greedy Algorithm: Huffman Coding

• Let there be four characters a, b, c and d, and their corresponding variable
length codes be 00, 01, 0 and 1.

• If the compressed bit stream is 0001 (ab) , the de-compressed output may
be “cccd” or “ccb” or “acd” or “ab”.

• The above problem occurs because the code of c is the prefix of a and b.

• Therefore, The variable-length codes should be assigned in such a way that
the code assigned to one character is not the prefix of code assigned to any
other character.

• This is how Huffman Coding makes sure that there is no ambiguity when
decoding the generated bitstream.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.30© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.30

Greedy Algorithm: Huffman Coding

Character Frequency

A 2

B 3

C 2

D 3

E 5

• Huffman Tree Design:
Let's take the message “AABBBCCDDDEEEEE”.

▪ Sort the characters according to their frequency

A B DC E

2 3 32 5

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.31© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.31

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

• Take two minimum from the list.

4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.32© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.32

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

• Take two minimum from the list. Now, list is [4,3,3,5]

6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.33© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.33

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

• Take two minimum from the list. Now, list is [4, 5, 6]

9

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.34© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.34

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

• Take two minimum from the list. Now, list is [9, 6]
15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.35© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.35

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

• Now, We have only one element in the list i.e. 15. Now assign the
bits.

• We can assign left side edge as 0 and right side edge with 1 or
vice-versa. But, don’t mix both strategies.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.36© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.36

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

0

0

0

01

1

1

1

1

1

1

10

0

0

0

Left=0 Right=1 Left=1 Right=0

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.37© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.37

Greedy Algorithm: Huffman Coding

• Huffman Tree Design:

▪ Now Build the code

▪ We ill start from the root,

▪ Lets Make code for A

▪ Traverse from the root i.e. 15 to leaf

node A , 15->9->4->2 = 000

Similarly, we can code

B=10, C=001, D=11, E=01

Observe: No code is prefix of other

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.38© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.38

Greedy Algorithm: Huffman Coding

• Problem: Create a Huffman tree

• Solution:
▪ Create a leaf node for each unique character and build a min heap of all leaf

nodes (Min Heap is used as a priority queue. The value of frequency field is
used to compare two nodes in min heap. Initially, the least frequent character
is at root)

▪ Extract two nodes with the minimum frequency from the min heap.

▪ Create a new internal node with a frequency equal to the sum of the two nodes
frequencies. Make the first extracted node as its left child and the other
extracted node as its right child. Add this node to the min heap.

▪ Repeat steps#2 and #3 until the heap contains only one node. The remaining
node is the root node and the tree is complete.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.39© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.39

Greedy Algorithm: Huffman Coding

• Problem: Create a Huffman tree

• Time Complexity: O(nlogn) //n=number of unique character
▪ Create a leaf node for each unique character and build a min heap of all leaf

nodes (Min Heap is used as a priority queue. The value of frequency field is
used to compare two nodes in min heap. Initially, the least frequent character
is at root) O(nlogn)

▪ Extract two nodes with the minimum frequency from the min heap. O(1)

▪ Create a new internal node with a frequency equal to the sum of the two nodes
frequencies. Make the first extracted node as its left child and the other
extracted node as its right child. Add this node to the min heap. O(n)

▪ Repeat steps#2 and #3 until the heap contains only one node. The remaining
node is the root node and the tree is complete.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.40© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.40

Greedy Algorithm: Minimum Spanning Tree

• Minimum Spanning Tree: A minimum spanning tree is a least-cost
subset of the edges of a graph that connects all the nodes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.41© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.41

Greedy Algorithm: Prim’s Algorithm

Minimum Spanning Tree

Prim’s Algorithm Kruskal’s Algorithm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.42© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.42

Greedy Algorithm: Kruskal’s Algorithm

• Kruskal’s algorithm selects an edge that has minimum weight and
then adds that edge if it doesn’t create a cycle.

• So, initially, there are | V | single-node trees in the forest. Adding an
edge merges two trees into one.

• When the algorithm is completed, there will be only one tree, and
that is the minimum spanning tree.

• There are two ways of implementing Kruskal’s algorithm:
▪ By using Disjoint Sets: Using UNION and FIND operations

▪ By using Priority Queues: Maintains weights in priority queue

• The appropriate data structure is the UNION/FIND algorithm

• Animation: https://visualgo.net/en/mst

https://visualgo.net/en/mst

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.43© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.43

Greedy Algorithm: Kruskal’s Algorithm

• Example 1: Lets consider the following graph.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.44© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.44

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Create all vertices as a single tree.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.45© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.45

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the minimum edge i.e.

1-6 having weight 10.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.46© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.46

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the next minimum edge i.e.

3-4 having weight 12. Check whether the newly

added edge makes cycle?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.47© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.47

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the next minimum edge i.e.

2-7 having weight 14. Check whether the newly

added edge makes cycle?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.48© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.48

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the next minimum edge i.e.

2-3 having weight 16. Check whether the newly

added edge makes cycle?

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.49© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.49

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the next minimum edge i.e.

