

Europeine /	Pre-Requisites & Co	ourse	Outcom
PRE-R	EQUISITES:		
1. Pr	ogramming Skills		
2. Di	screte Structures		
3. Da	ita Structures		
COLIP	SE OUTCOMES (COr)		
After	completion of this course, the learners will be able to	0:-	
CO #	Detailed Statement of the CO	BT Level	Mapping to PO
CO1	Demonstrate P and NP complexity classes of the problem.	BTL2	PO1, PO2, PO3
CO2	Apply the concepts of asymptotic notations to analyze the complexities of various algorithms.	BTL4	PO1, PO2, PO3, PO4
CO3	Analyze and evaluate the searching, sorting and tree-based algorithms.	BTL5	PO1, PO2, PO3, PO4, PO5
CO4	Design efficient solutions using various algorithms for given problems.	BTL6	PO1, PO2, PO3, PO4, PO5, PO6, PO10
CO5	Develop innovative solutions for real-world problems using different paradigms.	BTL6	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO9, PO10

	Syllabus (Unit-I)
 Perform Analysi Function Algoriti 	nance Analysis of Algorithms: Algorithm Specification, Performance s: Space and Time Complexity, Correctness of Algorithms, Growth of ons, Asymptotic Notations and Types, Concept of Randomized hms.
Recurr	ences: Substitution, Iteration, Master and Recurrence Tree method.
• No. of H	iours: 09
Books:	
 T.H. PHI, 	Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", 2nd Edition, 2006. Chapters[1-5]
 S. D Educe 	Dasgupta, C. Papadimitriou and U.Vazirani, "Algorithms", McGraw Hill Higher cation, 1st Edition, 2017. Chapters[0-2]
 J. Kl Cha 	einberg and E. Tardos, "Algorithm Design", Pearson Education, 2nd Edition, 2009. aters[2.5.13]

nt, New Delhi-63 by Dr. Sa

ati Vidyapeeth's Institute of Comp

Why do we study this course?

- Why do we study Design and Analysis of Algorithm?
 - Benefit of Algorithm
 - ✓ Easy to understand.
 - ✓ Logic is developed before actual coding.
 - Benefit of Analysis of Algorithm
 - \checkmark To find best version of solution from various solutions of same problem.
 - Benefit of Design of Algorithm
 - \checkmark To create an efficient algorithm to solve a problem in an efficient way.

th's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

The word 'algorithm' has its roots in Latinizing the nisba, indicating his geographic origin of the name of Persian mathematician Muhammad ibn Musa al-Khwarizmi to algorismus In late medieval Latin, algorismus, English 'algorism', the corruption of his name, simply meant the 'decimal number system'

Algorithm for Problem Solving (con	ntd.)
Implementation	
Writing a program	
• Testing	
Testing of the output	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.9

th's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal

Characteristics of Algorithm

- Input: An algorithm has zero or more input
- Output: An algorithm has one or more output.
- Finiteness: An algorithm must terminate after a finite number of steps.
- Definiteness: Each instruction must be clear and unambiguous.

th's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

• Effectiveness: An algorithm must be effective in such a way that its operations are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is called **computational methods**.

Characteristics of Algorithm

- Input: An algorithm has zero or more input
- Output: An algorithm has one or more output.
- Finiteness: An algorithm must terminate after a finite number of steps.
- Definiteness: Each instruction must be clear and unambiguous.

ati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

• Effectiveness: An algorithm must be effective in such a way that its operations are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is called **computational methods**.

BARE DE LE D	Example of an Algorithm
• Problem:	To find the max element of an array
Algorithm	arrayMax(A, n)
Input array	A of n integers
Output max	imum element of A
$Max \leftarrow A[0]$	
for i ←1 to	n-1 do
if A[i] > Max then
Max	\leftarrow A[i]
End For	
return Max	

anna Canada	Example of an Algorithm
• Problem: To find th	e max element of an array
Algorithm arrayMax	A, n)
Input array A of n integ	ers
Output maximum eleme	ent of A
Max ←A[0]	
for i \leftarrow 1 to n-1 do	
if A[i] > Max ther	1
$Max \gets A[i]$	
End For	
return Max	
© Bharati Vidyapeeth's Institute of Compute	r Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Algorithm analysis

