
Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.1

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

Algorithm Analysis

and

Design

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.2© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.2

Pre-Requisites & Course Outcomes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.3© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.3

Syllabus (Unit-I)

• Performance Analysis of Algorithms: Algorithm Specification, Performance
Analysis: Space and Time Complexity, Correctness of Algorithms, Growth of
Functions, Asymptotic Notations and Types, Concept of Randomized
Algorithms.

• Recurrences: Substitution, Iteration, Master and Recurrence Tree method.

• No. of Hours: 09

• Books:

▪ T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms”,
PHI, 2nd Edition, 2006. Chapters[1-5]

▪ S. Dasgupta, C. Papadimitriou and U.Vazirani, “Algorithms”, McGraw Hill Higher
Education, 1st Edition, 2017. Chapters[0-2]

▪ J. Kleinberg and E. Tardos, “Algorithm Design”, Pearson Education, 2nd Edition, 2009.
Chapters[2,5,13]

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.4© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.4

Introduction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.5© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.5

Why do we study this course?

• Why do we study Design and Analysis of Algorithm?

▪ Benefit of Algorithm

✓ Easy to understand.

✓ Logic is developed before actual coding.

▪ Benefit of Analysis of Algorithm

✓ To find best version of solution from various solutions of same problem.

▪ Benefit of Design of Algorithm

✓ To create an efficient algorithm to solve a problem in an efficient way.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.6© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.6

History of Algorithm

▪ The word 'algorithm' has its roots in Latinizing
the nisba, indicating his geographic origin, of
the name of Persian mathematician
Muhammad ibn Musa al-Khwarizmi to
algorismus

▪ In late medieval Latin, algorismus, English
'algorism', the corruption of his name, simply
meant the "decimal number system“

Source: https://en.wikipedia.org/wiki/Algorithm

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.7© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.7

Algorithm: Definition

• An algorithm is any well-defined procedure that takes some values as input and

produces some values as output.

• An algorithm is thus a finite sequence of computational steps that transforms

the input into desired output in finite amount of time.

Input Output
Algorithm

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.8© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.8

Algorithm for Problem Solving

• Problem definition

▪ What task has to be done.

✓ Calculation of mean, square root, shortest path etc.

• Algorithm design

▪ Writing pseudo code, drawing flow chart etc. (Decision of algorithm design

model like Divide & Conquer, Dynamic Programming, Greedy etc.)

• Algorithm analysis

▪ Analysis of time and space required to run the algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.9© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.9

Algorithm for Problem Solving (contd.)

• Implementation

▪ Writing a program

• Testing

▪ Testing of the output

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.10© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.10

Characteristics of Algorithm

• Input: An algorithm has zero or more input

• Output: An algorithm has one or more output.

• Finiteness: An algorithm must terminate after a finite number of steps.

• Definiteness: Each instruction must be clear and unambiguous.

• Effectiveness: An algorithm must be effective in such a way that its operations

are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is

called computational methods.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.11© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.11

Characteristics of Algorithm

• Input: An algorithm has zero or more input

• Output: An algorithm has one or more output.

• Finiteness: An algorithm must terminate after a finite number of steps.

• Definiteness: Each instruction must be clear and unambiguous.

• Effectiveness: An algorithm must be effective in such a way that its operations

are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is

called computational methods.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.12© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.12

Example of an Algorithm

• Problem: To find the max element of an array

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

Max ←A[0]

for i ←1 to n-1 do

if A[i] > Max then

Max ← A[i]

End For

return Max

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.13© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.13

Example of an Algorithm

• Problem: To find the max element of an array

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

Max ←A[0]

for i ←1 to n-1 do

if A[i] > Max then

Max ← A[i]

End For

return Max

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.14© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.14

Algorithm analysis

• Why do we analyse the algorithm?

▪ To decide the better algorithm among various solutions of a given problem.

✓For example, better algorithm among all sorting algorithm

✓Suppose you have written an algorithm for a given problem and the solution of the

problem is already exist. How do you prove your algorithm is better?

▪ To check feasibility

✓Even if the solution is given first time of any given problem, the analysis of an algorithm

can decide whether the algorithm will run with feasible recourse (Time and Space)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.15© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.15

Algorithm analysis: Factors to analyze

• Time

• Space

• Correctness of an algorithm

• Communication time [For network solution]

• Power consumption [For Mobile App]

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.16© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.16

Algorithm Analysis

Priori Analysis Posteriori analysis

Analysis is done before the real

implementation of algorithm

Analysis is done after the real implementation

of algorithm i.e. program

Priori analysis is an absolute analysis. Posteriori analysis is a relative analysis.

Independent on the hardware and compiler Dependent on the hardware and compiler

It gives approximate answer It gives exact answer

The complexity remains same for every

system

The complexity differs from system to system

Asymptotic notations are used to represent

the complexity in terms of time and space

functions

Complexity is represented in terms of watch

time (milli second, nano second etc.) and

bits/bytes (for space complexity)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.17© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.17

Algorithm Analysis

• Algorithm Analysis involves mainly two types of analysis

▪ Time complexity: The amount of time required to run an algorithm.

▪ Space complexity: The amount of memory space required to run an algorithm.

Algorithm analysis

Time Complexity Space Complexity

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.18© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.18

Algorithm Analysis: Time Analysis

• Time complexity of an algorithm can be analysed by following way.

▪ Consider each basic step of algorithm takes 1 unit of time.

▪ Count the frequency of the each step

Then, the time complexity of the algorithm, T(n), will be

T(n)= 1* fS1 + 1* fS2 +1* fS3 ………..+1* fSn

Where,
fSn = frequency of step n

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.19© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.19

Algorithm Analysis: Time Analysis

Statement Cost of

execution

Frequency Total

(Cost * Frequency)

1. Algorithm Sum(a,n)

2.{

3. sum←0;

4. for i←1 to n do

5. s←s+a[i];

6. end for

7. return s;

8. }

0

0

1

1

1

0

1

0

-

-

1

n+1

n

-

1

-

0

0

1

n+1

n

0

1

0

Total T(n)=2n+3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.20© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.20

Algorithm Analysis: Order of growth

• Order of growth of an algorithm predicts that how execution time or space of
an algorithm changes with the input size.

