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CO # | Detailed Statement of the CO_ BT Level | Mapping to PO #

CO1 | Demonstrate P and NP complexity classes of the BTL2 PO1, PO2, PO3
problem
CO2 | Apply the concepts of asymptotic notations to BTLA PO1, PO2, PO3,

analyze the complexi ithms. POA
CO3 | Analyze and evaluate the s orting and BTLS PO1, PO2, PO3
based algorithms PO4, POS

CO4 | Design efficient  solutions using  various BTL6 PO1, PO2, PO3
algorithms for given problems. POA, POS, PO6,

e — 1 jepolo |

COS5 | Develop innovative solut BTL6 PO1, PO2, PO3,
problems using different paradigms. POA4, POS, PO6

PO7, P09, PO10, |
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¢ Performance Analysis of Algorithms: Algorithm Specification, Performance
Analysis: Space and Time Complexity, Correctness of Algorithms, Growth of
Functions, Asymptotic Notations and Types, Concept of Randomized
Algorithms.

¢ Recurrences: Substitution, Iteration, Master and Recurrence Tree method.
¢ No. of Hours: 09
¢ Books:

= T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms”,
PHI, 2nd Edition, 2006. Chapters[1-5]

= S. Dasgupta, C. Papadimitriou and U.Vazirani, “Algorithms”, McGraw Hill Higher
Education, 1st Edition, 2017. Chapters[0-2]

= J.Kleinberg and E. Tardos, “Algorithm Design”, Pearson Education, 2nd Edition, 2009.
Chapters[2,5,13]
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do we study this course?

¢ Why do we study Design and Analysis of Algorithm?
= Benefit of Algorithm
¥’ Easy to understand.
v’ Logic is developed before actual coding.
= Benefit of Analysis of Algorithm
v’ To find best version of solution from various solutions of same problem.
= Benefit of Design of Algorithm

v’ To create an efficient algorithm to solve a problem in an efficient way.

Design and Analysis of Algorithms (MCA-201)
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History of Algorithm

= The word 'algorithm' has its roots in Latinizing ™yb=m:
the nisba, indicating his geographic origin, of &
the name of Persian mathematician
Muhammad ibn  Musa al-Khwarizmi  to
algorismus

mad ibn Masa al-Khwarizmi

8

* In late medieval Latin, algorismus, English
‘algorism', the corruption of his name, simply
meant the "decimal number system”

Source: https://en.wikipedia.org/wiki/Algorithm
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Algorithm: Definition

e An algorithm is any that takes some values as input and

produces some values as output.

Input Algorithm Output
e An algorithm is thus a that transforms
the into desired in

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Algorithm for Problem Solving

= What task has to be done.

v

= Writing pseudo code, drawing flow chart etc. (Decision of algorithm design

model like Divide & Conquer, Dynamic Programming, Greedy etc.)

= Analysis of time and space required to run the algorithm.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Algorithm for Problem Solving (contd.)

¢ Implementation

= Writing a program

e Testing

= Testing of the output
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ristics of Algorithm

An algorithm has zero or more input

An algorithm has one or more output.

An algorithm must terminate after a finite number of steps.

Each instruction must be clear and unambiguous.

An algorithm must be effective in such a way that its operations
are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is

called computational methods.
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An algorithm has zero or more input

An algorithm has one or more output.

An algorithm must terminate after a finite number of steps.

Each instruction must be clear and unambiguous.

An algorithm must be effective in such a way that its operations
are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is
called computational methods.
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Example of an Algorithm

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

Max <-A[0]

fori<1ton-1do

if A[i] > Max then

Max ¢ Ali]

End For

return Max

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Del
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Example of an Algorithm

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

Max <-A[0]

fori<1ton-1do

if Ali] > Max then

Max < Ali]

End For

return Max

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Algorithm analysis

= To decide the better algorithm among various solutions of a given problem.

v

v

= To check feasibility

v

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Algorithm analysis: Factors to analyze
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Design and Analysis of Algorithms (MCA-201)

Analysis is done before the real Analysis is done after the real implementation
implementation of algorithm of algorithm i.e. program

Priori analysis is an absolute analysis. Posteriori analysis is a relative analysis.
Independent on the hardware and compiler Dependent on the hardware and compiler

It gives approximate answer It gives exact answer

The complexity remains same for every The complexity differs from system to system
system

Asymptotic notations are used to represent Complexity is represented in terms of watch
the complexity in terms of time and space time ( milli second, nano second etc.) and
functions bits/bytes (for space complexity)
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= Time complexity: The amount of time required to run an algorithm.

