
$\qquad$

## Pre-Requisites \& Course Outcomes

PRE-REQUISITES:

1. Programming Skills
2. Discrete Structures
3. Data Structures

COURSE OUTCOMES (COS):


## Syllabus (Unit-I)

- Performance Analysis of Algorithms: Algorithm Specification, Performance Analysis: Space and Time Complexity, Correctness of Algorithms, Growth of Functions, Asymptotic Notations and Types, Concept of Randomized Algorithms.
- Recurrences: Substitution, Iteration, Master and Recurrence Tree method.
- No. of Hours: 09
- Books:
- T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI, 2nd Edition, 2006. Chapters[1-5]
- S. Dasgupta, C. Papadimitriou and U.Vazirani, "Algorithms", McGraw Hill Higher Education, 1st Edition, 2017. Chapters[0-2]
- J. Kleinberg and E. Tardos, "Algorithm Design", Pearson Education, 2nd Edition, 2009. Chapters[2,5,13]
$\qquad$


## Why do we study this course?

- Why do we study Design and Analysis of Algorithm?
- Benefit of Algorithm
$\qquad$
$\checkmark$ Easy to understand. $\qquad$
$\checkmark$ Logic is developed before actual coding.
- Benefit of Analysis of Algorithm
$\qquad$
$\checkmark$ To find best version of solution from various solutions of same problem. $\qquad$
- Benefit of Design of Algorithm
$\checkmark$ To create an efficient algorithm to solve a problem in an efficient way.
$\qquad$
$\qquad$

$\qquad$


## Algorithm: Definition

An algorithm is any well-defined procedure that takes some values as input and produces some values as output. $\qquad$

$\qquad$
$\qquad$

- An algorithm is thus a finite sequence of computational steps that transforms $\qquad$
the input into desired output in finite amount of time.


## Algorithm for Problem Solving

Problem definition

- What task has to be done.
$\checkmark$ Calculation of mean, square root, shortest path etc.
$\qquad$
$\qquad$
$\qquad$
- Algorithm design
- Writing pseudo code, drawing flow chart etc. (Decision of algorithm design model like Divide \& Conquer, Dynamic Programming, Greedy etc.) $\qquad$
- Algorithm analysis
- Analysis of time and space required to run the algorithm. $\qquad$


## Algorithm for Problem Solving (contd.)

- Implementation
- Writing a program
- Testing
- Testing of the output $\qquad$


## Characteristics of Algorithm

- Input: An algorithm has zero or more input
- Output: An algorithm has one or more output.
- Finiteness: An algorithm must terminate after a finite number of steps. $\qquad$
- Definiteness: Each instruction must be clear and unambiguous.

Effectiveness: An algorithm must be effective in such a way that its operations are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is called computational methods.

## Characteristics of Algorithm

Input: An algorithm has zero or more input

- Output: An algorithm has one or more output.
- Finiteness: An algorithm must terminate after a finite number of steps. $\qquad$
- Definiteness: Each instruction must be clear and unambiguous.
- Effectiveness: An algorithm must be effective in such a way that its operations are sufficiently basic and feasible.

Note: A procedure that has all the characteristics of an algorithm except finiteness is called computational methods.

## Example of an Algorithm



## Example of an Algorithm

Problem: To find the max element of an array
Algorithm $\operatorname{arrayMax}(\mathrm{A}, \mathrm{n})$
Input array A of $n$ integers
Output maximum element of $A$
Max $\leftarrow A[0]$
for $\mathrm{i}<1$ to $\mathrm{n}-1$ do
if $\mathrm{A}[\mathrm{i}]>\mathrm{Max}$ then
$M a x \leftarrow A[i]$
End For
return Max

## Algorithm analysis

Why do we analyse the algorithm?