▪ Let's understand with an example,

Input size

(n)

Algorithm A

T(n)=100n+1

Algorithm B

T(n)=n2+n+1

10 1001 111

100 10001 10101

1000 10001 1001001

10000 1000001 >1010

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.21© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.21

Algorithm Analysis: Order of growth

• Observations:

▪ At n=10, Algorithm A looks bad.

▪ As n increases, the Algorithm A looks

better. (Why?)

▪ Regardless of the coefficients, there

will always be some value of n where an2 > bn.

▪ Even if the run time of Algorithm A were n + 10000, it would still be better
than Algorithm B for sufficiently large n.

• Conclusion: The coefficient and non-leading term do not affect the order of
growth for some sufficient large value of n.

The leading term is the term with the highest exponent.

Input size

(n)

Algorithm A

T(n)=100n+1

Algorithm B

T(n)=n2+n+1

10 1001 111

100 10001 10101

1000 10001 1001001

10000 1000001 >1010

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.22© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.22

Algorithm Analysis: Asymptotic notation

• The Asymptotic notations are used to describe the rate of growth of functions.

▪ Following are the types of asymptotic notations, we generally use.

1. Big–OH (O)

2. Big–OMEGA (Ω)

3. Big–THETA (Θ)

4. Little–OH (o)

5. Little–OMEGA (ω)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.23© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.23

Asymptotic notation: Big–OH (O)

• Let f(n) and g(n) be two functions from set of integers to real numbers ,

f:Z→R, then f(n) is O(g(n)) or f(n) = O(g(n))iff

0 ≤ 𝑓 𝑛 ≤ 𝐶 ∗ 𝑔 𝑛 ∀𝑛 ≥ 𝑛0

Where, C and n0 are any positive real constants

Big Oh notation
always gives
Upper Bound

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.24© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.24

Asymptotic notation: Big–OH (O)

• Let f(n)= n3+3n+5 then

▪ f(n)=O(n3) True/ False

▪ f(n)=O(n) True/ False

▪ f(n)=O(n4) True/ False

▪ f(n)=O(nlogn) True/ False

▪ f(n)=O(n3logn) True/ False

▪ f(n)=O(n3logn) True/ False

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.25© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.25

Asymptotic notation: Big–OH (O)

• Let f(n)= n3+3n+5 and g(n)= n3. If f(n)=O(g(n)) then find C and n0.

• Let f(n)=n2+3n+5. if f(n)=O(g(n)) then what could be the possible values for

g(n)?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.26© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.26

Asymptotic notation: Big–Omega (Ω)

• Let f(n) and g(n) be two functions from set of integers to real numbers ,

f:Z→R, then f(n) is Ω(g(n)) or f(n) = Ω(g(n)) iff

0 ≤ 𝐶 ∗ 𝑔 𝑛 ≤ 𝑓(𝑛) ∀𝑛 ≥ 𝑛0

Where, C and n0 are any positive real constants

Big Omega
notation always
gives Lower
Bound

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.27© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.27

Asymptotic notation: Big–Omega (Ω)

• Let f(n)= n3+3n+5 then

▪ f(n)=Ω (n3) True/ False

▪ f(n)= Ω(n) True/ False

▪ f(n)= Ω(n4) True/ False

▪ f(n)= Ω(nlogn) True/ False

▪ f(n)= Ω(logn) True/ False

▪ f(n)= Ω(n2logn) True/ False

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.28© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.28

Asymptotic notation: Big–Omega (Ω)

• Let f(n)= n+5 and f(n) ∈Ω (n). Calculate C and n0.

• Let f(n)=n2+3n+5. if f(n)=Ω (g(n)) then what could be the possible values for

g(n)?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.29© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.29

Asymptotic notation: Big–Theta (Θ)

• Let f(n) and g(n) be two functions from set of integers to real numbers ,

f:Z→R, then f(n) is Θ (g(n)) or f(n) = Θ (g(n)) iff

0 ≤ 𝐶1 ∗ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2 ∗ 𝑔(𝑛) ∀𝑛 ≥ 𝑛0

Where, C and n0 are any positive real constants
Big Theta
notation always
gives tight
bound

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.30© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.30

Asymptotic notation: Big–Theta (Θ)

• Let f(n)= n3+3n+5 then

▪ f(n)=Θ (n3) True/ False

▪ f(n)= Θ (n) True/ False

▪ f(n)= Θ (n4) True/ False

▪ f(n)= Θ (nlogn) True/ False

▪ f(n)= Θ (logn) True/ False

▪ f(n)= Θ (n2logn) True/ False

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.31© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.31

Asymptotic notation: Big–Theta (Θ)

• Let f(n)= n+5 and f(n) ∈Θ (n). Calculate C1, C2 and n0.

• Let f(n)=n2+3n+5. if f(n)=Θ (g(n)) then what could be the possible value(s) for

g(n)?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.32© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.32

Asymptotic notation: Big–Theta (Θ)

• Sometimes, we can not express the function in tight bound

▪ For example, Let f(n)=n!

We know that n!=1*2*3*……*(n-1)*n

Hence,

1 ≤ 1∗2∗3……∗ 𝑛 − 1 ∗ 𝑛 ≤ 𝑛 ∗ 𝑛 ∗ 𝑛 ∗ ⋯∗ 𝑛

1 ≤ 𝑛! ≤ 𝑛𝑛

Here, f(n)=O(𝑛𝑛) and f(n)=Ω(1). But no theta bound.

Same you can find for f(n)=logn!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.33© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.33

Asymptotic notations: O, Θ and Ω

1 < 𝑙𝑜𝑔𝑛 < 𝑛 < 𝑛 < 𝑛𝑙𝑜𝑔𝑛 < 𝑛2 < 𝑛3…… .< 2𝑛 < 3𝑛 …… .< 𝑛𝑛

Let f(n)=n2+5 then f(n)=O(n2) (How?) and f(n)=Ω (n2) (How?) that implies f(n)=
Θ (n2).

Lower Bound Upper Bound

Tight Bound
or

Average bound

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.34© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.34

Asymptotic notations: O, Θ and Ω

• Let f(n) and g(n) be two functions, from set of integers to real numbers ,
f:Z→R, such that

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 𝐴

then,

if A=0 then f(n)=O(g(n)) but f(n) ≠Θ (g(n))

if A=∞ then f(n)=Ω (g(n)) but f(n) ≠Θ (g(n))

if A≠0 and A is finite f(n) =Θ (g(n))

Ponder: Can we compare order of growth from above statements?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.35© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.35

Asymptotic notations: Little-OH (o)

• Let f(n) and g(n) be two functions, from set of integers to real numbers ,
f:Z→R, then f(n) is o(n) or f(n) ∈ o(n) iff

0 ≤ 𝑓 𝑛 < 𝑐 ∗ 𝑔 𝑛 ∀𝑛 ≥ 𝑛0

Where, C1 and n0 is any positive constant.