= Space complexity: The amount of memory space required to run an algorithm.

Algorithm analysis

Time Complexity Space Complexity
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Algorithm is: Time Analysis

= Consider each basic step of algorithm takes 1 unit of time.

= Count the frequency of the each step

Then, the time complexity of the algorithm, T(n), will be

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by Dr. Saumya Bansal
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Algor|thm

Statement Frequency Total
(Cost * Frequency)

1. Algorithm Sum(a,n) 0

24 0 - 0

3. sum«0; 1 1 1

4. for i1 to n do 1 n+l n+l

5. s«—s+ali]; 1 n n

6. end for 0 - 0
7.return s; 1 1 1

8.} 0 - 0
Total T(n)=2n+3

) Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Algorithm Analysis: Order of growth

= Let's understand with an example,

Input size | Algorithm A | Algorithm B
(n) T(n)=100n+1 | T(n)=n2+n+1

10 1001 111

100 10001 10101
1000 10001 1001001
10000 1000001 >10%0
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Algorithm Analysis: Order of growth

Input size Algorithm A | Algorithm B
(n) T(n)=100n+1 | T(n)=n%+n+1

At n=10, Algorithm A looks bad.

10 1001 111
= Asnincreases, the Algorithm A looks 100 10001 10101
better. (Why?) 1000 10001 1001001
= Regardless of the coefficients, there 10000 1000001 >1010

will always be some value of n where an? > bn.

Even if the run time of Algorithm A were n + 10000, it would still be better
than Algorithm B for sufficiently large n.

The coefficient and non-leading term do not affect the order of
growth for some sufficient large value of n.

The leading term is the term with the highest exponent.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. S
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Algorithm Analysis: Asymptotic notation

= Following are the types of asymptotic notations, we generally use.

1. Big-OH (0)

2. Big-OMEGA (Q)

3. Big-THETA (©)

4. Little-OH (o)

5. Little~OMEGA (w)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notation: Big—OH (O)

e Let f(n) and g(n) be two functions from set of integers to real numbers,

f:Z->R, then f(n) is O(g(n)) or f(n) = O(g(n))iff

Big Oh notation
always gives
Upper Bound

) = Slginn

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notation: Big—OH (O)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal
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Asymptotic notation: Big—OH (O)
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Asymptotic notation: Big—Omega (Q)

e Let f(n) and g(n) be two functions from set of integers to real numbers,

f:Z->R, then f(n) is Q(g(n)) or f(n) = Q(g(n)) iff

Big Omega
notation always
gives Lower

Bound

i = Gtpin)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notation: Big—Omega (Q)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal

Design and Analysis of Algorithms (MCA-201)
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Asymptotic notation: Big—Omega (Q)
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Asymptotic notation: Big—Theta (©)

e Let f(n) and g(n) be two functions from set of integers to real numbers,

f:Z->R, then f(n) is © (g(n)) or f(n) = © (g(n)) iff

Big Theta
notation always
gives tight

bound

Hr) = Slginh)
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Asymptotic notation: Big—Theta (©)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal
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Asymptotic notation: Big—Theta (©)
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Asymptotic notation: Big—Theta (©)

= For example, Let f(n)=n!

We know that n!=1*2*3* .. *(n-1)*n

Hence,

1 <1#2+3 ... s(M—1*n<n*n*nx-*n

1<nl<na®

Here, f(n)=0(n") and f(n)=Q(1). But no theta bound.

Same you can find for f(n)=logn!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notations: O, © and Q

Lower Bound I Upper Bound

Let f(n)=n?+5 then f(n)=0(n?) (How?) and f(n)=Q (n?) (How?) that implies f(n)=
0 (n?).

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal
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Asymptotic notations: O, © and Q

¢ Let f(n) and g(n) be two functions, from set of integers to real numbers ,
f:Z->R, such that

then,
if A=0 then f(n)=0(g(n)) but f(n) #0 (g(n))
if A=co then f(n)=Q (g(n)) but f(n) #06 (g(n))
if A#0 and Ais finite f(n) =0 (g(n))

Ponder: Can we compare order of growth from above statements?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Asymptotic notations: Little-OH (0)

¢ Let f(n) and g(n) be two functions, from set of integers to real numbers ,
f:Z-R, then f(n) is o(n) or f(n) € o(n) iff

Where, C, and nj is any positive constant.

Mathematically, if

Then, we can say that f(n)=o(g(n)).
H1in)=0(g(n)) then f(n)=0(g(n))? And if f(n)=0(g(n)) then f(n)=o(g(n))?