- To decide the better algorithm among various solutions of a given problem.
$\checkmark$ For example, better algorithm among all sorting algorithm
$\checkmark$ Suppose you have written an algorithm for a given problem and the solution of the
problem is already exist. How do you prove your algorithm is better? $\qquad$
- To check feasibility
$\checkmark$ Even if the solution is given first time of any given problem, the analysis of an algorithm
$\qquad$
can decide whether the algorithm will run with feasible recourse (Time and Space) $\qquad$
$\qquad$

Algorithm analysis: Factors to analyze
Time
Space
Correctness of an algorithm $\qquad$
Communication time [For network solution]

- Power consumption [For Mobile App]
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Algorithm Analysis |  |
| :---: | :---: |
| Priori Analysis | Posteriori analysis |
| Analysis is done before the real implementation of algorithm | Analysis is done after the real implementation of algorithm i.e. program |
| Priori analysis is an absolute analysis. | Posteriori analysis is a relative analysis. |
| Independent on the hardware and compiler | Dependent on the hardware and compiler |
| It gives approximate answer | It gives exact answer |
| The complexity remains same for every system | The complexity differs from system to system |
| Asymptotic notations are used to represent the complexity in terms of time and space functions | Complexity is represented in terms of watch time ( milli second, nano second etc.) and bits/bytes (for space complexity) |


|  | Algorithm Analysis |
| :---: | :---: |
| - Algorithm Analysis involves mainly two types of analysis <br> - Time complexity: The amount of time required to run an algorithm. <br> - Space complexity: The amount of memory space required to run an algorithm. <br> Algorithm analysis <br> Time Complexity |  |


| A Algorithm Analysis: Time Analysis |  |  |  |
| :---: | :---: | :---: | :---: |
| Statement | Cost of execution | Frequency | Total (Cost * ${ }^{\text {Frequency) }}$ |
| 1. Algorithm Sum(a,n) | 0 | - | 0 |
| $2 .\{$ | 0 | - | 0 |
| 3. sum $\leftarrow 0$; | 1 | 1 | 1 |
| 4. for $\mathrm{i} \leftarrow 1$ to n do | 1 | $\mathrm{n}+1$ | $\mathrm{n}+1$ |
| 5. s $\leftarrow \mathrm{s}+\mathrm{a}[\mathrm{i}]$; | 1 | n | n |
| 6. end for | 0 | - | 0 |
|  | $1$ | 1 | 1 |
| 8. $\}$ |  | - | 0 |
| Total |  |  | $T(n)=2 n+3$ |
| © Enarat Veypesetis s nsitute of Computer | Ss and mangement | by Dr. Suunya Bensal | U1.19 |

$\qquad$
$\qquad$
$\qquad$
4. for $\mathrm{i} \leftarrow 1$ to n do
5. $s \leftarrow s+a[i]$
7. return s
8. $\}$

Algorithm Analysis: Order of growth

- Order of growth of an algorithm predicts that how execution time or space of an algorithm changes with the input size.
- Let's understand with an example,

| Input size <br> $(\mathbf{n})$ | Algorithm A <br> $\mathrm{T}(\mathrm{n})=100 \mathrm{n}+1$ | Algorithm B <br> $\mathrm{T}(\mathrm{n})=\mathrm{n}^{2}+\mathrm{n}+1$ |
| :--- | :--- | :--- |
| 10 | 1001 | 111 |
| 100 | 10001 | 10101 |
| 1000 | 10001 | 1001001 |
| 10000 | 1000001 | $>10^{10}$ |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2 $1000>10$

## Algorithm Analysis: Order of growth

- Observations:
- At $n=10$, Algorithm A looks bad.
- As n increases, the Algorithm A looks better. (Why?)
- Regardless of the coefficients, there

| Input size <br> $(\mathrm{n})$ | Algorithm A <br> $\mathrm{T}(\mathrm{n})=100 \mathrm{n}+1$ | Algorithm B <br> $\mathrm{T}(\mathrm{n})=\mathrm{n}^{2}+\mathrm{n}+1$ |
| :--- | :--- | :--- |
| 10 | 1001 | 111 |
| 100 | 10001 | 10101 |
| 1000 | 10001 | 1001001 |
| 10000 | 1000001 | $>10^{10}$ | will always be some value of $n$ where ${a n^{2}>b n}$

- Even if the run time of Algorithm A were $\mathrm{n}+10000$, it would still be better than Algorithm B for sufficiently large $n$.
- Conclusion: The coefficient and non-leading term do not affect the order of growth for some sufficient large value of $n$.
The leading term is the term with the highest exponent.