Mathematically, if

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

Then, we can say that f(n)=o(g(n)).

If f(n)=o(g(n)) then f(n)=O(g(n))? And if f(n)=O(g(n)) then f(n)=o(g(n))?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.36© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.36

Asymptotic notations: Little-Omega(o)

• Let f(n) = n+3 and g(n)= n2 be two functions then f(n) = o(n) or f(n) ∈ o(n) ?

We have to calculate the value of following limit

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

= lim
𝑛→∞

𝑛+3

𝑛2

= lim
𝑛→∞

𝑛

𝑛2
+

3

𝑛2
= lim

𝑛→∞

1

𝑛
+

3

𝑛2
= 0

Hence, we can say that f(n)=o(n).

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.37© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.37

Asymptotic notations: Little-Omega(ω)

• Let f(n) and g(n) be two functions, , from set of integers to real numbers ,
f:Z→R, then f(n) = ω(n) or f(n) ∈ ω (n) iff

𝑓 𝑛 > 𝑐 ∗ 𝑔 𝑛 ≥ 0 ∀𝑛 ≥ 𝑛0

Where, C1 and n0 is any positive constant.

Mathematically, if

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

Then, we can say that f(n)=ω (g(n)).

If f(n)=ω (g(n)) then f(n)= Ω(g(n))? And if f(n)= Ω(g(n)) then f(n)=ω (g(n))?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.38© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.38

Asymptotic notations: Little-Omega(ω)

• Let f(n) = n2+3 and g(n)= n be two functions then f(n) = ω(n) or f(n) ∈ ω(n) ?

We have to calculate the value of following limit

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)

= lim
𝑛→∞

𝑛2+3

𝑛

= lim
𝑛→∞

𝑛2

𝑛
+

3

𝑛
= lim

𝑛→∞
𝑛 +

3

𝑛
= lim

𝑛→∞
𝑛 + 0 = lim

𝑛→∞
𝑛 = ∞

Hence, we can say that f(n)=ω (n).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.39© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.39

Asymptotic notations: Relationship

Big OH (O) Big Omega (Ω)
Big
Theta
(Θ)

Little
Oh (o)

Little
Omega

(ω)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.40© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.40

Asymptotic notations: Properties

• Reflexive Property:

▪ f(n)=O(f(n))

▪ f(n)= Ω(f(n))

▪ f(n)=Θ(f(n))

• Symmetric Property:

▪ f(n)= Θ(g(n)) iff g(n)= Θ(f(n))

▪ f(n)= O(g(n)) iff g(n)= Ω(f(n))

▪ f(n)= o(g(n)) iff g(n)= ω(f(n))

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.41© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.41

Asymptotic notations: Properties

• Reflexive Property

▪ f(n)= Θ(g(n)) and g(n)= Θ(h(n)) that implies f(n)= Θ(h(n))

▪ f(n)=O(g(n)) and g(n)= O(h(n)) that implies f(n)= O(h(n))

▪ f(n)=Ω(g(n)) and g(n)= Ω(h(n)) that implies f(n)= Ω(h(n))

▪ f(n)=o(g(n)) and g(n)= o(h(n)) that implies f(n)= o(h(n))

▪ f(n)=ω(g(n)) and g(n)= ω(h(n)) that implies f(n)= ω(h(n))

• O(f(n)+g(n))= O{max(f(n),g(n)}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.42© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.42

Asymptotic notations: Efficiency Classes

• Basic Asymptotic Efficiency Classes

Complexity Efficiency Class

1 Constant

logn Logarithmic

n Linear

nlogn n-log-n or Linearithmic

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.43© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.43

Time Analysis of Algorithm

Algorithm

Recursion
Iteration
[Loop]

While

Do…While

For loop
…etc.

Branching

if…elseif..else

Switch

Linear

No Branching

No Loop

No Recursion

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.44© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.44

Time Analysis of Algorithm: Linear

1. Algorithm: FindSum(a,b)
2. {
3. input: integer a and integer b
4. Output: sum of a and b

5. sum←0;
6. sum=a+b;
7. return sum;
8. }

Analysis:

Statement 5: 1
Statement 6: 1
Statement 7: 1
Total:1+1+1=3

f(n)=3 i.e. f(n)=O(1).

Can we say f(n)=Θ(1)?

For any
constant value
of f(n) we
always write
O(1).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.45© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.45

Time Analysis of Algorithm: Linear

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.46© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.46

Time Analysis of Algorithm: Branch

If (Condition)

Statement 1

Statement 2

.

.

Statement n

else

Statement 1

Statement 2

.

.

Statement n

end if

Time=Ti

Time=Tj

Total time T(n)= max { Ti, Tj}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.47© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.47

Time Analysis of Algorithm: Branch

1. if (a >b)

2. z← a*a

3. print z

4. else

5. z← b*b

6. k← a+z

7. print k

8. end if

Total time complexity T(n)= max (2,3)

i.e. T(n)=2

Therefore, T(n) =O(1)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.48© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.48

Time Analysis of Algorithm: Loop

while (Condition) do
Statement 1
Statement 2

.

.
Statement n

end while

for i ← 0 to n do
Statement 1
Statement 2

.
Statement n

end for

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.49© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.49

Time Analysis of Algorithm: Loop

for (i=0;i<n;i++)

Statement 1

for (i=0;i<n;i=i+2)

Statement 1

for (i=0;i<n;i=i*2)

Statement 1

for (i=n;i>0;i=i/2)

Statement 1

O(n)

O(n/2)=O(n)

O(logn)

O(logn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.50© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.50

Time Analysis of Algorithm: Loop

for (i=0;i<5;i++)

Statement 1

i←1; s ←1;

while(s<=n) do

i++;

s=s+i;

print(“*”)

end while

O(1)

O(√n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.51© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.51

Time Analysis of Algorithm: Loop

if(a>b)

for (i=0;i<5;i++)

Statement 1

else

for (i=0;i<n;i++)

Statement 2

end if

for (i=0; i<n;i++)

for(j=0; j<5; j++)

Statement 1

O(n) Why?