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Asymptotic notations: Little-Omega(o)

e Let f(n) = n+3 and g(n)= n? be two functions then f(n) = o(n) or f(n) € o(n) ?
We have to calculate the value of following limit

= lim 22
n-oco n?
“Jim (5 +35) = Jim (G +55) =0

Hence, we can say that f(n)=o(n).

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Sau
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Asymptotic notations: Little-Omega(w)

¢ Let f(n) and g(n) be two functions, , from set of integers to real numbers ,
f:Z-R, then f(n) = w(n) or f(n) € w (n) iff

Where, C; and nj is any positive constant.

Mathematically, if

Then, we can say that f(n)=w (g(n)).
1€ fin)=w (g(n)) then f(n)= Q(g(n))? And if f(n)= Q(g(n)) then f(n)=w (g(n))?

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Asymptotic notations: Little-Omega(w)

e Letf(n) =n%+3 and g(n)= n be two functions then f(n) = w(n) or f(n) € w(n) ?
We have to calculate the value of following limit

Hence, we can say that f(n)=w (n).

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Asymptotic notations: Relationship

Big
Big OH (O) Theta Big Omega (Q)
(e)

Little
Omega

(w)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Sau
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Asymptotic notations: Properties

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notations: Properties

= f(n)= O(g(n)) and g(n)= ©(h(n)) that implies f(n)= ©(h(n))

= f(n)=0(g(n)) and g(n)= O(h(n)) that implies f(n)= O(h(n))

= f(n)=Q(g(n)) and g(n)= Q(h(n)) that implies f(n)= Q(h(n))

= f(n)=o(g(n)) and g(n)= o(h(n)) that implies f(n)= o(h(n))

= f(n)=w(g(n)) and g(n)= w(h(n)) that implies f(n)= w(h(n))

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notations: Efficiency Classes

Complexity Efficiency Class

1 Constant

logn Logarithmic
n Linear

nlogn n-log-n or Linearithmic
n2 Quadratic
n3 Cubic
2" Exponential
n! Factorial

© Bharati Vidyapeeth's Institute of Computer Applications.

and Management, New Delhi-63 by Dr. Saumya Bansal
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Time Analysis of Algorithm

Algorithm

T
Linear Branching Itiratlon Recursion
[Loop] |

No Branching if...elseif..else,

No Loop Switch Do...While
. For loop
No Recursin

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Time Analysis of Algorithm: Linear

1. Algorithm: FindSum(a,b) Analysis:
2. For any
Statement 5: 1 constant value
Statement 6: 1 of fln) e
always write
Statement 7: 1 o(1).

5. sum<0; Total:1+1+1=3
6. sum=a+b;
7. return sum;
8.}

f(n)=3 i.e. f{(n)=0(1).

Can we say f(n)=0(1)?

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Time Analysis of Algorithm: Linear

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Sau
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Time Analysis of Algorithm: Branch

Condition

Time=T;

© Bharati Vidyapeeth's Institute of Computer Applications.

Time=T;

If (Condition)
Statement 1
Statement 2

Time=T,
Statement n
else
Statement 1
Statement 2
) Time=T,

Statement n
end if

Design and Analysis of Algorithms (MCA-201)

and Management, New D

Time Analysis of Algorithm: Bra

3. printz

5. z<b*b
6. ke atz

7. printk

© Bharati Vidyapeeth's Institute of Computer Applicat

Total time complexity T(n)= max (2,3)
i.e. T(n)=2
Therefore, T(n) =0(1)

's and Management, New D

Time Analysis of Algorithm: Loop

© Bharati Vidyapeeth's Institute of Computer Applications.

while (Condition) do
Statement 1
Statement 2

Statement n
end while

fori¢-0tondo
Statement 1
Statement 2

Statement n
end for

and Management, New Delhi-63 by
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Time Analysis of Algorithm: Loop

/]
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Time Analysis of Algorithm: Loop

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-6:

Time Analysis of Algorithm: Loop

Why?

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal
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Time Analysis of Algorithm: Loop
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Time Analysis of Algorithm: Loop

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-6:

Time Analysis of Algorithm: Loop

for(j=0; j<5; j++) do
if a>b Then

else —_— Why?

end if
end for

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal
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Time Analysis of Algorithm: Loop

—_—) Why?