## Asymptotic notation: Big-OH (O)

## Asymptotic notation: Big-Omega ( $\Omega$ )

- Let $f(n)$ and $g(n)$ be two functions from set of integers to real numbers, $f: Z \rightarrow R$, then $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n})$ ) or $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})$ ) iff



## Asymptotic notation: Big-Omega ( $\Omega$ )


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Asymptotic notation: Big-Omega ( $\Omega$ )

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Asymptotic notation: Big-Theta ( $\Theta$ )

- Let $f(n)$ and $g(n)$ be two functions from set of integers to real numbers, $f: Z \rightarrow R$, then $\mathrm{f}(\mathrm{n})$ is $\Theta(\mathrm{g}(\mathrm{n}))$ or $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ iff
$0 \leq C_{1} * g(n) \leq f(n) \leq C_{2} * g(n)$
Where, C and $\mathrm{n}_{0}$ are any positive real constants


```
Asymptotic notation: Big-Theta ( \(\Theta\) )
```



```
- \(f(n)=0\) (nlogn) True/False
- \(f(n)=\theta(\operatorname{logn})\) True/False
- \(f(n)=\theta\left(n^{2} \log n\right) \quad\) True/ False
\(\qquad\)
- Sometimes, we can not express the function in tight bound
- For example, Let \(f(n)=n\) !

We know that \(n!=1^{*} 2^{*} 3^{*} \ldots . . .{ }^{*}(n-1)^{*} n\)
Hence,
\(1 \leq 1 * 2 * 3 \ldots \ldots *(n-1) * n \leq n * n * n * \cdots * n\)
\(1 \leq n!\leq n^{n}\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Here, \(f(n)=O\left(n^{n}\right)\) and \(f(n)=\Omega(1)\). But no theta bound.
Same you can find for \(f(n)=\log n!\)

\section*{Asymptotic notations: \(\mathrm{O}, \Theta\) and \(\Omega\)}


\section*{Asymptotic notations: \(\mathrm{O}, \Theta\) and \(\Omega\)}
- Let \(f(n)\) and \(g(n)\) be two functions, from set of integers to real numbers, \(f: Z \rightarrow R\), such that
\[
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=A
\]
then,
if \(A=0\) then \(f(n)=O(g(n))\) but \(f(n) \neq O(g(n))\)
if \(A=\infty\) then \(f(n)=\Omega(g(n))\) but \(f(n) \neq \Theta(g(n))\)
if \(A \neq 0\) and \(A\) is finite \(f(n)=\theta(g(n))\)
Ponder: Can we compare order of growth from above statements?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Asymptotic notations: Little-OH (o)}
- Let \(f(n)\) and \(g(n)\) be two functions, from set of integers to real numbers, \(f: Z \rightarrow R\), then \(\mathrm{f}(\mathrm{n})\) is o( n\()\) or \(\mathrm{f}(\mathrm{n}) \in \mathrm{o}(\mathrm{n})\) iff
\[
0 \leq f(n)<c * g(n) \quad \forall n \geq n_{0}
\]

Where, \(\mathrm{C}_{1}\) and \(\mathrm{n}_{0}\) is any positive constant. \(\qquad\)
Mathematically, if \(\qquad\)
\[
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
\]
\(\qquad\)
Then, we can say that \(f(n)=o(g(n))\).
Hef \(n)=o(g(n))\) then \(f(n)=O(g(n))\) ? And if \(f(n)=O(g(n))\) then \(f(n)=o(g(n))\) ?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{. 0 \\ Asymptotic notations: Little-Omega( \(\omega\) )}