- Why do we analyse the algorithm?
 - To decide the better algorithm among various solutions of a given problem.
 - ✓ For example, better algorithm among all sorting algorithm

idyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

- Suppose you have written an algorithm for a given problem and the solution of the problem is already exist. How do you prove your algorithm is better?
- To check feasibility

eth's Institute of Computer Appl

Even if the solution is given first time of any given problem, the analysis of an algorithm can decide whether the algorithm will run with feasible recourse (Time and Space)

nt, New Delhi-63 by Dr. Sau

Algo	rithm Analysis
Priori Analysis	Posteriori analysis
Analysis is done before the real implementation of algorithm	Analysis is done after the real implementation of algorithm i.e. program
Priori analysis is an absolute analysis.	Posteriori analysis is a relative analysis.
Independent on the hardware and compiler	Dependent on the hardware and compiler
It gives approximate answer	It gives exact answer
The complexity remains same for every system	The complexity differs from system to system
Asymptotic notations are used to represent the complexity in terms of time and space functions	Complexity is represented in terms of watch time (milli second, nano second etc.) and bits/bytes (for space complexity)
harati Vidyapeeth's Institute of Computer Applications and Management, N	ew Delhi-63 by Dr. Saumya Bansal

eth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bar

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal

Algorithm Analysis: Time Analysis				
Statement	Cost of execution	Frequency	Total (Cost * Frequency)	
1. Algorithm Sum(a,n)	0	-	0	
2.{	0	-	0	
3. sum←0;	1	1	1	
4. for i←1 to n do	1	n+1	n+1	
5. s←s+a[i];	1	n	n	
6. end for	0	-	0	
7. return s;	1	1	1	
8. }	0	-	0	
Total			T(n)=2n+3	

	Algorithm	n Analys	is: Orde	r of growt
 Order of growth an algorithm cha Let's understand 	of an algorith anges with the and with an ex	m predicts tha input size. cample,	t how execut	ion time or space
	Input size (n)	Algorithm A T(n)=100n+1	Algorithm B T(n)=n ² +n+1	
	10	1001	111	
	100	10001	10101	
	1000	10001	1001001	
	10000	1000001	>1010	

•	Observations:	Input size (n)	Algorithm A T(n)=100n+1	Algorithm E T(n)=n ² +n+
	At n=10, Algorithm A looks bad.	10	1001	111
	 As n increases, the Algorithm A looks 	100	10001	10101
	better. (Why?)	1000	10001	1001001
	 Regardless of the coefficients, there 	10000	1000001	>1010
	will always be some value of n where a	an² > bn.		
	 Even if the run time of Algorithm A we than Algorithm B for sufficiently large 	re n + 10000 n.	0, it would stil	l be better
•	Conclusion: The coefficient and non-lead growth for some sufficient large value of	ing term do n.	not affect the	e order of

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Dr. Saumya Bansal

Carrier -	Asymp	totic notat	ion: Big-	OH (O)
-----------	-------	-------------	-----------	--------

• Let $f(n)=n^3+3n+5$ and $g(n)=n^3$. If f(n)=O(g(n)) then find C and n_0 .

.....

 Let f(n)=n²+3n+5. if f(n)=O(g(n)) then what could be the possible values for g(n)?

ent, New Delhi-63 by Dr. Saum

Asymptotic notation: Big–Omega (Ω)
• Let $f(n)$ = n+5 and $f(n)\in \Omega$ (n). Calculate C and $n_0.$
• Let $f(n)=n^2+3n+5.$ if $f(n)=\Omega$ $(g(n))$ then what could be the possible values for $g(n)?$

Asymptotic notation: Big-	Theta (Θ)
---------------------------	-----------

• Let f(n)=n+5 and $f(n) \in \Theta(n)$. Calculate C_1 , C_2 and n_0 .

 Let f(n)=n²+3n+5. if f(n)=⊖ (g(n)) then what could be the possible value(s) for g(n)?

nt, New Delhi-63 by Dr. Sa

BARE CONSTRUCT	Asymptotic notation: Big–Theta (O)
• Son	netimes, we can not express the function in tight bound	
-	For example, Let f(n)=n!	
	We know that n!=1*2*3**(n-1)*n	
Hei	nce,	
	$1 \leq \texttt{1*2*3} \dots \dots * (n-1) * n \leq n * n * n * \dots * n$	
	$1 \le n! \le n^n$	
Her	e, f(n)=O(n^n) and f(n)= $\Omega(1)$. But no theta bound.	
Sam	ne you can find for f(n)=logn!	
© Bharati Vidyapeeth	's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.32

BALL DO ROUNTLY	Asymptotic notations: O, Θ and Ω	
• Let $f(n) \in f: Z \rightarrow R$, s	and g(n) be two functions, from set of integers to real numbers , such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = A$	
then,		
if A	=0 then $f(n)=O(g(n))$ but $f(n) ≠Θ(g(n))$	
if A	$s=\infty$ then f(n)=Ω (g(n)) but f(n) ≠Θ (g(n))	
if A	\neq 0 and A is finite f(n) = Θ (g(n))	
Por	der: Can we compare order of growth from above statements?	
© Bharati Vidyapeeth's In	stitute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U