Sum= 2042442%+....... +2=2"— 1 (Geometric Series)= O(2")

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Loop and Recursion

> Base Case:
Recursion Body:
void fun(int n) Body of the loop
{ Recursion Call
else
{
print(n);

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Loop and Recursion

> Base Case:
Recursion Body:
void fun(int n) Body of the loop
{ Recursion Call
else
{
print(n);

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Sau
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Loop and Recursion

Base Case:

|

Recursion Body:
Body of the loop
{ Recursion Call

int fun(int n)

else

© Bharati Vidyapeeth's Institute of Computer Applications.

and Management, New D

Recursion and Recurrence Relation

void fun(int n) Recurrence Relation:

{ /
if (n==0)
return;

else

{
fun(n-1);
print(n);

}
}

Can you guess the output?

© Bharati Vidyapeeth's Institute of Computer Applicatior
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Recursion and Recurrence Relation

void fun(int n) Recurrence Relation:

{ /
if (n==0)
return;
else
{
fori—1ton
print(“*”);
fun(n-1);
}

}

Can you guess the output?

© Bharati Vidyapeeth's Institute of Computer Applications

's and Management, New Delhi-63 by Dr. Sau

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal

Design and Analysis of Algorithms (MCA-201)

U1.20



Design and Analysis of Algorithms (MCA-201)

Recursion and Recurrence Relation

void fun(int n)

Recurrence Relation:
if (n==0)

return;

else

{
fun(n-1);
fun(n-2);

print(“*”);

Can you guess the output?

© Bharati Vidyapeeth's Institute of Computer Applications.

and Management, New D

Recursion and Recurrence Relation

int binarySearch(intarr[], intl, intr, int x)

if (r>=1){
intmid=1+(r-1)/2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, I, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);

Recurrence Relation:

}

return -1;

}

© Bharati Vidyapeeth's Institute of Computer Applicatior
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Recursion and Recurrence Relation

void mergeSort(int arr[],int lLint r){
if(I>=r){
return;

Recurrence Relation:

}

int m =I+ (r-1)/2;
mergeSort(arr,l,m);
mergeSort(arr,m+1,r);
merge(arr,l,m,r);

© Bharati Vidyapeeth's Institute of Computer Applications

's and Management, New Delhi-63 by Dr. Sau
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Recursion and Recurrence Relation

Recurrence Algorithm Solution
T(n) = T(n/2) + O(1) binarysearch 0(log n)
T(n) = T(n-1) + O(1) sequential search 0(n)
T(n) = 2T(n/2) + O(1) tree traversal 0(n)
T(n) = T(n/2) + O(n) quicksort partition 0(n)

T(n) = 2T(n/2) + O(n) mergesort, quicksort ~ O(n log n)
T(n) = T(n-1) + O(n) selection or bubble sort O (n?)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis

Recursive Algo Analysis
| Tree Iteration Master Substitution
Method Method Method Method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Useful Formulae

logx¥ = ylogx logn = log},
log xy = logx + logy logkn = (logn)*
log logn = log(logn) Iog'%: logx - logy

’ x
aIOgg = Xlo\qg Iog'r = lo_g‘g
b logq

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-3 by
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Recursive Algorithm Analysis : Useful Formulae

Harmonic series

1 1 1

) z=145+ ..+ —=logn
k 2 n

f

Dther important formulae

D logk = nlogn

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Recursive Algorithm Analysis : Tree Method

Draw the recursion tree

Find cost of each level

Count the height of the tree [Maximum number of levels]

Count total number of leaf node [last level]

Find out cost of last level

Calculate total cost

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Recursive Algorithm Analysis : Tree Method

Cost of level 0,

EEmmseee) N

Cost of level 1, T

+o=
[ 2 2—"

Costof level 2, 2.0 2+n

—44-4—11

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by
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Recursive Algorithm Analysis : Tree Method

Height of the tree
Let after k level, we reach at T(1). /; % )
. / \“ Lilll, 0
Hence, After k level, 2= T(1) i 7] — 11
A )
;%(: 1 (A/C recurrence relation) \ \
A AN
=>n = 2¢ Ot “
taking log both the side Wy YA
log, n = log, 2¥ Sy
logyn = k "R
Hence, Height of the tree k = log, n ~ T

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Recursive Algorithm Analysis : Tree Method

No of Leaf node:

\ Cost f ev
If the root is level 0, then the K-th level of the N-ary l '
tree will have N¥ nodes. / )
A _-! Cost oflevel 1, ;+;:n

From the tree, it is observed that the tree is binary \, ,L'
tree (two children of each node). Al/' \ / \

AT AT AR AT T I
Hence, the total no of leaf node=2% = 2'0827" L UV T

=nlog22 Jovorh iy
=n

Total cost of leaf node= n*T(1)=n*1=n

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Recursive Algorithm Analysis : Tree Method

Total Cost=
+ cost of leaf nodes /; % b
+06(n) / \
< M Lgledn 18
+6(n) N J! i
+6(n) \ \‘
T' r A -'5' Castafleveld 2y 200
=0(nlogn) U s A

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D
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Recursive Algorithm Analysis : Tree Method

© Bharati Vidyapeeth's Institute of Computer Applications.

