
\qquad

Pre-Requisites \& Course Outcomes

PRE-REQUISITES:

1. Programming Skills
2. Discrete Structures
3. Data Structures

COURSE OUTCOMES (COS):

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Syllabus (Unit-II)

- Divide and Conquer Paradigm: Problem Solving, Comparative Analysis of different Sorting and Searching Techniques, Strassen's Matrix Multiplication Method.
- Sorting in linear time: Counting Sort, Bucket Sort and Radix Sort.
- String Matching Concept: Naive String-Matching Algorithm, String Matching with Finite Automata, Knuth Morris Pratt Algorithm, The Rabin-Karp Algorithm.
- Red Black Trees, Disjoint Set and their Implementation, Medians and Order Statistics.
- No. of Hours: 12 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Divide and Conquer Paradigm

- Divide and Conquer is a recursive problem-solving approach which break a problem into smaller subproblems, recursively solve the subproblems, and finally combines the solutions to the subproblems to solve the original problem.
\qquad
\qquad
- There are three parts of Divide and Conquer (DAQ) algorithms.
- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively
- Combine the solutions to the subproblems into the solution for the original problem.

Divide and Conquer Paradigm

- Advantages:
- Solving difficult problems
\qquad
- Algorithm efficiency
- Parallelism
- Memory access

Disadvantage:

- Slow because of using recursion.
\qquad
\qquad
\qquad
\qquad
\qquad

Divide and Conquer: Binary Search

- Example:
- Binary search:
int binary Search(int arr||, int 1 , int r, int ,
Recurrence Relation
ir(r>=)
$T(n)=T(n / 2)+1$
\qquad
int mid $=1+(r-1) / 2 ;$
if(arr|mid) - -x$)$
return mid;
if (arr|mid] > x)
return binarySearch $($ arr, 1, mid-1, \mathbf{x});
return binarySearch(arr, mid $+1, r, x$);
1
return-1;

Divide and Conquer: Merge Sort

- The merge sort is sorting techniques which uses the merging technique of two arrays.
- The array is divided into equal half until single the single element and then it is combined with the merging technique.
- It uses divide and conquer paradigm
- Divide: Divide the array into two equal subarray, each having half of the size of the initial array
- Conquer: Sort each of the two subarray until single element, i.e. size of the sub-array becomes 1 .
- Combine: Merge the two sorted subarray and combine into a single sorted list.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Divide and Conquer: Merge Sort
\{
if(lb<ub)
Recurrence Relation: $T(n)=2 T(n / 2)+\boldsymbol{O}(n)$
Mid=(lb+ub)/2
MergeSort(A,lb,Mid)
MergeSort(A,Mid+1,ub)
Merge(A, lb, Mid, ub)
\}

(${ }^{\text {a }}$ Divide an	Divide and Conquer: Merge Sort	
```void merge(int arr[], int I, int m, int r) { int i, j, k; int n1=m-l + 1; int n2 = r - m; int L[n1], R[n2]; for (i=0;i<n1; i++) L[i] = arr[l + i]; for (j = 0; j < n2; j++) R[j] = arr[m+1 + j];```	```i=0;j=0;k= l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else{ arr[k] = R[i]; j++; } k++; }```	```while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } }```

Divide and Conquer: Merge Sort


## Divide and Conquer: Merge Sort


$\qquad$

## © Divide and Conquer: Merge Sort

- Time Complexity:
- Best Case: O(nlogn)
- Average Case: O(nlogn)
- Worst Case: O(nlogn)
- Space Complexity:
- space=O(n)
$\checkmark$ Recursion stack: O(logn)
$\checkmark$ Merge: $O(n)$


## Divide and Conquer: Quick Sort

- The quick sort algorithm divides the array into two subarray based on the pivot element.
- The elements of left subarray is less than of pivot element and the element of right subarray is greater than the pivot element.
- Quick sort is based on the Divide and Conquer Paradigm $\qquad$
- Divide: The array is divided into two subarray
- Conquer: Sort each of the subarray recursively
- Combine: No combination stage. Once the conquer step done, the sorting is done
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## D Divide and Conquer: Quick Sort



## Divide and Conquer: Quick Sort

9	7	6	5	16	10	15	right<pivot; increment right pointer
$\underset{\text { Pivot }}{\text { 介 }}$							right>pivot; stop increment, start comparison with left
9	7	6	5	16	10	15	
9	7	6	5	16	10	15	left>pivot; decrement left pointer
							now left<right; Swap left element with pivot element
5	7	6	9	16	10	15	

## Divide and Conquer: Quick Sort

```
Algorithm:
```

```
 QuickSort(A, lb, ub)
```

    QuickSort(A, lb, ub)
    {
    {
        if(lb<ub)
        if(lb<ub)
        {
        {
        pivot_index=partition(A,lb,ub);
        pivot_index=partition(A,lb,ub);
        QuickSort(A,lb,pivot_index-1);
        QuickSort(A,lb,pivot_index-1);
        Recurrence Relation:
        Recurrence Relation:
    Recurrence Relation:
    Recurrence Relation:
        Worst Case: T(n)=T(n-1)+\boldsymbol{O(n)}
        Worst Case: T(n)=T(n-1)+\boldsymbol{O(n)}
        QuickSort(A,pivot index + 1, ub);
        QuickSort(A,pivot index + 1, ub);
        }
        }
    }
    $\qquad$
$\qquad$
$\qquad$

## Divide and Conquer: Quick Sort



## Divide and Conquer: Quick Sort

- Time Complexity:
- Best Case: O(nlogn)
- Average Case: O(nlogn)
- Worst Case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Why? (refer worst case recurrence relation)
- Space Complexity:
- space=O(logn)
$\checkmark$ Recursion stack: O(logn)


## Divide and Conquer: Strassen's Algorithm

- Basic Matrix Multiplication
- Suppose we have two 2 X 2 matrices, A and B and $\mathrm{C}=\mathrm{A} * \mathrm{~B}$ then
- $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right] \quad$ then $\mathrm{C}=\mathrm{A} * \mathrm{~B}=\left[\begin{array}{ll}k & l \\ m & n\end{array}\right]$
$k=a e+b g$ $\qquad$
$\mathrm{I}=\mathrm{af}+\mathrm{bh} \quad$ Total 8 Multiplications and 4 additions
$m=c e+d g$
$n=c f+d h$ $\qquad$

Divide and Conquer: Strassen's Algorithm

