
Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.1

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

Algorithm Analysis

and

Design

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.2© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.2

Pre-Requisites & Course Outcomes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.3© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.3

Syllabus (Unit-II)

• Divide and Conquer Paradigm: Problem Solving, Comparative Analysis of
different Sorting and Searching Techniques, Strassen’s Matrix Multiplication
Method.

• Sorting in linear time: Counting Sort, Bucket Sort and Radix Sort.

• String Matching Concept: Naive String-Matching Algorithm, String Matching
with Finite Automata, Knuth Morris Pratt Algorithm, The Rabin-Karp Algorithm.

• Red Black Trees, Disjoint Set and their Implementation, Medians and Order
Statistics.

• No. of Hours: 12

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.4© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.4

Divide and Conquer Paradigm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.5© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.5

Divide and Conquer Paradigm

• Divide and Conquer is a recursive problem-solving approach which

break a problem into smaller subproblems, recursively solve the

subproblems, and finally combines the solutions to the subproblems to

solve the original problem.

• There are three parts of Divide and Conquer (DAQ) algorithms.

▪ Divide the problem into a number of subproblems that are smaller instances of the

same problem.

▪ Conquer the subproblems by solving them recursively

▪ Combine the solutions to the subproblems into the solution for the original problem.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.6© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.6

Divide and Conquer Paradigm
• Advantages:

▪ Solving difficult problems

▪ Algorithm efficiency

▪ Parallelism

▪ Memory access

• Disadvantage:

▪ Slow because of using recursion.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.7© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.7

Divide and Conquer: Binary Search

• Example:

▪ Binary search:
Recurrence Relation

T(n)=T(n/2) +1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.8© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.8

Divide and Conquer: Merge Sort

• The merge sort is sorting techniques which uses the merging technique of

two arrays.

• The array is divided into equal half until single the single element and then it

is combined with the merging technique.

• It uses divide and conquer paradigm

▪ Divide: Divide the array into two equal subarray, each having half of the

size of the initial array.

▪ Conquer: Sort each of the two subarray until single element, i.e. size of

the sub-array becomes 1.

▪ Combine: Merge the two sorted subarray and combine into a single

sorted list.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.9© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.9

Divide and Conquer: Merge Sort

• Algorithm:

MergeSort(A, lb, ub)

{

if(lb<ub)

Mid=(lb+ub)/2

MergeSort(A,lb,Mid)

MergeSort(A,Mid+1,ub)

Merge(A, lb, Mid, ub)

}

Recurrence Relation:

T(n)=2T(n/2)+Ɵ(n)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.10© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.10

Divide and Conquer: Merge Sort

i = 0; j = 0; k = l;

while (i < n1 && j < n2)

{

if (L[i] <= R[j]) {

arr[k] = L[i];

i++;

}

else {

arr[k] = R[j];

j++;

}

k++;

}

while (i < n1)

{

arr[k] = L[i];

i++;

k++;

}

while (j < n2)

{

arr[k] = R[j];

j++;

k++;

}

}

void merge(int arr[], int l, int m, int r)

{

int i, j, k;

int n1 = m - l + 1;

int n2 = r - m;

int L[n1], R[n2];

for (i = 0; i < n1; i++)

L[i] = arr[l + i];

for (j = 0; j < n2; j++)

R[j] = arr[m + 1 + j];

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.11© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.11

Divide and Conquer: Merge Sort

35 22 41 3 8 60 20

35 22 41 3 8 60 20

35 22 41 3 8 60 20

35 22 41 3 8 60

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.12© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.12

Divide and Conquer: Merge Sort

2 8 20 22 35 41 60

2 22 35 41 8 20 60

22 35 3 41 8 60 20

35 22 41 3 8 60

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.13© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.13

Divide and Conquer: Merge Sort

• Time Complexity:

▪ Best Case: O(nlogn)

▪ Average Case: O(nlogn)

▪ Worst Case: O(nlogn)

• Space Complexity:

▪ space=O(n)

✓ Recursion stack: O(logn)

✓ Merge: O(n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.14© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.14

Divide and Conquer: Quick Sort

• The quick sort algorithm divides the array into two subarray based on the

pivot element.

• The elements of left subarray is less than of pivot element and the element

of right subarray is greater than the pivot element.

• Quick sort is based on the Divide and Conquer Paradigm

▪ Divide: The array is divided into two subarray

▪ Conquer: Sort each of the subarray recursively

▪ Combine: No combination stage. Once the conquer step done, the sorting

is done

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.15© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.15

Divide and Conquer: Quick Sort

9 7 10 5 16 6 15

Pivot right left

9 7 10 5 16 6 15

Pivot right left

9 7 10 5 16 6 15

Pivot right left

9 7 10 5 16 6 15

Pivot right left

9 7 6 5 16 10 15

Pivot right left

right<pivot; increment right pointer

right>pivot; stop increment, start

comparison with left

left>pivot; decrement left pointer

left<pivot; stop; now right<left; Swap

and increment left and decrement

right pointer after swapping

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.16© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.16

Divide and Conquer: Quick Sort

9 7 6 5 16 10 15

Pivot right left

right<pivot; increment right pointer

right>pivot; stop increment, start

comparison with left

left>pivot; decrement left pointer

now left<right; Swap left element

with pivot element

9 7 6 5 16 10 15

Pivot

right

left

9 7 6 5 16 10 15

Pivot left right

5 7 6 9 16 10 15

Pivotelement < pivot element > pivot

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.17© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.17