O(n)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.52© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.52

Time Analysis of Algorithm: Loop

for (i=0; i<n;i++)

for(j=0; j<n-1; j++)

Statement 1

for (i=0; i<n;i++)

for(j=i; j<n-1; j++)

Statement 1

for (i=0; i<n;i++)

for(j=0; j<n; j=j*2)

Statement 1

O(n2)

O(n2)

O(nlogn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.53© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.53

Time Analysis of Algorithm: Loop

for (i=0; i*i<n;i++)

Statement 1

for (i=n/2; i≤n;i++)

for(j=1; j≤ n; j=2*j)

for(k=1; k≤ n-1; k=k*2)

Statement 1

for (i=0; i<n;i++)

for(j=0; j< n; j=j++)

for(k=0; k< n; k=k++)

Statement 1

O(√n)

O(nlog2n)

O(n3)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.54© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.54

Time Analysis of Algorithm: Loop

for (i=0; i<n;i++) do

for(j=0; j<5; j++) do

if a>b Then

for(j=0; j<n; j++)

Statement

else

for(j=0; j<n; j=j*2)

Statement

end if

end for

end for

O(n2) Why?

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.55© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.55

Time Analysis of Algorithm: Loop

int j = 1;

for (int i = 0; i < n; i++) {

for (int k = j; k > 0; k--) {

print(“*”);

}

j *= 2;

}

O(2n) Why?

for i=0 : inner loop j=1 i.e 20

for i=1 : inner loop j=2 i.e 21

for i=2 : inner loop j=4 i.e 22

:

:

for i=n : inner loop j=1 i.e 2n

Sum= 20+21+22+…….+2n= 2n – 1 (Geometric Series)= O(2n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.56© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.56

Loop and Recursion

for (i=n;i>0;i--)

print(i);

Base Case:

Loop Exit condition

Recursion Body:

Body of the loop

Recursion Call

increment/Decrement of loop

variable

void fun(int n)

{

if(n==0)

return;

else

{

print(n);

fun(n-1);

}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.57© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.57

Loop and Recursion

for (i=1;i<n;i++)

print(i);

Base Case:

Loop Exit condition

Recursion Body:

Body of the loop

Recursion Call

increment/Decrement of loop

variable

void fun(int n)

{

if(n==0)

return;

else

{

fun(n-1);

print(n);

}

}

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.58© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.58

Loop and Recursion

for (int i = 1; i <= n; i++)

fact = fact * i;

Base Case:

Loop Exit condition

Recursion Body:

Body of the loop

Recursion Call

increment/Decrement of loop

variable

int fun(int n)

{

if(n==1)

return 1;

else

{

return n*fun(n-1);

}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.59© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.59

Recursion and Recurrence Relation

void fun(int n)

{

if (n==0)

return;

else

{

fun(n-1);

print(n);

}

}

Recurrence Relation:

T(n) = ቊ
𝟏 𝒏 = 𝟎
𝑻 𝒏 − 𝟏 + 𝟏 𝒏 > 𝟎

Can you guess the output?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.60© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.60

Recursion and Recurrence Relation

void fun(int n)

{

if (n==0)

return;

else

{

for i←1 to n

print(“*”);

fun(n-1);

}

}

Recurrence Relation:

T(n) = ቊ
𝟏 𝒏 = 𝟎
𝑻 𝒏 − 𝟏 + 𝒏 𝒏 > 𝟎

Can you guess the output?

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.61© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.61

Recursion and Recurrence Relation

void fun(int n)

{

if (n==0)

return;

else

{

fun(n-1);

fun(n-2);

print(“*”);

}

}

Recurrence Relation:

T(n)=ቊ
𝟏 𝒏 = 𝟎
𝑻 𝒏 − 𝟏 + 𝑻(𝒏 − 𝟐) + 𝟏 𝒏 > 𝟎

Can you guess the output?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.62© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.62

Recursion and Recurrence Relation

BINARY SEARCH

int binarySearch(int arr[], int l, int r, int x)

{

if (r >= l) {

int mid = l + (r - l) / 2;

if (arr[mid] == x)

return mid;

if (arr[mid] > x)

return binarySearch(arr, l, mid - 1, x);

return binarySearch(arr, mid + 1, r, x);

}

return -1;

}

Recurrence Relation:

T(n)=ቊ
𝟏 𝒏 = 𝟏
𝑻 𝒏/𝟐 + 𝟏 𝒏 > 𝟏

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.63© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.63

Recursion and Recurrence Relation

MERGE SORT

void mergeSort(int arr[],int l,int r){

if(l>=r){

return;

}

int m =l+ (r-l)/2;

mergeSort(arr,l,m);

mergeSort(arr,m+1,r);

merge(arr,l,m,r);

}

Recurrence Relation:

T(n)=ቊ
𝟏 𝒏 = 𝟏
𝟐𝑻 𝒏/𝟐 + 𝚯(𝒏) 𝒏 > 𝟏

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.64© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.64

Recursion and Recurrence Relation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.65© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.65

Recursive Algorithm Analysis

Recursive Algo Analysis

Tree
Method

Iteration
Method

Master
Method

Substitution
Method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.66© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.66

Recursive Algorithm Analysis : Useful Formulae

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.67© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.67

Recursive Algorithm Analysis : Useful Formulae

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.68© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.68

Recursive Algorithm Analysis : Tree Method

• Steps

▪ Draw the recursion tree

▪ Find cost of each level

▪ Count the height of the tree [Maximum number of levels]

▪ Count total number of leaf node [last level]

▪ Find out cost of last level

▪ Calculate total cost

= Sum of the cost of each level + cost of last level

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.69© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.69

Recursive Algorithm Analysis : Tree Method

• Example 1: T(n)=2T(n/2)+n

n

𝒏

𝟐

𝒏

𝟐

𝒏

𝟒

𝒏

𝟒

𝒏

𝟒

𝒏

𝟒

𝑻(𝟏) 𝑻(𝟏)
𝑻(𝟏)

n
Cost of level 0

𝒏

𝟐
+
𝒏

𝟐
= 𝒏Cost of level 1

Cost of level 2 𝟐 ∗ 𝒏

𝟒
+
𝟐 ∗ 𝒏

𝟒
= 𝒏

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.70© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.70

Recursive Algorithm Analysis : Tree Method

Height of the tree
• Let after k level, we reach at T(1).
• We can observe, in the tree, that the tree

grows as
𝒏

𝟐𝒍
where l is the no of levels.