```
- Basic Matrix Multiplication
 MatrixMultiplication (A, B, C) // A=R1XC1 B=R2XC2
 for i=1 to R1 do
 for j=1 to C2 do
 C[i,j] = 0
 for k=1 to C1 do
 C[i,j]=C[i,j] + A[i,k] × B[k,j]
Time Complexity= \(\mathbf{O}\left(\mathbf{n}^{3}\right)\)
//assume all integer additions and multiplications takes \(\mathbf{O}(1) / /\)
MatrixMultiplication (A, B, C) // A=R1XC1 B=R2XC2
for \(\mathrm{i}=1\) to R1 do
\(C[i, j]=0\)
for \(\mathrm{k}=1\) to C 1 do
\(C[i, j]=C[i, j]+A[i, k] \times B[k, j]\)
\(\qquad\)
\(\qquad\)

\section*{Divide and Conquer: Strassen's Algorithm}
- Strassen showed that \(2 \times 2\) matrix multiplication can be accomplished in 7 multiplication and 18 subtractions/additions
- Suppose we have two \(2 \times 2\) matrices, \(A\) and \(B\) and \(C=A * B\) then
- \(\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\) and \(\mathrm{B}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]\) then \(\mathrm{C}=\mathrm{A} * \mathrm{~B}=\left[\begin{array}{ll}k & l \\ m & n\end{array}\right]\)
\(\mathrm{p} 1=\mathrm{a}(\mathrm{f}-\mathrm{h}) \quad \mathrm{p} 5=(\mathrm{a}+\mathrm{d})(\mathrm{e}+\mathrm{h}) \quad \mathrm{k}=\mathrm{p} 5+\mathrm{p} 4-\mathrm{p} 2+\mathrm{p} 6\)
\(\mathrm{p} 2=(\mathrm{a}+\mathrm{b}) \mathrm{h} \quad \mathrm{p} 6=(\mathrm{b}-\mathrm{d})(\mathrm{g}+\mathrm{h}) \quad \mathrm{l}=\mathrm{p} 1+\mathrm{p} 2\)
\(\mathrm{p} 3=(\mathrm{c}+\mathrm{d}) \mathrm{e} \quad \mathrm{p} 7=(\mathrm{a}-\mathrm{c})(\mathrm{e}+\mathrm{f}) \quad \mathrm{m}=\mathrm{p} 3+\mathrm{p} 4\)
\(\mathrm{p} 4=\mathrm{d}(\mathrm{g}-\mathrm{e}) \quad \mathrm{n}=\mathrm{p} 1+\mathrm{p} 5-\mathrm{p} 3-\mathrm{p} 7\)

\section*{Divide and Conquer: Strassen's Algorithm}
- \(\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\) and \(\mathrm{B}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right] \quad\) then \(\mathrm{C}=\mathrm{A} * \mathrm{~B}=\left[\begin{array}{ll}k & l \\ m & n\end{array}\right]\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Divide and Conquer: Strassen's Algorithm
```

void matmul(int $A[$, int $B[$, int $R[]$, int $n$ )
if
if $(n=-1)$ \{
\}
else
matmul(A, B, R, n/4);
matmul(A, $B+(n / 4), R+(n / 4), n / 4)$,
matmul( $\left.\mathbf{A}+2^{*}(\mathrm{n} / 4), \mathrm{B}, \mathrm{R}+2^{*}(\mathrm{n} / 4), \mathrm{n} / 4\right)$;
matmul( $\left.\mathrm{A}+2^{*}(\mathrm{n} / 4), \mathrm{B}+(\mathrm{n} / 4), \mathrm{R}+3^{*}(\mathrm{n} / 4), \mathrm{n} / 4\right)$; $\operatorname{matmul}\left(A+(n / 4), B+2^{*}(n / 4), R, n / 4\right)$;
matmul( $\left.A+(n / 4), B+3^{*}(n / 4), R+(n / 4), n / 4\right)$;
matmul( $\left.A+3^{*}(n / 4), B+2^{*}(n / 4), R+2^{*}(n / 4), n / 4\right)$; matmul( $\left.\mathrm{A}+3^{*}(\mathrm{n} / 4), \mathrm{B}+3^{*}(\mathrm{n} / 4), \mathrm{R}+3^{*}(\mathrm{n} / 4), \mathrm{n} / 4\right)$;

```

\section*{Divide and Conquer: Strassen's Algorithm}
- Recurrence relation: \(T(n)=7 T(n / 2)+O\left(n^{2}\right)\)
- Time Complexity: \(\mathrm{O}\left(\mathrm{n}^{2.81}\right)\)
- Generally, Strassen's Method is not preferred for practical applications for
following reasons
- The constants used in Strassen's method are high and for a typical application Naive method works better.
- For Sparse matrices, there are better methods especially designed for them.
- The submatrices in recursion take extra space
- Strassen's Matrix multiplication can be performed only on square matrices where n is a power of \(\mathbf{2}\). Order of both of the matrices should be \(\mathrm{n} \times \mathrm{n}\)
© Bharat Vidyapeeth's institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal u1.25
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