- Let \(f(n)\) and \(g(n)\) be two functions, , from set of integers to real numbers \(f: Z \rightarrow R\), then \(\mathrm{f}(\mathrm{n})=\omega(\mathrm{n})\) or \(\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{n})\) iff
\(f(n)>c * g(n) \geq 0 \quad \forall n \geq n_{0}\)
Where, \(\mathrm{C}_{1}\) and \(\mathrm{n}_{0}\) is any positive constant.
Mathematically, if
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty\) \(\qquad\)
Then, we can say that \(f(n)=\omega(g(n))\).

\(\qquad\)
- Let \(f(n)=n^{2}+3\) and \(g(n)=n\) be two functions then \(f(n)=\omega(n)\) or \(f(n) \in \omega(n)\) ? We have to calculate the value of following limit \(\qquad\)
\(\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}\) \(\qquad\)
\(=\lim _{n \rightarrow \infty} \frac{n^{2}+3}{n}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{n}+\frac{3}{n}\right)=\lim _{n \rightarrow \infty}\left(n+\frac{3}{n}\right)=\lim _{n \rightarrow \infty}(n+0)=\lim _{n \rightarrow \infty}(n)=\infty\)

Hence, we can say that \(f(n)=\omega(n)\).

\section*{Asymptotic notations: Properties}
- Reflexive Property:
- \(\mathrm{f}(\mathrm{n})=0(\mathrm{f}(\mathrm{n}))\)
- \(f(n)=\Omega(f(n))\)
- \(f(n)=\Theta(f(n))\)
\(\qquad\)

Symmetric Property:
\(\qquad\)
- \(f(n)=\Theta(g(n))\) iff \(g(n)=\Theta(f(n))\)
- \(f(n)=O(g(n))\) iff \(g(n)=\Omega(f(n))\)
- \(f(n)=o(g(n))\) iff \(g(n)=\omega(f(n))\)
- Reflexive Property
- \(f(n)=\Theta(g(n))\) and \(g(n)=\Theta(h(n))\) that implies \(f(n)=\Theta(h(n))\) \(\qquad\)
- \(f(n)=O(g(n))\) and \(g(n)=O(h(n))\) that implies \(f(n)=O(h(n))\) \(\qquad\)
- \(f(n)=\Omega(g(n))\) and \(g(n)=\Omega(h(n))\) that implies \(f(n)=\Omega(h(n))\)
- \(f(n)=o(g(n))\) and \(g(n)=o(h(n))\) that implies \(f(n)=o(h(n))\) \(\qquad\)
- \(f(n)=\omega(g(n))\) and \(g(n)=\omega(h(n))\) that implies \(f(n)=\omega(h(n))\)
- \(O(f(n)+g(n))=O\{\max (f(n), g(n)\}\)

\section*{Asymptotic notations: Efficiency Classes}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{- Basic Asymptotic Efficiency Classes} \\
\hline & Complexity & Efficiency Class \\
\hline & 1 & Constant \\
\hline & logn & Logarithmic \\
\hline & n & Linear \\
\hline & nlogn & n-log-n or Linearithmic \\
\hline & \(\mathrm{n}^{2}\) & Quadratic \\
\hline & \(\mathrm{n}^{3}\) & Cubic \\
\hline & \(2^{\text {n }}\) & Exponential \\
\hline & n ! & Factorial \\
\hline
\end{tabular}
\(\qquad\)

\(\qquad\)
\(\qquad\)

\section*{Time Analysis of Algorithm: Linear}
\begin{tabular}{|c|c|c|}
\hline 1. Algorithm: FindSum(a,b) & \multicolumn{2}{|l|}{Analysis:} \\
\hline 2. \{ & & For any \\
\hline 3. input: integer a and integer b & Statement 5: 1 & constant value \\
\hline 4. Output: sum of a and b & Statement 6: 1 & of \(f(n)\) we \\
\hline & Statement 7: 1 & always write O(1). \\
\hline 5. sum \(\leftarrow 0\); & Total:1+1+1=3 & \\
\hline 6. sum=a+b; & & \\
\hline 7. return sum; & \(f(n)=3\) i.e. \(f(n)=0\) & ). \\
\hline 8. \} & & \\
\hline & Can we say \(f(n)\) & (1)? \\
\hline
\end{tabular}
\(\qquad\)

Time Analysis of Algorithm: Linear
\begin{tabular}{|c|c|}
\hline - 8 & Time Analysis of Algorithm: Linear \\