Asymptotic notations: Little-OH (o)
• Let f(n) and g(n) be two functions, from set of integers to real numbers , f:Z \rightarrow R, then f(n) is o(n) or f(n) \in o(n) iff $0 \le f(n) < c * g(n) \qquad \forall n \ge n_0$
Where, C_1 and n_0 is any positive constant.
Mathematically, if
$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
Then, we can say that f(n)=o(g(n)).
$l_{in}(n)=o(g(n))$ then $f(n)=O(g(n))$? And if $f(n)=O(g(n))$ then $f(n)=o(g(n))$?
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Asymptotic notations: Little-Omega(ບ)
• Let $f(n)$ and $g(n)$ be two functions, , from set of integers to real numbers , $f:Z \rightarrow R$, then $f(n) = \omega(n)$ or $f(n) \in \omega(n)$ iff	
$f(n) > c * g(n) \ge 0 \forall n \ge n_0$	
Where, C_1 and n_0 is any positive constant.	
Mathematically, if	
$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$	
Then, we can say that $f(n)=\omega$ (g(n)).	
$\widehat{(m_n)}=\omega(g(n)) \text{ then } f(n)=\Omega(g(n))? \text{ And if } f(n)=\Omega(g(n)) \text{ then } f(n)=\omega(g(n))?$	
@ Rharati Vidvaneeth's Institute of Computer Applications and Management. New Delhi-63 by Dr. Saumva Ransal	U1.37

Asymptotic notations: Properties	
Reflexive Property:	
 f(n)=O(f(n)) 	
 f(n)= Ω(f(n)) 	
 f(n)=⊖(f(n)) 	
Symmetric Property:	
 f(n)= Θ(g(n)) iff g(n)= Θ(f(n)) 	
 f(n)= O(g(n)) iff g(n)= Ω(f(n)) 	
 f(n)= o(g(n)) iff g(n)= ω(f(n)) 	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.40

Asymptotic notations: Properties

- Reflexive Property
 - f(n)= Θ(g(n)) and g(n)= Θ(h(n)) that implies f(n)= Θ(h(n))
 - f(n)=O(g(n)) and g(n)= O(h(n)) that implies f(n)= O(h(n))
 - $f(n)=\Omega(g(n))$ and $g(n)=\Omega(h(n))$ that implies $f(n)=\Omega(h(n))$
 - f(n)=o(g(n)) and g(n)= o(h(n)) that implies f(n)= o(h(n))
 - $f(n)=\omega(g(n))$ and $g(n)=\omega(h(n))$ that implies $f(n)=\omega(h(n))$

rati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

• O(f(n)+g(n))= O{max(f(n),g(n)}

	Asymptotic notations: Efficiency Classes		
Basic As	symptotic Efficiency Classes		
	Complexity	Efficiency Class	
	1	Constant	
	logn	Logarithmic	
	n	Linear	
	nlogn	n-log-n or Linearithmic	
	n²	Quadratic	
	n ³	Cubic	
	2 ⁿ	Exponential	
	n!	Factorial	
© Bharati Vidvapeeth's	© Bharati Vidvapeeth's Institute of Computer Applications and Management. New Delhi-63 by Dr. Saumva Bansal U1.42		

A DESCRIPTION OF A DESCRIPTION	Time Analysis of Algorithm			
Algorithm				
	Linear Branching Iteration [Loop] Recursion			
	No Branching			
	No Loop Switch DoWhile			
	No Recursionetc.			

1. Algorithm: FindSum(a,b)	Analysis:	
2. {		For any
3. input: integer a and integer b	Statement 5: 1	constant value
4. Output: sum of a and b	Statement 6: 1	of f(n) we
	Statement 7: 1	O(1)
5. sum ← 0;	Total:1+1+1=3	0(1).
6. sum=a+b;		
7. return sum;	f(n)=3 i.e. f(n)=0	(1).
8. }		
-	Can we say f(n)=	O(1)?
Bharati Vidyapeeth's Institute of Computer Applications and Management, Ne	w Delhi-63 by Dr. Saumya Bansal	

TRANSFE CONSTRUCT	Time Analysis of Algorithm: Lin	ear
© Bharati Vidvapeeth's Institute of C	Computer Applications and Management. New Delhi-63 by Dr. Saumva Bansal	U1.45

	wanter /	Time Analysis of Algorithm: Branch
1.	<i>if</i> (<i>a</i> > <i>b</i>)	Total time complexity T(n)= max (2,3)
2.	z← a*a	i.e. T(n)=2
3.	print z	Therefore, T(n) =O(1)
4.	else	
5.	$z {\leftarrow} b^* b$	
6.	$\mathbf{k} {\leftarrow} \mathbf{a} {+} \mathbf{z}$	
7.	print k	
8.	end if	
© Bharati	Vidyapeeth's Institute	of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U1.47

MIRCE COLOR	Time Analysis of	Algorithm: Loop
for (i=0;i <n;i++) Statement 1</n;i++) 		O(n)
for (i=0;i <n;i=i+2) Statement 1</n;i=i+2) 		O(n/2)=O(n)
for (i=0;i <n;i=i*2) Statement 1</n;i=i*2) 		O(logn)
for (i=n;i>0;i=i/2) Statement 1		O(logn)
© Bharati Vidyapeeth's Institute of Comp	outer Applications and Management, New Delhi-63 by Dr.	Saumya Bansal U1.49