Recursive Algorithm Analysis : Tree Method

© Bharati Vidyapeeth's Institute of Computer Applications

Recursive Algorithm Analysis : Iteration Method

T(N)=T(n-1)+1
=T(n-2)+1+1
=T(n-3)+1+1+1

After k terms,
=T(n-k) +(1+1+1

© Bharati Vidyapeeth's Institute of Computer Applications.

Example: T(n)=T(n-1)+1

and Management, New Delhi-63 by Dr. Saum

's and Management, New Delhi-63 by Dr. S

T(0)=1

Let after k term we get T(0)
Hence, n-k=0=>n=k
Therefore,

T(n-n) +(1+1+1...... n times)
T(0) +(1+1+1...... n times)
1+n=0O(n)

and Management, New Delhi-63 by

Design and Analysis of Algorithms (MCA-201)
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Recursive Algorithm Analysis : Iteration Method

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Recursive Algorithm Analysis : Iteration Method

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Recursive Algorithm Analysis : Substitution Method

= How do we make a good guess?
v

Guess: T(n) = O(nlogn) i.e T(n) < cnlogn
Proof:

We need to show that our guess holds for some base case (not
necessarily n = 1, some small n is ok)
Let n=2,
2T(n/2)+n=2T(2/2)+2=2*1+2=4
nlogn=2log2=2
That means, T(n) < C*nlogn

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by
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Recursive Algorithm Analysis : Substitution Method

Guess: T(n) = O(nlogn) i.e T(n) < cnlogn
Proof:
Assume holds for n/2: T() < cZlog?
Now we prove that holds for n: T(n) < cnlogn
T(n) =2T(n/2) +n X
<2(cn/2logn/2)+n What if we
=cnlogn/2 +n guess
cnlogn — cnlog2 +n
=cnlogn —cn+n
< cnlogn +n(1-c)
Thus, T(n)=0O(nlogn)

Similarly, it can be shown that T(n) = Q(nlogn) _'m

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

Let and be constants, let f(n) be a function, and let T(n), monotonically
Increasing function, be defined on the nonnegative integers by the recurrence

where, we interpret n/b to mean either [n/b|or [n/b]|. Then f(n) has the following
asymptotic bounds:

1. If f(n) =0(n'°9» ¢=€) for some constant €>0 (¢ € R*), then T(n)=6(n'°9» %)
2. Iff{n) = 6(n'°9b ) then T(n)=6(n'°% g n)
3. If f{n) = Q(n'°9b @+€) for some constant €> 0 (¢ € R*), and if af(n/b) < cf(n) for

some constant then c<1 and all sufficiently polynomialy large n, then T(n)=6(f (n))

source: Introduction to Algorithms, MIT Press by T Cormen, C Leiserson, et al.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

= Compare the equation with

= a=9 b=3 f(n)=n

= Calculate nl09p» @ =pl0gs 9 = 2

Now check each case of Master Theorem one by one.

Let’s check first case, f(n) =0m'°9v 4=€) i.e. n < cn? ?

Since, , f(n) =0(n!°9s °=€) where =1 we can apply casel.

Design and Analysis of Algorithms (MCA-201)
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Recursive Algorithm Analysis : Master Theorem

= Compare the equation with
= a=l b=3/2  f(n)=1
= Calculate n!°9» @ =p'93/21 = 1

Now check each case of Master Theorem one by one.

Let’s check first case, f(n) =0(n'°9» 4=€)

Since, , f(n) # O(n'°93/21=€) where € >0, we can’t apply casel. Why?

Let’s Check for second case i.e. f(n) = 6(n'°9v2) j.e.
Since f(n) = 6(n'°9» ), we can apply case 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

=  Compare the equation with
= =3 b=2 f(n)=nlogn

= Calculate nlo9p @ =nl09a3 ~ 079

Now check each case of Master Theorem one by one.

Since f(n) = Q(n'°9b 4*€) we can apply case 3, but before that we must check
two conditions.