\hline & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Time Analysis of Algorithm: Branch}
\begin{tabular}{|c|c|}
\hline 1. if \((a>b)\) & Total time complexity \(\mathrm{T}(\mathrm{n})=\max (2,3)\) \\
\hline 2. \(\mathrm{z} \leftarrow \mathrm{a}^{*} \mathrm{a}\) & i.e. \(\boldsymbol{T}(\mathrm{n})=2\) \\
\hline 3. print z & Therefore, \(\mathrm{T}(\mathrm{n})=\mathbf{O}(1)\) \\
\hline 4. else & \\
\hline 5. \(\mathrm{z} \leftarrow \mathrm{b} * \mathrm{~b}\) & \\
\hline 6. \(\mathrm{k} \leftarrow \mathrm{a}+\mathrm{z}\) & \\
\hline 7. print k & \\
\hline 8. end if & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
Time Analysis of Algorithm: Loop
Statement 1

or \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}=\mathrm{i}+2)\)
Statement 1 \(\qquad\) \(O(n / 2)=O(n)\)
for \((i=0 ; i<n ; i=i * 2)\) \(\qquad\) O(logn)
Statement 1
\(\qquad\)

for \((\mathrm{i}=\mathrm{n} ; \mathrm{i}>0 ; \mathrm{i}=\mathrm{i} / 2) \Longrightarrow \mathrm{O}(\log \mathrm{n})\)
Statement 1
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Time Analysis of Algorithm: Loop

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
for \((\mathrm{j}=0 ; \mathrm{j}<\mathrm{n}-1 ; \mathrm{j}++)\)
Statement 1
Time Analysis of Algorithm: Loop
for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
for \((\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n}-1 ; \mathrm{j}++)\) \(\qquad\) \(O\left(n^{2}\right)\)
Statement 1
for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) ) \(\xrightarrow{\longrightarrow}\) \(O(n \log n)\)
for \((j=0 ; j<n ; j=j * 2)\)
Statement 1
\(\qquad\)

\section*{Time Analysis of Algorithm: Loop}
for (i=0; i<n;i++) do for \((\mathrm{j}=0 ; \mathrm{j}<5 ; \mathrm{j}++\) ) do
f \(\mathbf{a}>\mathbf{b}\) Then
for \((\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) ) Statement \(\qquad\)
for \((j=0 ; j<n ; j=j * 2)\) Statement
end if
end for
end for
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)

for (int \(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++\) ) \(\quad\) Base Case:
fact \(=\) fact * i ;
int fun(int n\()\)
\begin{tabular}{l} 
if( \(\mathrm{n}==1\) ) \\
return \(1 ;\) \\
else
\end{tabular}
\(\left\{\begin{array}{c}\begin{array}{c}\text { Loop Exit condition } \\
\text { Recursion Body: } \\
\text { Body of the loop }\end{array} \\
\text { Recursion Call } \\
\text { increment/Decrement of loop } \\
\text { variable }\end{array}\right.\)
\(\}\) return \(\mathrm{n} * \operatorname{fun}(\mathrm{n}-1) ;\) Recursion Body:
Body of the loop
increment/Decrement of loop
variable
\}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Recursion and Recurrence Relation}

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|c|}
\hline © & \multicolumn{2}{|l|}{Recursion and Recurrence Relation} \\
\hline ```
void fun(int n)
    {
        if (n==0)
        return;
        else
        {
        fun(n-1);]
        fun(n-2);
        print("*");
        }
    }
``` &  & \[
\begin{gathered}
n=0 \\
n>0
\end{gathered}
\] \\
\hline
\end{tabular}