TIMES OF STREET	Time Analysis of A	Time Analysis of Algorithm: Loop	
for (i=0;i<5;i++) Statement 1		O (1)	
i←1; s ←1; while(s<=n) do i++; s=s+i; print("*") end while		O(√n)	
n Phaseti Viduenesthia lastikuta of Ca	numutas Auviliantians and Management, New Dalki 65 ku De Car	III 50	

A REAL PROPERTY	Time Analysis of Algo	rithm: Loop
for (i=0; i <n;i++) for(j=0; j<n-1; j++)<br="">Statement 1</n-1;></n;i++) 		O(n ²)
for (i=0; i <n;i++) for(j=i; j<n-1; j++)<br="">Statement 1</n-1;></n;i++) 	>	O(n ²)
for (i=0; i <n;i++) for(j=0; j<n; j="j*2)<br">Statement 1</n;></n;i++) 	→ C)(nlogn)
Bharati Viduaneeth's Institute of Comput	ar Applications and Management New Delhield by Dr. Saumus Bar	seal 1.52

Time Anal	ysis of Algorithm: Loop
for (i=0; i*i <n;i++) Statement 1</n;i++) 	→ O(√n)
for (i=n/2; i≤n;i++) for(j=1; j≤n; j=2*j) for(k=1; k≤n-1; k=k*2) Statement 1	→O(nlog ² n)
for (i=0; i <n;i++) for(j=0; j< n; j=j++) for(k=0; k< n; k=k++) Statement 1</n;i++) 	\rightarrow O(n ³)
© Bharati Vidyapeeth's Institute of Computer Applications and Management	, New Delhi-63 by Dr. Saumya Bansal U1.

Tin	ne Analysis of Algorithm: Loop
int j = 1;	
for (int $i = 0; i < n; i++)$	
for (int k = j; k > 0; k- print("*");	$\longrightarrow O(2^n) Why?$
}	for i=0 : inner loop j=1 i.e 2 ⁰
j *= 2;	for $i=1$: inner loop $j=2$ i.e 2^1
}	for i=2 : inner loop j=4 i.e 2 ²
	for i=n : inner loop j=1 i.e 2 ⁿ
Sum= $2^0 + 2^1 + 2^2 + 2^3$	++2 ⁿ = 2 ⁿ - 1 (Geometric Series)= O(2 ⁿ)
Bharati Vidyapeeth's Institute of Computer Applicati	ions and Management, New Delhi-63 by Dr. Saumya Bansal

Recursion and Recurrence Relation				
	Recurrence		Algorithm	Solution
T(n)	= T(n/2)	+ 0(1)	binary search	O(log n)
T (n)	= T(n-1)	+ 0(1)	sequential search	0 (n)
T (n)	= 2T(n/2)	+ 0(1)	tree traversal	0 (n)
T (n)	= T(n/2)	+ 0(n)	quicksort partition	0 (n)
T (n)	= 2T(n/2)	+ 0(n)	mergesort, quicksort	O(n log n)
T (n)	= T(n-1)	+ 0(n)	selection or bubble sort	0 (n ²)

•			
•			
•			
1			

Recursive Algorithm	Analysis : Useful Formulae
$log x^{y} = y log x$ $log xy = log x + log y$	$logn = log_{10}^{n}$ $log^{k}n = (logn)^{k}$
$log \ logn = log(logn)$ $a^{log_b^x} = x^{log_b^a}$	$log\frac{x}{y} = logx - logy$ $logbx_{b} = \frac{logx_{b}}{1 - b}$
	ob loga

- Count total number of leaf node [last level]
- Find out cost of last level
- Calculate total cost
 - = Sum of the cost of each level + cost of last level
 yapeeth's institute of Computer Applications and Management, New Delhi-63 by Dr. Saum

Recursive Algorithm Analysis : Tree	Method
• Example 2: T(n)=T(n/2)+n	
🖉 Blance Wanness Ma Institute of Parmeter Analyzing and Management Man Publick A kit Pa Parmin Based	114.73

Recurs	sive Algorithm Analysis : Tree Method
• Example 3: T(n)=T(n/3))+T(2n/3)+n

T BHER DO BOOKING	Recursive Algorithm Analysis : Iteration Method	
Example	2: T(n)=2T(n/2)+n	
© Bharati Vidyapeeth's I	Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal UI.	.76

Re	cursive Algorithm Analysis : Iteration Method
• Example 2: T(n)=	=2T(n-1)+1

<u>/ 1840</u>	Recursive Algorithm Analysis : Master Theorem
Let Inci	$a \ge 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$, monotonically reasing function, be defined on the nonnegative integers by the recurrence T(n)=aT(n/b)+f(n)
wh asy	ere, we interpret n/b to mean either $\lfloor n/b floor \lceil n/b floor$. Then f(n) has the following mptotic bounds:
1.	If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$ ($\epsilon \in \mathbb{R}^+$), then $T(n) = O(n^{\log_b a})$
2.	If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} g n)$
3.	If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ ($\epsilon \in \mathbb{R}^+$), and if $af(n/b) \le cf(n)$ for
	some constant then c<1 and all sufficiently polynomialy large n, then $T(n)=\Theta(f(n))$ source: Introduction to Algorithms, MIT Press by T Cormen, C Leiserson, et al.