1. f(n) should be polynomially larger than n'°9» ¢
2. Check Regularity condition (af(n/b) < cf(n) for some constant then c<1)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

= Compare the equation with
= =3 b=2 f(n)=nlogn

= Calculate nl09p @ =pl0ga3 ~ 079

Condition 1:f(n) should be polynomially larger than n'°8ba

https://math.stackexchange.com/questions/1614848/meaning-of-polynomially-larger

p(n)< nlogn/ n°7° <q(n) =>p(n)< n®2* logn<q(n) => n%* < n%2! Jogn<n?

Hence,

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by Dr. Saumya Bansal
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Design and Analysis of Algorithms (MCA-201)

Recursive Algorithm Analysis : Master Theorem

= Compare the equation with

= a=3 b=2 f(n)=nlogn

= Calculate nl09» @ =pl0gs 3 ~ no79

Condition 2: Check Regularity condition (af(n/b) < cf(n) for some constant then
c<1)

af(n/b)=3(n/4)log(n/4)<(3/4) nlogn, here c=3/4 and c<1

Now, Both the conditions have been satisfied, therefore, we can apply case 3.

Hence, T(n)=6(nlogn)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi- Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

= Compare the equation with

" a=2 b=2 f(n)=nlogn

= Calculate n'e9p @ =pl0g22 —

Since f(n) = Q(n'°9 2*€) we can apply case 3

¢ Condition 1: f(n) should be polynomially larger than nlogva

p(n)< nlogn/n <q(n) =>p(n)< logn<q(n)

We cannot find any polynomial for p(n).

Here, Master theorem can’t be applied

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

= T(n)=2"T(n/2) + n" = Does not apply

= T(n)=2T(n/2) + n/log n = Does not apply

= T(n)=0.5T (n/2) + 1/n = Does not apply

= T(n)=64T (n/8) - n2logn = Does not apply

= T(n)=sinn = Does not apply

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
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Recursive Algorithm Analysis : Master Theorem

e Extended Master Theorem: (source: Data Structure and Algorithm Made Easy by Narasimha Karumanchi)

1) If a >b¥, then T(n)=6(n'°8b 2)

= 2)Ifa= b*
v T(n)= ©(n'°&b 2joge*in)
v T(n)= ©(n'°8b 2joglogn)
v T(n)= ©(n'°80 2)

= 3) If a <br
v T(n) = ©(nklogPn)
v T(n) = O(n")

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi- Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

= T(n)=3T(n/4)+nlogn Solution: ©(nlogn)

= T(n)=2T(n/2)+nlogn Solution: ©(nlog?n)
= T(n)=3T(n/2)+n? Solution: ©(n2)

= T(n)=4T(n/2)+n? Solution: ©(n?logn)
= T(n)=16T(n/4)+n Solution: ©(nlogn)

= T(n)=2T(n/2)+n/logn Solution: ©(nloglogn)
= T(n)=2T(n/4)+n%* Solution: O(n®5)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Master Theorem

= T(n)=T(Vn)+1

Let n=2m

T2™)=T(2™2) +1 ....... Eqn(1)

Let S(m) =2™ , Now, Eqn(1) can be rewritten as
S(m)=S(m/2) +1

Now, use the master theorem,

We have n=2™, take log both the side, m=logn

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-3 b
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Recursive Algorithm Analysis : Master Theorem

e Master Theorem for Subtract and Conquer. (Source: Data Structure and Algorithm Made Easy by
Narasimha Karumanchi)

Let T(n) be a function defined on positive n, and having the property
ifn<s1

c,
T = {a'['(n —b) + f(n), if n>1
If f(n) is in O(nk),
0(n") ifa<1
T(n) = { 0(n**1) if a=1
0(nkab) if a>1

Variant of Subtraction and Conquer Master Theorem

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal
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Space Complexity

: The amount of space required to solve an instance of a problem
against the input size “n”.

Auxiliary space: Space other than that consumed by the input.

We often speak of Auxiliary space (extra memory) needed, not counting the
memory needed to store the input itself.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by Dr. Saumya Bansal
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Space Complexity

int FindMax(int A[], int n)

{ Auxiliary space= 4 integer
: =0(1)
int max=A[0];
for (int i=0;i<n;i++){ We can use bytes, but it's easier to use,
if(A[i]>max) say, the number of integers used, the
max=A[il; number of fixed-sized structures, etc.
}
return max;
}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, Ney

Space Complexity

Auxiliary space= Stack used for each recursion= O(logn)

int Fn(int n)

{

if(n==0) In recursive algo, the function call stack is also
return; considered.

else

Fn(n-1);
}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New D

Space Complexity

Auxiliary space= Stack used for each recursion= O(logn)

int Fn(int n)

{

if(n==0) In recursive algo, the function call stack is also
return; considered.

else

Fn(n/2);
}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by
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Space Complexity

int Fn(int n) Auxiliary space= Stack used for each recursion= O(logn)
{

if(n==0) In recursive algo, the function call stack is also

return; considered.

else

. Note that the stack space is reused here. Once a function
Fn(n/2); . ;
call terminates, it removes from the stack.