• Hence, After k level,
𝒏

𝟐𝒌
= T(1)

𝒏

𝟐𝒌
= 1 (A/C recurrence relation)

=>𝐧 = 𝟐𝒌

taking log both the side

log𝟐 𝒏 = log𝟐 𝟐
𝒌

log𝟐 𝒏 = 𝒌

Hence, Height of the tree k = 𝐥𝐨𝐠𝟐 𝒏

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.71© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.71

Recursive Algorithm Analysis : Tree Method

No of Leaf node:

If the root is level 0, then the K-th level of the N-ary
tree will have NK nodes.

From the tree, it is observed that the tree is binary
tree (two children of each node).

Hence, the total no of leaf node=2k = 𝟐log𝟐 𝒏

= 𝒏log𝟐 𝟐

= 𝒏

Total cost of leaf node= n*T(1)=n*1=n

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.72© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.72

Recursive Algorithm Analysis : Tree Method

Total Cost=
Sum of cost of each internal level + cost of leaf nodes

= n+n+n+………. k terms + Ɵ(n)

= k*n + Ɵ(n)

= nlogn + Ɵ(n)

=O(nlogn)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.73© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.73

Recursive Algorithm Analysis : Tree Method

• Example 2: T(n)=T(n/2)+n

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.74© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.74

Recursive Algorithm Analysis : Tree Method

• Example 3: T(n)=T(n/3)+T(2n/3)+n

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.75© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.75

Recursive Algorithm Analysis : Iteration Method

• In the iteration method we iteratively “unfold” the recurrence until we “see the
pattern”.

• After getting pattern, we do summation and get the total cost of recurrence
relation

• Example: T(n)=T(n-1)+1

T(n)=T(n-1)+1

= T(n-2)+1+1 [T(n-1)=T(n-1-1)+1]

= T(n-3)+1+1+1 [T(n-2)=T(n-2-1)+1]

After k terms,

=T(n-k) +(1+1+1……k times)

T(0)=1

Let after k term we get T(0)

Hence, n-k=0=>n=k

Therefore,

T(n-n) +(1+1+1……n times)

T(0) +(1+1+1……n times)

1+n= O(n)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.76© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.76

Recursive Algorithm Analysis : Iteration Method

• Example 2: T(n)=2T(n/2)+n

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.77© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.77

Recursive Algorithm Analysis : Iteration Method

• Example 2: T(n)=2T(n-1)+1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.78© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.78

Recursive Algorithm Analysis : Substitution Method

• Idea: Make a guess for the form of the solution and prove by induction.

▪ How do we make a good guess?

✓Use Tree/ Iteration method

Example: T(n) = 2T(n/2) + n

Guess: T(n) = O(nlogn) i.e T(n) ≤ cnlogn

Proof:

Base Case: We need to show that our guess holds for some base case (not

necessarily n = 1, some small n is ok).

Let n=2,

2T(n/2)+n=2T(2/2)+2=2*1+2=4

nlogn=2log2=2

That means, T(n) ≤ C*nlogn

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.79© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.79

Recursive Algorithm Analysis : Substitution Method

Guess: T(n) = O(nlogn) i.e T(n) ≤ cnlogn

Proof:

Induction Step: Assume holds for n/2: 𝑻(
𝒏

𝟐
) ≤ 𝒄

𝒏

𝟐
log

𝑛

2

Now we prove that holds for n: T(n) ≤ cnlogn

T(n) = 2T(n/2) + n

≤ 2(cn/2 logn/2) + n

= cnlogn/2 + n

= cnlogn − cnlog2 + n

= cnlogn − cn + n

≤ cnlogn +n(1-c)

Thus, T(n)=O(nlogn)

Similarly, it can be shown that T(n) = Ω(nlogn)

What if we

guess

T(n)=O(n2)?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.80© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.80

Recursive Algorithm Analysis : Master Theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T(n), monotonically
Increasing function, be defined on the nonnegative integers by the recurrence

T(n)=aT(n/b)+f(n)

where, we interpret n/b to mean either Τ𝑛 𝑏 or Τ𝑛 𝑏 . Then f(n) has the following
asymptotic bounds:

1. If f(n) =O(𝑛𝑙𝑜𝑔𝑏 𝑎−𝜖) for some constant 𝜖> 0 (𝜖 ∈ ℝ+) , then T(n)=Ɵ(𝑛𝑙𝑜𝑔𝑏 𝑎)

2. If f(n) = Ɵ(𝑛𝑙𝑜𝑔𝑏 𝑎) then T(n)=Ɵ(𝑛𝑙𝑜𝑔𝑏 𝑎lg n)

3. If f(n) = Ω(𝑛𝑙𝑜𝑔𝑏 𝑎+𝜖) for some constant 𝜖> 0 (𝜖 ∈ ℝ+) , and if af(n/b) ≤ cf(n) for

some constant then c<1 and all sufficiently polynomialy large n, then T(n)=Ɵ(𝑓(𝑛))

source: Introduction to Algorithms, MIT Press by T Cormen, C Leiserson, et al.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.81© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.81

Recursive Algorithm Analysis : Master Theorem

• Example 1: T(n)=9T(n/3)+n

▪ Compare the equation with T(n)=aT(n/b)+f(n)

▪ a=9 b=3 f(n)=n

▪ Calculate 𝑛𝑙𝑜𝑔𝑏 𝑎 =𝑛𝑙𝑜𝑔3 9 = n2

Now check each case of Master Theorem one by one.

Let’s check first case, f(n) =O(𝑛𝑙𝑜𝑔𝑏 𝑎−𝜖) i.e. n ≤ cn2 ?

Since, , f(n) =O(𝑛𝑙𝑜𝑔3 9−𝜖) where 𝜖=1 we can apply case1.

Hence, according to Master Theorem, T(n)=Ɵ(n2)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.82© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.82

Recursive Algorithm Analysis : Master Theorem

• Example 2: T(n)=T(2n/3)+1

▪ Compare the equation with T(n)=aT(n/b)+f(n)

▪ a=1 b=3/2 f(n)=1

▪ Calculate 𝑛𝑙𝑜𝑔𝑏 𝑎 =𝑛𝑙𝑜𝑔3/2 1 = 1

Now check each case of Master Theorem one by one.