 Com a=9 Calc 	bare the equation with $T(n)$ b=3 f(n)=n late $n^{\log_b a} = n^{\log_3 9} = n^2$	=aT(n/b)+f(n)	
 a=9 Calc 	b=3 f(n)=n late $n^{\log_b a} = n^{\log_3 9} = n^2$		
Calc	late $n^{\log_b a} = n^{\log_3 9} = n^2$		
Nowich			
NOW CIT	ck each case of Master The	orem one by one.	
Let's ch	ck first case, <i>f(n) =O(n^{log}b c</i>	$t - \epsilon$) i.e. n \leq cn ² ?	
Since, ,	(n) =O($n^{\log_3 9-\epsilon}$) where ϵ =1	l we can apply case1.	

• Example 2: T(n)=T(2n/3)+1• Compare the equation with T(n)=aT(n/b)+f(n)• a=1 b=3/2 f(n)=1• Calculate $n^{\log_b a} = n^{\log_3/2} 1 = 1$ Now check each case of Master Theorem one by one. Let's check first case, $f(n) = O(n^{\log_b a} - \epsilon)$ Since, $, f(n) \neq O(n^{\log_3/2} 1-\epsilon)$ where $\epsilon > 0$, we can't apply case1. Why? Let's Check for second case i.e. $f(n) = O(n^{\log_b a})$ i.e. $c_2n^{\log_b a} \le f(n) \le c_1n^{\log_b a}$ Since $f(n) = O(n^{\log_b a})$, we can apply case 2 Hence, according to Master Theorem, $T(n)=O(n^{\log_b a}|g_n) = O(\log_b)$

Recursive Algorithm Analysis : Master Theorem Example 3: T(n)=3T(n/4)+nlogn Compare the equation with T(n)=aT(n/b)+f(n)

- a=3 b=2 f(n)=nlogn
- Calculate $n^{\log_b a} = n^{\log_4 3} \approx n^{0.79}$
- Now check each case of Master Theorem one by one.

Since $f(n) = \Omega(n^{\log_b a + \epsilon})$, we can apply case 3, but before that we must check two conditions.

1. f(n) should be polynomially larger than $n^{\log_b a}$

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

2. Check Regularity condition $(af(n/b) \le cf(n))$ for some constant then c<1)

-	Example 3: T(n)=3T(n/4)+nlogn
	 Compare the equation with T(n)=aT(n/b)+f(n)
	 a=3 b=2 f(n)=nlogn
	• Calculate $n^{\log_b a} = n^{\log_4 3} \approx n^{0.79}$
	Condition 1: $f(n)$ should be polynomially larger than $n^{\log_b a}$
	"Polynomially larger" means that the ratio of the functions falls between two polynomial: asymptotically. Specifically, $f(n)$ is polynomially greater than $g(n)$ if and only if there exist generalized polynomials (fractional exponents are allowed) $p(n),q(n)$ such that the followin inequality holds asymptotically: $p(n)sf(n)/g(n)sq(n)$
	https://math.stackexchange.com/questions/1614848/meaning-of-polynomially-larger
	$p(n) \le n \log n / n^{0.79} \le q(n) \Longrightarrow p(n) \le n^{0.21} \log n \le q(n) \Longrightarrow n^{.01} \le n^{0.21} \log n \le n^2$
	Hence, $f(n)$ should be polynomially larger than $n^{\log_b a}$
	III

Recursive Algorithm Analysis : Master Theorem• Example 3: T(n)=3T(n/4)+nlogn• Compare the equation with T(n)=aT(n/b)+f(n)• a=3 b=2 f(n)=nlogn• Calculate $n^{log_b a} = n^{log_a 3} \approx n^{0.79}$ Condition 2: Check Regularity condition $(af(n/b) \le cf(n) \text{ for some constant then } c<1)$ $af(n/b)=3(n/4)log(n/4)\le(3/4)$ nlogn, here c=3/4 and c<1Now, Both the conditions have been satisfied, therefore, we can apply case 3.Hence, $T(n)=\Theta(nlogn)$

ant, New Delhi-63 by Dr. Sau

• Example 4: T(n)=2T(n/2)+nlogn• Compare the equation with T(n)=aT(n/b)+f(n)• a=2 b=2 f(n)=nlogn • Calculate $n^{log_b}a = n^{log_2} 2 = n$ Since $f(n) = \Omega(n^{log_b}a + \epsilon)$, we can apply case 3 • Condition 1: f(n) should be polynomially larger than $n^{log_b}a$ $p(n) \le nlogn/n \le q(n) =>p(n) \le logn \le q(n)$ We cannot find any polynomial for p(n). Hence, f(n) is not polynomially larger than $n^{log_b}a$