Divide and Conquer: Quick Sort

• Algorithm:

QuickSort(A, lb, ub)

{

if(lb<ub)

{

pivot_index=partition(A,lb,ub);

QuickSort(A,lb,pivot_index-1);

QuickSort(A,pivot_index + 1, ub);

}

}

Recurrence Relation:

Best Case: T(n)=2T(n/2)+Ɵ(n)

Recurrence Relation:

Worst Case: T(n)=T(n-1)+Ɵ(n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.18© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.18

Divide and Conquer: Quick Sort

• Algorithm:

int partition(A, lb, ub)

{

pivot = arr[lb];

i = lb + 1

j = ub - 1

while(i<j)

{

while (arr[i] < pivot)

{

i++;

}

while (arr[j] > pivot)

{

j--;

}

if(i!=j)

swap arr[i++] and arr[j++]

}

swap arr[j] and arr[lb])

return j

}

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.19© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.19

Divide and Conquer: Quick Sort

• Time Complexity:

▪ Best Case: O(nlogn)

▪ Average Case: O(nlogn)

▪ Worst Case: O(n2) Why? (refer worst case recurrence relation)

• Space Complexity:

▪ space=O(logn)

✓ Recursion stack: O(logn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.20© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.20

Divide and Conquer: Strassen’s Algorithm

• Basic Matrix Multiplication

▪ Suppose we have two 2X2 matrices, A and B and C=A*B then

▪ A=
𝑎 𝑏
𝑐 𝑑

and B=
𝑒 𝑓
𝑔 ℎ

then C= A*B=
𝑘 𝑙
𝑚 𝑛

k= ae + bg

l= af + bh

m= ce + dg

n= cf + dh

Total 8 Multiplications and 4 additions

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.21© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.21

Divide and Conquer: Strassen’s Algorithm

• Basic Matrix Multiplication

MatrixMultiplication (A, B, C) // A=R1XC1 B=R2XC2

for i = 1 to R1 do

for j = 1 to C2 do

C[i,j] = 0

for k = 1 to C1 do

C[i,j] = C[i,j] + A[i,k] × B[k,j]

Time Complexity=O(n3)

//assume all integer additions and multiplications takes O(1)//

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.22© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.22

Divide and Conquer: Strassen’s Algorithm

• Strassen showed that 2X2 matrix multiplication can be accomplished in 7

multiplication and 18 subtractions/additions

▪ Suppose we have two 2X2 matrices, A and B and C=A*B then

▪ A=
𝑎 𝑏
𝑐 𝑑

and B=
𝑒 𝑓
𝑔 ℎ

then C= A*B=
𝑘 𝑙
𝑚 𝑛

p1=a(f-h) p5=(a+d)(e+h)

p2=(a+b)h p6=(b-d)(g+h)

p3=(c+d)e p7=(a-c)(e+f)

p4=d(g-e)

k=p5+p4-p2+p6

l=p1+p2

m=p3+p4

n=p1+p5-p3-p7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.23© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.23

Divide and Conquer: Strassen’s Algorithm

▪ A=
𝑎 𝑏
𝑐 𝑑

and B=
𝑒 𝑓
𝑔 ℎ

then C= A*B=
𝑘 𝑙
𝑚 𝑛

k=p5+p4-p2+p6

=(a+d)(e+h)+d(g-e)-(a+b)h+(b-d)(g+h)

=ae+ah+de+dh+dg-de-ah-bh+bg+bh-dg-dh

=ae+bg

In Normal multiplication:

k= ae + bg

l= af + bh

m= ce + dg

n= cf + dh

In similar manner, we can check the value of l, m and n

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.24© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.24

Divide and Conquer: Strassen’s Algorithm

void matmul(int A[], int B[], int R[], int n)

{

if (n == 1) {

R +=A * B;

}

else

{

matmul(A, B, R, n/4);

matmul(A, B+(n/4), R+(n/4), n/4);

matmul(A+2*(n/4), B, R+2*(n/4), n/4);

matmul(A+2*(n/4), B+(n/4), R+3*(n/4), n/4);

matmul(A+(n/4), B+2*(n/4), R, n/4);

matmul(A+(n/4), B+3*(n/4), R+(n/4), n/4);

matmul(A+3*(n/4), B+2*(n/4), R+2*(n/4), n/4);

matmul(A+3*(n/4), B+3*(n/4), R+3*(n/4), n/4);

}

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.25© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.25

Divide and Conquer: Strassen’s Algorithm

• Recurrence relation: T(n)=7T(n/2)+O(n2)

• Time Complexity: O(n2.81)

• Generally, Strassen’s Method is not preferred for practical applications for

following reasons

▪ The constants used in Strassen’s method are high and for a typical application

Naive method works better.

▪ For Sparse matrices, there are better methods especially designed for them.

▪ The submatrices in recursion take extra space.

▪ Strassen’s Matrix multiplication can be performed only on square matrices

where n is a power of 2. Order of both of the matrices should be n × n

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.26© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.26

Linear Time Sorting Algorithms

• The minimum time sorting algorithm we have learnt so far is merge sort whose

time complexity is O(nlogn)

• There are some algorithm that runs faster and takes linear time such as

▪ Counting Sort,

▪ Radix Sort, and

▪ Bucket Sort.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.27© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.27

Linear Time Sorting : Counting Sort

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.10

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

Thank You