Let’s check first case, f(n) =O(𝑛𝑙𝑜𝑔𝑏 𝑎−𝜖)

Since, , f(n) ≠ O(𝑛𝑙𝑜𝑔3/2 1−𝜖) where 𝜖 >0, we can’t apply case1. Why?

Let’s Check for second case i.e. f(n) = Ɵ(𝑛𝑙𝑜𝑔𝑏 𝑎) i.e. c2𝑛
𝑙𝑜𝑔𝑏 𝑎≤ f(n) ≤ c1𝑛

𝑙𝑜𝑔𝑏 𝑎

Since f(n) = Ɵ(𝑛𝑙𝑜𝑔𝑏 𝑎), we can apply case 2

Hence, according to Master Theorem, T(n)=Ɵ(𝑛𝑙𝑜𝑔𝑏 𝑎lgn) = Ɵ(logn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.83© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.83

Recursive Algorithm Analysis : Master Theorem

• Example 3: T(n)=3T(n/4)+nlogn

▪ Compare the equation with T(n)=aT(n/b)+f(n)

▪ a=3 b=2 f(n)=nlogn

▪ Calculate 𝑛𝑙𝑜𝑔𝑏 𝑎 =𝑛𝑙𝑜𝑔4 3 ≈ n0.79

Now check each case of Master Theorem one by one.

Since f(n) = Ω(𝑛𝑙𝑜𝑔𝑏 𝑎+𝜖), we can apply case 3, but before that we must check
two conditions.

1. f(n) should be polynomially larger than 𝑛𝑙𝑜𝑔𝑏 𝑎

2. Check Regularity condition (af(n/b) ≤ cf(n) for some constant then c<1)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.84© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.84

Recursive Algorithm Analysis : Master Theorem

• Example 3: T(n)=3T(n/4)+nlogn

▪ Compare the equation with T(n)=aT(n/b)+f(n)

▪ a=3 b=2 f(n)=nlogn

▪ Calculate 𝑛𝑙𝑜𝑔𝑏 𝑎 =𝑛𝑙𝑜𝑔4 3 ≈ n0.79

Condition 1:f(n) should be polynomially larger than nlogb a

"Polynomially larger" means that the ratio of the functions falls between two polynomials,
asymptotically. Specifically, f(n) is polynomially greater than g(n) if and only if there exist
generalized polynomials (fractional exponents are allowed) p(n),q(n) such that the following
inequality holds asymptotically: p(n)≤f(n)/g(n)≤q(n)

https://math.stackexchange.com/questions/1614848/meaning-of-polynomially-larger

p(n)≤ nlogn/ n0.79 ≤q(n) =>p(n)≤ n0.21 logn≤q(n) => n.01 ≤ n0.21 logn≤n2

Hence, f(n) should be polynomially larger than 𝒏𝒍𝒐𝒈𝒃 𝒂

https://math.stackexchange.com/questions/1614848/meaning-of-polynomially-larger

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.85© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.85

Recursive Algorithm Analysis : Master Theorem

• Example 3: T(n)=3T(n/4)+nlogn

▪ Compare the equation with T(n)=aT(n/b)+f(n)

▪ a=3 b=2 f(n)=nlogn

▪ Calculate 𝑛𝑙𝑜𝑔𝑏 𝑎 =𝑛𝑙𝑜𝑔4 3 ≈ n0.79

Condition 2: Check Regularity condition (af(n/b) ≤ cf(n) for some constant then

c<1)

af(n/b)=3(n/4)log(n/4)≤(3/4) nlogn, here c=3/4 and c<1

Now, Both the conditions have been satisfied, therefore, we can apply case 3.

Hence, T(n)=Ɵ(nlogn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.86© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.86

Recursive Algorithm Analysis : Master Theorem

• Example 4: T(n)=2T(n/2)+nlogn

▪ Compare the equation with T(n)=aT(n/b)+f(n)

▪ a=2 b=2 f(n)=nlogn

▪ Calculate 𝑛𝑙𝑜𝑔𝑏 𝑎 =𝑛𝑙𝑜𝑔2 2 = n

Since f(n) = Ω(𝑛𝑙𝑜𝑔𝑏 𝑎+𝜖), we can apply case 3

• Condition 1: f(n) should be polynomially larger than nlogb a

p(n)≤ nlogn/n ≤q(n) =>p(n)≤ logn≤q(n)

We cannot find any polynomial for p(n).

Hence, f(n) is not polynomially larger than nlogb a

Here, Master theorem can’t be applied

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.87© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.87

Recursive Algorithm Analysis : Master Theorem

• Some more recurrence relation where Master theorem can’t be applied

▪ T (n) = 2nT (n/2) + nn ⇒ Does not apply (a is not constant)

▪ T (n) = 2T (n/2) + n/log n ⇒ Does not apply (f(n) is not polynomially larger than

nlogb a)

▪ T (n) = 0.5T (n/2) + 1/n ⇒ Does not apply (a < 1)

▪ T (n) = 64T (n/8) − n2logn ⇒ Does not apply (f(n) is not positive)

▪ T(n)=sinn ⇒ Does not apply (T(n) is not monotone)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.88© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.88

Recursive Algorithm Analysis : Master Theorem

• Extended Master Theorem: (Source: Data Structure and Algorithm Made Easy by Narasimha Karumanchi)

If the recurrence is of the form ,

T(n)=aT(n/b)+Ɵ(nklogpn)
where a ≥ 1,b >1,k ≥ 0 and p is a real number, then:

▪ 1) If a >bk, then T(n)=Ɵ(nlogb a)

▪ 2) If a= bk

✓a. If p > –1, then T(n)= Θ(nlogb alogp+1n)

✓b. If p = –1, then T(n)= Θ(nlogb aloglogn)

✓c. If p < –1, then T(n)= Θ(nlogb a)

▪ 3) If a <bk

✓a. If p ≥ 0, then T(n) = Θ(nklogpn)

✓b. If p < 0, then T(n) = O(nk)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.89© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.89

Recursive Algorithm Analysis : Master Theorem

• Solve following recurrence relation using extended Master Theorem

▪ T(n)=3T(n/4)+nlogn Solution: Ɵ(nlogn)

▪ T(n)=2T(n/2)+nlogn Solution: Ɵ(nlog2n)

▪ T(n)=3T(n/2)+n2 Solution: Ɵ(n2)

▪ T(n)=4T(n/2)+n2 Solution: Ɵ(n2 logn)

▪ T(n)=16T(n/4)+n Solution: Ɵ(nlogn)

▪ T(n)=2T(n/2)+n/logn Solution: Ɵ(nloglogn)

▪ T(n)=2T(n/4)+n0.5 Solution: O(n0.5)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.90© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.90

Recursive Algorithm Analysis : Master Theorem

• Solve following recurrence relation using extended Master Theorem

▪ T(n)=T(√n)+1

Let n=2m

T(2m)= T(2m/2) + 1 …….. Eqn(1)

Let S(m) = 2m , Now, Eqn(1) can be rewritten as

S(m)=S(m/2) +1

Now, use the master theorem,

S(m)=Ɵ(logm).