Here, Master theorem can't be applied

Recursive Algorithm Analysis : Master Theorem

Some more recurrence relation where Master theorem can't be applied

- $T(n) = 2^{n}T(n/2) + n^{n} \Rightarrow Does not apply (a is not constant)$
- T (n) = 2T (n/2) + n/log n ⇒ Does not apply (f(n) is not polynomially larger than n^{logb a})
- T (n) = 0.5T (n/2) + 1/n ⇒ Does not apply (a < 1)

0

- T (n) = 64T (n/8) n²logn ⇒ Does not apply (f(n) is not positive)
- T(n)=sinn ⇒ Does not apply (T(n) is not monotone)

th's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya

Recursive Algorithm Analysis : Master Theorem	n
• Extended Master Theorem: (Source: Data Structure and Algorithm Made Easy by Narasimha Karumance	hi)
If the recurrence is of the form ,	
$T(n)=aT(n/b)+\Theta(n^k log^p n)$	
where $a \ge 1, b > 1, k \ge 0$ and p is a real number, then:	
 1) If a >b^k, then T(n)=Θ(n^{log_b a}) 	
 2) If a= b^k 	
✓ a. If $p > -1$, then T(n)= $\Theta(n^{\log_b a} \log^{p+1} n)$	
✓ b. If $p = -1$, then T(n)= $\Theta(n^{\log_b a} \log \log n)$	
✓ c. If $p < -1$, then T(n)= $\Theta(n^{\log_b a})$	
■ 3) If <i>a</i> < <i>b</i> ^k	
✓ a. If $p \ge 0$, then T(n) = $\Theta(n^k \log^p n)$	
✓ b. If $p < 0$, then $T(n) = O(n^k)$ ⁽²⁾ Block Matrix Matrix and Matrix and Matrix Matrix Matrix Barriel Matrix Barriel	11 88
Bharati Vidyapeetn's Institute of Computer Applications and Management, New Deini-63 by Dr. Saumya Bansai	01.00

Recursive Alg	orithm Analysis : Master Theorem
 Solve following recurrence relation T(n)=3T(n/4)+nlogn 	on using extended Master Theorem Solution: Θ(nlogn)
 T(n)=2T(n/2)+nlogn 	Solution: $\Theta(nlog^2n)$
 T(n)=3T(n/2)+n² 	Solution: $\Theta(n^2)$
T(n)=4T(n/2)+n ²	Solution: $\Theta(n^2 \log n)$
 T(n)=16T(n/4)+n 	Solution: $\Theta(nlogn)$
 T(n)=2T(n/2)+n/logn 	Solution: $\Theta(nloglogn)$
 T(n)=2T(n/4)+n^{0.5} 	Solution: O(n ^{0.5})

	Recursive Algorithm Analysis : Master Theore	em
• So	lve following recurrence relation using extended Master Theorem	
-	T(n)=T(vn)+1	
L	et n=2 ^m	
1	$T(2^m) = T(2^{m/2}) + 1$ Eqn(1)	
L 1	et S(m) = 2 ^m , Now, Eqn(1) can be rewritten as	
5	(m)=S(m/2) +1	
ľ	low, use the master theorem,	
S	(m)=Θ(logm).	
1	Ve have n=2 ^m , take log both the side, m=logn	
P	low, put the value of n, hence, T(n)= Θ(loglogn)	

Recursive Algorithm Ana	alysis : Master Theorem
Master Theorem for Subtract and Conquer. (Sour Narasimha Karumanchi)	rce: Data Structure and Algorithm Made Easy by
Let T(n) be a function defined on positive n, and havi	ing the property
$T(n) = \int C_n$	$if \ n \leq 1$
I(n) = aT(n-b) + f(n),	if n > 1
for some constants $c, a > 0, b \ge 0, k \ge 0$, and function f	f(n). If f(n) is in O(n ^k), then
$\int O(n^k)$	if $a < 1$
$T(n) = \left\{ O\left(n^{k+1}\right) \right.$	if a = 1
$O(n^k a^{\frac{n}{b}})$	if a > 1
Variant of Subtraction and Conquer Master Theorem	
The solution to the equation $T(n) = T(\alpha n) + T((1 - \alpha)n)$ constants, is $O(n \log n)$.	$() + \beta n$, where $0 < \alpha < 1$ and $\beta > 0$ are
© Bharati Vidyapeeth's Institute of Computer Applications and Management. New Delhi-63 by Dr	r. Saumva Bansal U1.91

Every Varpage to the second of the second

Example: int FindMax(int A]], int n) { Int max=A[0]; for (int i=0;i <n;i++){ max=A[i]; } Yeturn max; } Auxiliary space= 4 integer = O(1) We can use bytes, but it's easier to use, it'(A[i]>max) max=A[i]; preturn max; }</n;i++){ 	and the second of	Space Complexity
	Example: int FindMax(int A[], int n) { int max=A[0]; for (int i=0;i <n;i++){ if(A[i]>max) max=A[i]; } return max; }</n;i++){ 	Auxiliary space= 4 integer = O(1) We can use bytes, but it's easier to use, say, the number of integers used, the number of fixed-sized structures, etc.