4-5 having weight 22. Check whether the newly

added edge makes cycle?

We did not take edge 7-4

(Weight =18), the next

minimum edge because it forms

cycle. Therefore, we go for the

next minimum edge i.e. 4-5.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.50© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.50

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the next minimum edge i.e.

5-6 having weight 25. Check whether the newly

added edge makes cycle?

We did not take edge 7-5

(Weight =24), the next

minimum edge because it forms

cycle. Therefore, we go for the

next minimum edge i.e. 5-6.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.51© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.51

Greedy Algorithm: Kruskal’s Algorithm

• Initially, Select the next minimum edge i.e.

1-2 having weight 28. But it forms cycle. So, We

do not include this edge

Minimum Cost=10 + 25 + 22 +

12 + 16 + 14 =99 Units

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.52© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.52

Greedy Algorithm: Kruskal’s Algorithm

• Time Complexity:

• Let T = Ø.

• Let S be a disjoint-set data structure.

• For each v ∈ V:

• Call S.make-set(v)

• For each edge (u, v) sorted by cost:

• If S.find(u)≠ S.find(v):

• Add (u, v) to T.

• Call S.union(u, v).

Total runtime: O(E log E). [what about O(ElogV)?]

O(V)

O(logE)

O(ElogE)

Using Mean Heap

O(ElogE)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.53© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.53

Greedy Algorithm: Kruskal’s Algorithm

• Space Complexity: O(|E| + |V|),

▪ Disjoint Set Data Structure takes O(|V|) space to keep track of the roots
of all the vertices

▪ Another O(|E|) space to store all edges in sorted manner.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.54© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.54

Greedy Algorithm: Correctness of Kruskal’s Algorithm

Theorem: : Kruskal's algorithm always produces an MST

Proof:

▪ Let T be the tree produced by Kruskal's algorithm and T* be an MST.

▪ We will prove c(T) = c(T*). If T = T*, we are done. Otherwise T ≠ T*, so T–T* ≠
Ø. Let (u, v) be an edge in T–T*.

▪ Let S be the cross cut containing u at the time (u, v) was added to T. We claim
(u, v) is a least-cost edge crossing cut (S, V – S). First, (u, v) crosses the cut,
since u and v were not connected when Kruskal's algorithm selected (u, v).

▪ Next, if there were a lower-cost edge e crossing the cut, e would connect two
nodes that were not connected.

▪ Thus, Kruskal's algorithm would have selected e instead of (u, v), a
contradiction. Since T* is an MST, there is a path from u to v in T*.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.55© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.55

Greedy Algorithm: Correctness of Prim’s Algorithm

▪ The path begins in S and ends in V – S, so it contains an edge (x, y)
crossing the cut.

▪ Then T*' = T* ∪ {(u, v)} – {(x, y)} is a Spanning Tree of G and c(T*') =
c(T*) + c(u, v) – c(x, y).

▪ Since c(x, y) ≥ c(u, v), we have c(T*') ≤ c(T*).

▪ Since T* is an MST, c(T*') = c(T*).

▪ Thus c(T) = c(T*).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.56© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.56

Greedy Algorithm: Prim’s Algorithm

• Prim's algorithm, in contrast with Kruskal's algorithm, treats the
nodes as a single tree and keeps on adding new nodes to the
spanning tree from the given graph.

• Prim’s algorithm always gives the connected tree.

• Animation: https://visualgo.net/en/mst

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.57© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.57

Greedy Algorithm: Prim’s Algorithm

• Algorithm:

1. The edge queue is constructed

2. A predecessor list of predecessors for each node is constructed.

3. "Best" distances to each node are set to infinity.

4. Choose node 0 as the "root" of the MST (any node will do as the MST must

contain all nodes),

5. While the edge queue is not empty,

1. Extract the cheapest edge, u, from the queue,

2. Relax all its neighbours - if the distance of this node from the closest node in the

MST formed so far is larger than d[u][v], then update d[u][v] and set v's

predecessor to u.

6. Return the predecessor list.

https://visualgo.net/en/mst

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.58© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.58

Greedy Algorithm: Prim’s Algorithm

• Algorithm:
1. Prim’s(Graph g, n, costs) {
2. Queue q;
3. q = ConsEdgeQueue(g, costs);
4. pl = ConsPredList(n);
5. for(i=0;i<n;i++) {
6. d[i] = INFINITY;
7. }
8. /* Choose 0 as the "root" of the MST */

9. d[0] = 0;
10. pi[0] = 0;
•

11. while (!Empty(q)) {
12. u = ExtractMin(g);
13. for each v in g->adj[u] {
14. if ((v in q) && costs[u][v] < d[v]) {
15. pl[v] = u;
16. d[v] = costs[u][v];
17. }
18. }
19. }
20. return pl;
21. }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.59© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.59

Greedy Algorithm: Prim’s Algorithm

• Example 1:

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.60© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.60

Greedy Algorithm: Prim’s Algorithm

• Select any vertex, Say 1,

• Find all edges from 1, we have 1-6 and 1-2.

• Find the minimum weight among all edges.