We have n=2m , take log both the side, m=logn

Now, put the value of n, hence, T(n)= Ɵ(loglogn)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.91© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.91

Recursive Algorithm Analysis : Master Theorem

• Master Theorem for Subtract and Conquer. (Source: Data Structure and Algorithm Made Easy by

Narasimha Karumanchi)

Let T(n) be a function defined on positive n, and having the property

𝑇 𝑛 = ቊ
𝑐, 𝑖𝑓 𝑛 ≤ 1

𝑎𝑇 𝑛 − 𝑏 + 𝑓(𝑛), 𝑖𝑓 𝑛 > 1

for some constants c, a > 0,b ≥ 0,k ≥ 0, and function f(n). If f(n) is in O(nk), then

𝑇 𝑛 =

𝑂 𝑛𝑘 𝑖𝑓 𝑎 < 1

𝑂 𝑛𝑘+1 𝑖𝑓 𝑎 = 1

𝑂 𝑛𝑘𝑎
𝑛
𝑏 𝑖𝑓 𝑎 > 1

• Variant of Subtraction and Conquer Master Theorem

The solution to the equation T(n) = T(α n) + T((1 – α)n) + βn, where 0 <α < 1 and β > 0 are

constants, is O(nlogn).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.92© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.92

Space Complexity

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.93© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.93

Space Complexity

Definition: The amount of space required to solve an instance of a problem
against the input size “n”.

Auxiliary space: Space other than that consumed by the input.

We often speak of Auxiliary space (extra memory) needed, not counting the
memory needed to store the input itself.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.94© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.94

Space Complexity

Example:

int FindMax(int A[], int n)

{

int max=A[0];

for (int i=0;i<n;i++){

if(A[i]>max)

max=A[i];

}

return max;

}

Auxiliary space= 4 integer

= O(1)

We can use bytes, but it's easier to use,

say, the number of integers used, the

number of fixed-sized structures, etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.95© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.95

Space Complexity

Example:

int Fn(int n)

{

if(n==0)

return;

else

Fn(n-1);

}

Auxiliary space= Stack used for each recursion= O(logn)

In recursive algo, the function call stack is also

considered.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.96© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.96

Space Complexity

Example:

int Fn(int n)

{

if(n==0)

return;

else

Fn(n/2);

}

Auxiliary space= Stack used for each recursion= O(logn)

In recursive algo, the function call stack is also

considered.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.97© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.97

Space Complexity

Example:

int Fn(int n)

{

if(n==0)

return;

else

Fn(n/2);

Fn(n/2);

}

Auxiliary space= Stack used for each recursion= O(logn)

In recursive algo, the function call stack is also

considered.

Note that the stack space is reused here. Once a function

call terminates, it removes from the stack.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.98© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.98

Recursive Algorithm Analysis : Correctness of Algorithm

Definition: An algorithm Is called totally correct for the given specification if and
only if for any correct input data it:

▪ Terminates and

▪ Returns correct output

• Correct input data is the data which satisfies the initial condition of the
specification

• Correct output data is the data which satisfies the final condition of the
specification

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.99© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.99

Recursive Algorithm Analysis : Correctness of Algorithm

Problem: “Given the array and its length compute the sum of numbers in the
array”

The corresponding Specification could be:

Name: Sum (Arr, len)

input: (initial condition)

Algorithm gets 2 following arguments (input data):

1. Arr - array of integer numbers

2. len - length of Arr (natural number)

output:(Final condition)

Algorithm must return:

sum - sum of the numbers in the array Arr (integer number)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.100

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.100

Recursive Algorithm Analysis : Correctness of Algorithm

The Proof of total correctness of the algorithm involves following steps.

1. Prove that the algorithm always terminates for any correct input data.

2. Prove that the algorithm produces correct output for any correct input
data. (Partial Correctness)

Partial Correct Algorithm: An algorithm is said to be partial correct if it guaranties
the correct output for any correct input data.

Partial correct algorithm does not make the algorithm stop.

The proof of termination can never be fully automated, since the halting problem is
undecidable problem.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.101

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.101

Recursive Algorithm Analysis : Correctness of Algorithm

There are two main methods to prove correctness of an algorithm.

Empirical Method

• Run the program and check its correctness

Formal Reasoning

• Loop Invariant Method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.102

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.102

Correctness of Algorithm: Empirical Method

Empirical Method is based on the actual implementation (Program)
of the algorithm and observation of output.

Problem: To find the maximum in the a given array

Algorithm Implementation

FindMax(Arr, len)
{
max ← -1
for i←0 to len{
if (Arr[i] > max) {
max ← Arr[i]

}
}
return max
}

int FindMax(int a[], int n)
{
int i=0, max=-1;
for(i=0;i<n;i++){

if(a[i]>max)
max=a[i];

}
return max;
}

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.103

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.103

Correctness of Algorithm: Empirical Method

Now, Check if the algorithm

totally correct i.e.

1. whether the algorithm stops?

2. whether algorithm gives

correct output for every valid

input?

Input 1: Arr={10,15,6,4,9}

Input 2: Arr={-10,-4,-15,-3,-15}

Partial Correctness is difficult to prove using empirical method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.104

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.104

Correctness of Algorithm: Loop Invariant Method

There are three steps involved in loop invariant method.

▪ Initialization: It is true prior to the first iteration of the loop.

▪ Maintenance: If it is true before an iteration of the loop, it remains true before
the next iteration.