- MARINA CONTRACTOR	Space Complexity			
Example: int Fn(int n) {	Auxiliary space= Stack used for each recursion= O(logn)			
if(n==0) return; else Fn(n-1); }	In recursive algo, the function call stack is also considered.			

apeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

	Space Complexity			
Example: int Fn(int n) {	Auxiliary space= Stack used for each recursion= O(logn)		
if(n==0) return; else Fn(n/2);	In recursive algo, the function call stack is considered.	also		
}				
© Bharati Vidyapeeth's Institute of C	Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.96		

	Space Complexity	
Example: int Fn(int n) {	Auxiliary space= Stack used for each recursion= O(logn))
if(n==0) return;	In recursive algo, the function call stack is also considered.	0
else Fn(n/2); Fn(n/2);	Note that the stack space is reused here. Once a function call terminates, it removes from the stack.	n
}		
© Bharati Vidyapeeth's Institute of	Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal U	1.97

Recursive Algorithm Analysis : Correctness of Algorithm

Definition: An algorithm Is called totally correct for the given specification if and only if for any correct input data it:

- Terminates and
- Returns correct output
- Correct input data is the data which satisfies the initial condition of the specification
- Correct output data is the data which satisfies the final condition of the specification

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Recursive Algorithm Analysis : Correctness of Algori	thm
Problem: "Given the array and its length compute the sum of numbers in the array"	
The corresponding Specification could be:	
Name: Sum (Arr, len)	
input: (initial condition)	
Algorithm gets 2 following arguments (input data):	
1. Arr - array of integer numbers	
2. len - length of Arr (natural number)	
output:(Final condition)	
Algorithm must return:	
sum - sum of the numbers in the array Arr (integer number)	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.99

Recursive Algorithm Analysis : Correctness of Algorithm

The Proof of total correctness of the algorithm involves following steps.

- 1. Prove that the algorithm always terminates for any correct input data.
- 2. Prove that the algorithm produces correct output for any correct input data. (Partial Correctness)

Partial Correct Algorithm: An algorithm is said to be partial correct if it guaranties the correct output for any correct input data.

Partial correct algorithm does not make the algorithm stop.

idyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

The proof of termination can never be fully automated, since the halting problem is undecidable problem.

	Recursive Algorithm Analysis : Correctness of Algo	orithm
Ther	e are two main methods to prove correctness of an algorit	hm.
	Empirical Method	
	Run the program and check its correctness	
	Formal Reasoning	
	Loop Invariant Method	
© Bharati Vidya	speeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.101

Correctno	ess of Algorithm: Empirical Method	
Empirical Method is bas of the algorithm and obs	sed on the actual implementation (Progra servation of output.	зm
Problem: To find the ma	ximum in the a given array Implementation	
FindMax(Arr, len) { max ← -1 for i←0 to len{ if (Arr[i] > max) { max ← Arr[i] } } return max }	int FindMax(int a[], int n) { int i=0, max=-1; for(i=0;i <n;i++){ if(a[i]>max) max=a[i]; } return max; }</n;i++){ 	
© Bharati Vidyapeeth's Institute of Computer Applications a	nd Management. New Delhi-63 by Dr. Saumva Bansal Ut	1.102

Correctness o	f Algorithm: E	mpirical Method
 Now, Check if the algorithm totally correct i.e. 1. whether the algorithm stops? 2. whether algorithm gives correct output for every valid input? 	Algorithm FindMax(Arr, len) { max ← -1 for i <0 to len{	Implementation in: FindMax[0::[], int n) (i inio, max-3; for(ride/scnin-4); for(ride/scnin-4); max-a(l);) return max;)
Input 1: Arr={10,15,6,4,9}		
Input 2: Arr={-10,-4,-15,-3,-15} Partial Correctness is diffici	ult to prove us	ing empirical method
© Bharati Vidyapeeth's Institute of Computer Applications and Manageme	ent, New Delhi-63 by Dr. Saumya	Bansal U1.103

Correctness of Algorithm: Loop Invariant Method

There are three steps involved in loop invariant method.

• Initialization: It is true prior to the first iteration of the loop.

Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Note the similarity to mathematical induction, where to prove that a property holds, you prove a base case and an inductive step. Here, showing that the invariant holds before the first iteration corresponds to the base case, and showing that the invariant holds from iteration to iteration corresponds to the inductive step.