Fn(n/2);

}

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Correctness of Algorithm

: An algorithm Is called for the given specification if and
only if for any correct input data it:

is the data which satisfies the initial condition of the
specification

is the data which satisfies the final condition of the
specification

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Correctness of Algorithm

“Given the array and its length compute the sum of numbers in the

array”
The corresponding could be:
Name: Sum (Arr, len)
input: (initial condition)
Algorithm gets 2 following arguments (input data):

1. Arr-array of integer numbers

2. len - length of Arr (natural number)
output:(Final condition)

Algorithm must return:

sum - sum of the numbers in the array Arr (integer number)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63

Design and Analysis of Algorithms (MCA-201)
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Recursive Algorithm Analysis : Correctness of Algorithm

The Proof of total correctness of the algorithm involves following steps.
1. Prove that the algorithm always terminates for any correct input data.

2. Prove that the algorithm produces correct output for any correct input
data. (Partial Correctness)

: An algorithm is said to be partial correct if it guaranties
the correct output for any correct input data.

Partial correct algorithm does not make the algorithm stop.

The proof of termination can never be fully automated, since the halting problem is
undecidable problem.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal uL100

Recursive Algorithm Analysis : Correctness of Algorithm

There are two main methods to prove correctness of an algorithm.

Empirical Method

* Run the program and check its correctness

Formal Reasoning

¢ Loop Invariant Method

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Correctness of Algorithm: Empirical Method

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63

Design and Analysis of Algorithms (MCA-201)

Empirical Method is based on the actual implementation (Program)
of the algorithm and observation of output.
Problem:
Algorithm Implementation
FindMax(Arr, len) int FindMax(int a[], int n)
{
max ¢ -1 int i=0, max=-1;
for i<-0 to len{ for(i=0;i<n;i++){
if (Arr[i] > max) { if(alil>max)
max ¢ Arr[i] max=alil;
)
}
) return max;
return max }
)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal Ul.34
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Correctness of Algorithm: Empirical Method

Now, Check if the algorithm :"mhmu "‘::"iﬂ“"‘”:”:"l -

totally correct i.e. { «

1. whether the algorithm stops?  |ficowient

2. whether algorithm gives e mat ae=all;
correct output for every valid | ! eturn max,
input? returnmax

b

Input 1: Arr={10,15,6,4,9}

Input 2: Arr={-10,-4,-15,-3,-15}

Partial Correctness is difficult to prove using empirical method

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Correctness of Algorithm: Loop Invariant Method

There are three steps involved in loop invariant method.

= |nitialization: It is true prior to the first iteration of the loop.

= Maintenance: If it is true before an iteration of the loop, it remains true before
the next iteration.

= Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

invariant holds
before the first iteration corresponds to the base case, showing that the invariant
holds from iteration to iteration corresponds to the inductive step

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Correctness of Algorithm: Loop Invariant Method

“To find factorial of any positive integer.”

Algorithm: Prior to the first loop, Lets take n=1 then fact=1 i.e. fact=1!
Fact(n)
{_ Lets assume the algorithm gives the output k! for valid input k|
'fjc:tl 1 i.e. fact =k! for input k
while(i<n) In the next iteration, for k+1,
{ fact=k!*(k+1) which returns fact=(k+1)!
fact < fact*i Hence, loop invariant holds.
i++;
} The condition i>n cause the while loop to terminate. The
return fact condition can be reached because i increments by one in each
! iteration.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63
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Randomized Algorithm

Definition: Any algorithm that make use of randomness as part of its
logic or procedure.
Example: Find a number “X” in the given array, in which first half are ‘a’s
and the other half are ‘b’s. X={a,b}
Algorithm:
FindElement(A, n)
begin
repeat
Randomly select one element out of n elements.
until X" is found

end  (source : https://en.wikipedia.org/wiki ized_algorithm)

UL106
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te Carlo Algorithms

Monte Carlo Algorithms:
= The Algorithm terminates when either it gets successful or reach
at most k steps
= The algorithm has the deterministic time complexity.
= Easier to analyze for worst case.