• We have 1-6 with weight 10. Add 6 with 1.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.61© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.61

Greedy Algorithm: Prim’s Algorithm

• Find all edges from 1 and 6, we have 1-6 and 1-2,

and 6-5 but 1-6 is already visited, hence we

shall not include again.

• Find the minimum weight among all unvisited edges.

• We have 5-6 with weight 25. Add 5 with 6.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.62© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.62

Greedy Algorithm: Prim’s Algorithm

• Find all edges from 1, 6 and 5. We have 1-6 and 1-2,

6-5, 5-7, and 5-4 but 1-6 and 5-6 is already

visited, hence we shall not include again.

• Find the minimum weight among all unvisited edges.

• We have 5-4 with weight 22. Add 7 with 5.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.63© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.63

Greedy Algorithm: Prim’s Algorithm

• Find all edges from 1, 6, 5 and 4. We have 1-6 and

1-2, 6-5, 5-7, 5-4, 4-7, and 4-3 but 1-6,5-6 and

5-4 are already visited, hence we shall not

include again.

• Find the minimum weight among all unvisited edges.

• We have 4-3 with weight 12. Add 3 with 4.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.64© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.64

Greedy Algorithm: Prim’s Algorithm

• Find all edges from 1, 6, 5, 4 and 3. We have 1-6,

1-2, 6-5, 5-7, 5-4, 4-7, 4-3, and 3-2 but 1-6,5-6

5-4, and 4-3 are already visited,

hence, we shall not include again.

• Find the minimum weight among all unvisited edges.

• We have 3-2 with weight 16. Add 2 with 3.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.65© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.65

Greedy Algorithm: Prim’s Algorithm

• Find all edges from 1, 6, 5, 4, 3 and 2. We have 1-6,

1-2, 6-5, 5-7, 5-4, 4-7, 4-3, 3-2, 2-1, and 2-7

but 1-6,5-6, 5-4, 4-3 and 3-2 are already visited,

hence, we shall not include again.

• Find the minimum weight among all unvisited edges.

• We have 2-7 with weight 14. Add 7 with 2.

Now, all vertices have

been included in the tree.

Therefore, no need to

check other edges.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.66© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.66

Greedy Algorithm: Prim’s Algorithm

• Time Complexity:

• Step 1: Select a starting vertex O(1)

• Step 2: Repeat Steps 3 to 5 until all the vertices are included. O(V+E)
//Using BFS

• Step 3: Find all the edges that connect the tree to new vertices.

• Step 4: Find the least weight edge among those edges and
include it in the existing tree. O(logE)/O(logV)

• Step 5: If including that edge creates a cycle, then reject that
edge and look for the next least weight edge. O(1)

So, overall time complexity = O(E + V) x O(logV) = O((E + V)logV)

= O(ElogV)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.67© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.67

Greedy Algorithm: Prim’s Algorithm

• Space Complexity:

• We need an array to know if a node is in MST or not. Space O(V).

• We need an array to maintain Min-Heap. Space O(E).

• So, Total space complexity is of order O(V+E).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.68© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.68

Greedy Algorithm: Correctness of Prim’s Algorithm

Theorem: If G is a connected, weighted graph with distinct edge weights,
Prim's algorithm correctly finds an MST.

Proof:

▪ Let T be the spanning tree found by Prim's algorithm and T* be the MST of
G.

▪ We will prove T = T* by contradiction. Assume T ≠ T*. Therefore, T – T* ≠
Ø.

▪ Let (u, v) be any edge in T – T*. When (u, v) was added to T, it was the
least-cost edge crossing some cut (S, V – S).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.69© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.69

Greedy Algorithm: Correctness of Prim’s Algorithm

▪ Since T* is an MST, there must be a path from u to v in T*.

▪ This path begins in S and ends in V – S, so there must be some edge (x, y)
along that path where x ∈ S and y ∈ V – S.

▪ Since (u, v) is the least cost edge crossing (S, V – S), we have c(u, v) < c(x,
y).

▪ Let T*' = T* ∪ {(u, v)} – {(x, y)}.

▪ However, c(T*') = c(T*) + c(u, v) – c(x, y) < c(T*), contradicting that T* is an
MST.

▪ We have reached a contradiction, so our assumption must have been
wrong. Thus T = T*, so T is an MST.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.70© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.70

Greedy Algorithm: Dijkstra Algorithm

▪ Function DIJKSTRA(G =< V, E, c, s >)
1. for (i = 1 to n) do

2. d[i] = ∞

3. end for

4. d[s] = 0

5. Organize the vertices into a

heap Q, based on their d

values.

6. S ← φ.

7. while (Q ≠ φ)

8. do

9. u ← EXTRACT-MIN(Q)

10. for all vertices v adjacent to u

11. do

12. if (d[v] > d[u] + c(u, v)) then

13. d[v] = d[u] + c(u, v))

14. End if

15. end for

16. S ← S ∪ {u}

17. end while

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Mr. Manish Kumar U1.71© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U3.71

Topics We Have Learned So Far

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

The test can be scheduled in any lecture

next week. Be Ready.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.25

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

Thank You