- RAME CONTRACT	Correctness of Algorithm: Loop Invariant Method
Problem: "To Algorithm:	o find factorial of any positive integer." Initialisation: Prior to the first loop, lets take n=1 then fact=1 i.e. fact=1
Fact(n) { $i \leftarrow 1$ fact $\leftarrow 1$ while($i \le n$) { fact \leftarrow fact*	Maintenance: Lets assume the algorithm gives the output k! for valid input k i.e. fact =k! for input k In the next iteration, for k+1, fact=k!*(k+1) which returns fact=(k+1)! Hence, loop invariant holds.
i++; } return fact }	Termination: The condition i>n cause the while loop to terminate. The condition can be reached because i increments by one in each iteration.

Randomized Algorithm	
Definition: Any algorithm that make use of randomness as	part of its
logic or procedure.	
Example: Find a number "X" in the given array, in which firs	t half are 'a
and the other half are 'b's. X={a,b}	
Algorithm:	
FindElement(A, n)	
begin	
repeat	
Randomly select one element out of n elements.	
until 'X' is found	
end (Source : https://en.wikipedia.org/wiki/Randomized_algorithm)	
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.10

Monte Carlo Algorithms	
Monte Carlo Algorithms:	
The Algorithm terminates when either it gets successful or react	h
at most k steps	
 The algorithm has the deterministic time complexity. 	
 Easier to analyze for worst case. 	
Example:	
FindElement(A, n, k) //k =limit of finding steps. A is array and n is the length of the array	
i=0	
repeat	
Randomly select one element out of n elements. i=i+1	
until i=k or 'X' is found	
end	

BALL CO BALL	Las Vegas Algorithm	
Las Vegas	Algorithm:	
The a	algorithm keep running infinite times. It terminates only w	hen
it get	s success.	
Example:		
Find	Element(A, n) // A is array and n is the length of the array	
begii	n	
repe	at	
	Randomly select one element out of n elements.	
until	'X' is found //X={a,b}	
end		
© Bharati Vidyapeeth	's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.109

Analysis : Las	Vegas Algorithm
Analysis: • If an 'X' is found, the algorithm succeeds, else the algorithm fails.	FindElement(A, n) // A is array and n is the length of the array begin repeat
• Expected no of iteration to find 'X'	Randomly select one element out of n elements. until 'X' is found //X={a b}
L[A]-1/(1/2)-2 If probability of success is p in every trial, then expected number of trials until success is 1/p	end
 If probability of success is p in every trial, then expected number of trials until success is 1/p This algorithm does guarantee success 	s, but the run time is determined

yapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal

Cases to be Analysed in Algorithm	
The resource of an algorithm is analyzed on the following criteria:	
Best case: Best case performance measures the minimum resource utilization of algorithm with respect to input n.	
Worst case: Best case performance measures the maximum resource utilization of algorithm with respect to input n.	3
Average case: Best case performance measures the average resource utilization of algorithm with respect to input n. It is calculated as the average of all possible inputs.	è
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bansal	U1.111

Cases to be Analysed in Algorithm	
Example: "Find an element 'X' in a given integer array of length n."	
Best Case: Element 'X' is found at the first attempt. (Not analysed Generally)	
Worst case: Element 'X' is found at the last attempt or Element 'X' could not be found. (Mostly Done)	
Average case: The average of finding 'X' over all possible inputs. (Sometimes Done)	

ati Vidyapeeth's Institute of Computer Ap

Case	s to be Analysed in Algorithm
Example: "Find an elem	ent 'X' in a given integer array of length n."
Best Case: Element 'X' is Algorithm: FindMax(Arr, Ien) { max ← Arr[0] for i←0 to Ien{	s found at the first attempt. Best Case: Element found at first place, Hence, only one comparison is needed. therefore time complexity for best case is O (1)
if (Arr[i] > max) { max ← Arr[i] } } return max }	Worst Case: Element found at last index. It is assumed that elements are not repeated. The n comparison is required. Hence, Time complexity for worst case is O(n)

Topics We Have Learned So Far

- Notion of Algorithm
- Importance of Analysis of Algorithm
- Time and Space Complexities
- Asymptotic Notations (0, Θ , Ω ,o, and ω) and their properties
- Growth of Function
- Measuring Time complexity of Non-recursive Algorithm
- Measuring Time complexity of Recursive Algorithm
 - Recursion Tree Method
 - Iterative Method
 - Master Method
 - Substitution Method
 arati Vidyapeeth's Institute of Computer Applications

Topics We Have Learned So Far Measuring Space Complexity Correctness of Algorithm

- Correctness of Algorithm
- Analysis of Randomized Algorithm
- Best, Worst and Average case analysis.

idyapeeth's Institute of Computer Applications and Management, New Delhi-63 by Dr. Saumya Bi