Example:
FindElement(A, n, k) //k =limit of finding steps. A is array and n is the length of the array
begin
i=0
repeat
Randomly select one element out of n elements.
i=i+l
until i=k or X" is found
end

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Analysis : Monte Carlo Algorithms

Analysis: FindElement(A, n, k) //k =limit of finding steps.
« If an ‘X’ is found, the algorithm begin
succeeds, else the algorithm fails. i=0
. . . repeat
* After k iterations, the probability of .
- e Randomly select one element out of n elements.
finding an ‘X’ is: o
=i+l
: _ 1 _ (Y« until j=k or X' is found
Pr[findX] =1 (z) o

* This algorithm does not guarantee success, but the run time is bounded.

¢ The number of iterations is always less than or equal to k. Taking k to be
constant the run time (expected and absolute) is © (1).

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-G3 by Dr. Saumya Bansal
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Las Vegas Algorithm

Las Vegas Algorithm:
= The algorithm keep running infinite times. It terminates only when
it gets success.
Example:
FindElement(A, n) // A is array and n is the length of the array
begin
repeat
Randomly select one element out of n elements.
until ‘X’ is found //X={a,b}
end

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi- Saumya Bansal uL109

nalysis : Las Vegas Algorithm

Analysis: FindElement(A, n) /A isarvay and n i the length of the array
« If an ‘X’ is found, the algorithm : - .
succeeds, else the algorithm fails.

hegin

repeat

lect one clement out of n elements.

* Expected no of iteration to find ‘X’
E[X]=1/(1/2)=2

If probability of success is p in every trial, then expected end
number of trials until success is 1/p

¢ This algorithm does guarantee success, but the run time is determined as
expected value (Not Deterministic).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal uL110

Cases to be Analysed in Algorithm

The resource of an algorithm is analyzed on the following criteria:

Best case: Best case performance measures the minimum resource
utilization of algorithm with respect to input n.

Worst case: Best case performance measures the maximum resource
utilization of algorithm with respect to input n.

Average case: Best case performance measures the average resource
utilization of algorithm with respect to input n. It is
calculated as the average of all possible inputs.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal uLn
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Cases to be Analysed in Algorithm

Example: “Find an element ‘X’ in a given integer array of length n.”

Best Case: Element ‘X’ is found at the first attempt. (Not analysed
Generally)

Worst case: Element ‘X" is found at the last attempt or Element ‘X’
could not be found. (Mostly Done)

Average case: The average of finding ‘X’ over all possible inputs.
(Sometimes Done)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Cases to be Analysed in Algorithm

Example: “Find an element ‘X’ in a given integer array of length n.”

Best Case: Element ‘X’ is found at the first attempt.
Algorithm:

Best Case: Element found at first place, Hence,

FindMax(Arr, len) N N N

. only one comparison is needed. therefore time
complexity for best case is O (1)

max ¢ Arr[0]
for <0 to len{
if (Arr{i] > max) { Worst Case: Element found at last index. It is
max & Arr[i] assumed that elements are not repeated. The n
} comparison is required. Hence, Time complexity

return max

}

for worst case is O(n)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Cases to be Analysed in Algorithm

Example: “Find an element ‘X’ in a given integer array of length n.”

Best Case: Element ‘X’ is found at the first attempt.

Algorithm: Average Case: In average case, we take all calculated
FindMax(Arr, len) computing time and divide it by the no of input.
{
max ¢ Arr[0] ) (n+1)(n+2)
for €0 to len{ pardi10) _ o( 2 ) _ (i)(m+2) “HZ):O(H)
if (Arr[i] > max) { n+1 n+1 2(n+1) 2
max ¢ Arr[i]

}
}
return max

}

uL114
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Topics We Have Learned So Far

¢ Notion of Algorithm
¢ Importance of Analysis of Algorithm
e Time and Space Complexities
e Asymptotic Notations (0,8,Q,0, and w) and their properties
e Growth of Function
e Measuring Time complexity of Non-recursive Algorithm
e Measuring Time complexity of Recursive Algorithm
= Recursion Tree Method
= |terative Method
= Master Method
= Substitution Method

uL115
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Topics We Have Learned So Far

e Measuring Space Complexity

e Correctness of Algorithm

¢ Analysis of Randomized Algorithm

e Best, Worst and Average case analysis.
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The test can be scheduled in any lecture
next week. Be Prepared.

Bharati Vidyapeeth's Institute of Computer Applications and Management (GGS IP University) New Delhi, India by Dr. Saun
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Thank You
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