▪ Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

Note the similarity to mathematical induction, where to prove that a property holds,
you prove a base case and an inductive step. Here, showing that the invariant holds

before the first iteration corresponds to the base case, and showing that the invariant
holds from iteration to iteration corresponds to the inductive step.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.105

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.105

Correctness of Algorithm: Loop Invariant Method

Problem: “To find factorial of any positive integer.”

Algorithm:

Fact(n)

{
i←1
fact ← 1
while(i ≤ n)

{
fact ← fact*i
i++;

}
return fact
}

Initialisation:
Prior to the first loop, Lets take n=1 then fact=1 i.e. fact=1!

Maintenance:
Lets assume the algorithm gives the output k! for valid input k
i.e. fact =k! for input k
In the next iteration, for k+1,
fact=k!*(k+1) which returns fact=(k+1)!
Hence, loop invariant holds.

Termination:
The condition i>n cause the while loop to terminate. The
condition can be reached because i increments by one in each
iteration.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.106

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.106

Randomized Algorithm

Definition: Any algorithm that make use of randomness as part of its
logic or procedure.

Example: Find a number “X” in the given array, in which first half are ‘a’s
and the other half are ‘b’s. X={a,b}
Algorithm:

FindElement(A, n)
begin

repeat
Randomly select one element out of n elements.

until ‘X' is found
end (Source : https://en.wikipedia.org/wiki/Randomized_algorithm)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.107

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.107

Monte Carlo Algorithms

Monte Carlo Algorithms:
▪ The Algorithm terminates when either it gets successful or reach

at most k steps
▪ The algorithm has the deterministic time complexity.
▪ Easier to analyze for worst case.

Example:
FindElement(A, n, k) //k =limit of finding steps. A is array and n is the length of the array
begin

i=0
repeat

Randomly select one element out of n elements.
i=i+1

until i=k or ‘X’ is found
end

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.108

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.108

Analysis : Monte Carlo Algorithms

Analysis:
• If an ‘X’ is found, the algorithm

succeeds, else the algorithm fails.

• After k iterations, the probability of
finding an ‘X’ is:

𝑷𝒓 𝒇𝒊𝒏𝒅 𝑿 = 𝟏 −
𝟏

𝟐
k

• This algorithm does not guarantee success, but the run time is bounded.

• The number of iterations is always less than or equal to k. Taking k to be
constant the run time (expected and absolute) is Ɵ (1).

https://en.wikipedia.org/wiki/Randomized_algorithm

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.109

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.109

Las Vegas Algorithm

Las Vegas Algorithm:
▪ The algorithm keep running infinite times. It terminates only when

it gets success.
Example:

FindElement(A, n) // A is array and n is the length of the array
begin
repeat

Randomly select one element out of n elements.
until ‘X’ is found //X={a,b}
end

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.110

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.110

Analysis : Las Vegas Algorithm

Analysis:
• If an ‘X’ is found, the algorithm

succeeds, else the algorithm fails.

• Expected no of iteration to find ‘X’

E[X]=1/(1/2)=2
If probability of success is p in every trial, then expected

number of trials until success is 1/p

• This algorithm does guarantee success, but the run time is determined as
expected value (Not Deterministic).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.111

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.111

Cases to be Analysed in Algorithm

The resource of an algorithm is analyzed on the following criteria:

Best case: Best case performance measures the minimum resource
utilization of algorithm with respect to input n.

Worst case: Best case performance measures the maximum resource
utilization of algorithm with respect to input n.

Average case: Best case performance measures the average resource
utilization of algorithm with respect to input n. It is
calculated as the average of all possible inputs.

https://www.geeksforgeeks.org/expected-number-of-trials-before-success/

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.112

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.112

Cases to be Analysed in Algorithm

Example: “Find an element ‘X’ in a given integer array of length n.”

Best Case: Element ‘X’ is found at the first attempt. (Not analysed
Generally)

Worst case: Element ‘X’ is found at the last attempt or Element ‘X’
could not be found. (Mostly Done)

Average case: The average of finding ‘X’ over all possible inputs.
(Sometimes Done)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.113

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.113

Cases to be Analysed in Algorithm

Example: “Find an element ‘X’ in a given integer array of length n.”

Best Case: Element ‘X’ is found at the first attempt.
Algorithm:

FindMax(Arr, len)

{

max ← Arr[0]

for i←0 to len{

if (Arr[i] > max) {

max ← Arr[i]

}

}

return max

}

Best Case: Element found at first place, Hence,
only one comparison is needed. therefore time
complexity for best case is O (1)

Worst Case: Element found at last index. It is
assumed that elements are not repeated. The n
comparison is required. Hence, Time complexity
for worst case is O(n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.114

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.114

Cases to be Analysed in Algorithm

Example: “Find an element ‘X’ in a given integer array of length n.”

Best Case: Element ‘X’ is found at the first attempt.
Algorithm:

FindMax(Arr, len)

{

max ← Arr[0]

for i←0 to len{

if (Arr[i] > max) {

max ← Arr[i]

}

}

return max

}

Average Case: In average case, we take all calculated
computing time and divide it by the no of input.

σ𝒊=𝟏
𝒏+𝟏 𝜽(𝒊)

𝒏+𝟏
=

𝜽(
(𝒏+𝟏)(𝒏+𝟐)

𝟐
)

𝒏+𝟏
=

(𝒏+𝟏)(𝒏+𝟐)

𝟐(𝒏+𝟏)
=

(𝒏+𝟐)

𝟐
=O(n)

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.115

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.115

Topics We Have Learned So Far

• Notion of Algorithm
• Importance of Analysis of Algorithm
• Time and Space Complexities
• Asymptotic Notations (O,Ɵ,Ω,o, and ω) and their properties
• Growth of Function
• Measuring Time complexity of Non-recursive Algorithm
• Measuring Time complexity of Recursive Algorithm

▪ Recursion Tree Method
▪ Iterative Method
▪ Master Method
▪ Substitution Method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
U1.116

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.116

Topics We Have Learned So Far

• Measuring Space Complexity
• Correctness of Algorithm
• Analysis of Randomized Algorithm
• Best, Worst and Average case analysis.

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

The test can be scheduled in any lecture

next week. Be Prepared.

Design and Analysis of Algorithms (MCA-201)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal U1.40

Bharati Vidyapeeth’s Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saumya Bansal

Thank You