Recursion and Recurrence Relation



\(\qquad\)

Recursive Algorithm Analysis : Tree Method
- Steps
- Draw the recursion tree \(\qquad\)
- Find cost of each level
- Count the height of the tree [Maximum number of levels]
- Count total number of leaf node [last level]
- Find out cost of last level
- Calculate total cost
\(=\) Sum of the cost of each level + cost of last level

Recursive Algorithm Analysis : Tree Method

\(\qquad\)

\section*{Recursive Algorithm Analysis: Tree Method}

Height of the tree
- Let after k level, we reach at \(\mathrm{T}(1)\).
- We can observe, in the tree, that the tree grows as \(\frac{n}{2^{l}}\) where \(I\) is the no of levels.
- Hence, After k level, \(\frac{n}{2^{k}}=T(1)\)
\(\frac{n}{2^{k}}=1\) (A/C recurrence relation)
\(\Rightarrow>n=2^{k}\)
taking log both the side
\(\log _{2} n=\log _{2} 2^{k}\)
\(\log _{2} n=\boldsymbol{k}\)
Hence, Height of the tree \(\mathrm{k}=\log _{2} n\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\) - Example 2: \(T(n)=T(n / 2)+n\)

Recursive Algorithm Analysis : Tree Method

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Recursive Algorithm Analysis : Iteration Method} \\
\hline \multicolumn{2}{|l|}{- In the iteration method we iteratively "unfold" the recurrence until we "see the pattern".} \\
\hline \multicolumn{2}{|l|}{- After getting pattern, we do summation and get the total cost of recurrence relation} \\
\hline \multicolumn{2}{|l|}{- Example: \(T(n)=T(n-1)+1\)} \\
\hline \(\mathrm{T}(\mathrm{n})=\mathbf{T}(\mathrm{n}-1)+1\) & \(\mathrm{T}(0)=1\) \\
\hline \(=\mathbf{T}(\mathbf{n}-\mathbf{2}) \mathbf{+ 1}+\mathbf{1}[\mathrm{T}(\mathrm{n}-1)=\mathrm{T}(\mathrm{n}-1-1)+1]\) & Let after k term we get \(\mathrm{T}(0)\) \\
\hline \(\mathbf{=} \mathbf{T}(\mathbf{n}-\mathbf{3})+\mathbf{1 + 1} \mathbf{+ 1}[\mathbf{T}(\mathrm{n}-2)=\mathrm{T}(\mathrm{n}-2-1)+1]\) & Hence, \(\mathrm{n}-\mathrm{k}=0=>\mathrm{n}=\mathrm{k}\) \\
\hline & Therefore, \\
\hline & \(\mathbf{T}(\mathrm{n}-\mathrm{n})+(1+1+1 \ldots . . . \mathrm{n}\) times) \\
\hline After k terms,
\[
=T(n-k)+(1+1+1 \ldots \ldots . k \text { times })
\] & \[
\begin{aligned}
& \mathbf{T}(\mathbf{0})+(\mathbf{1}+\mathbf{1}+1 \ldots . . . \mathrm{n} \text { times }) \\
& 1+\mathbf{n}=\mathbf{O}(\mathbf{n})
\end{aligned}
\] \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
After getting pattern, we do summation and get the total cost of recurrence lation \(\qquad\)
) \(=T(n-1)+1\)
Hence, \(\mathrm{n}-\mathrm{k}=\mathbf{0}=>\mathrm{n}=\mathrm{k}\)
(n)
\(\qquad\)
\(=\mathbf{T}(\mathbf{n}-\mathbf{2})+\mathbf{1} \mathbf{+ 1}[\mathrm{T}(\mathrm{n}-1)=\mathrm{T}(\mathrm{n}-1-1)+1] \quad\) Let after \(\mathbf{k}\) term we get \(\mathbf{T}(0)\)

T(n-n) \(+(1+1+1 \ldots . . . n\) times)
After k terms,
\(T(0)+(1+1+1 \ldots . . . n\) times) \(\qquad\)


Recursive Algorithm Analysis : Iteration Method
- Example 2: \(T(n)=2 T(n / 2)+n\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Recursive Algorithm Analysis : Iteration Method \(\qquad\)
- Example 2: \(T(n)=2 T(n-1)+1\)
\(\qquad\)

\footnotetext{
Recursive Algorithm Analysis : Substitution Method
- Idea: Make a guess for the form of the solution and prove by induction.
- How do we make a good guess? \(\checkmark\) Use Tree/ Iteration method
Example: \(T(n)=2 T(n / 2)+n\)
Guess: \(T(n)=O(n \operatorname{logn})\) i.e \(T(n) \leq\) cnlogn
Proof:
Base Case: We need to show that our guess holds for some base case (not necessarily \(\mathbf{n}=1\), some small \(\mathbf{n}\) is ok).
Let \(\mathrm{n}=2\),
\(2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}=2 \mathrm{~T}(2 / 2)+2=2 * 1+2=4\)
nlogn \(=2 \log 2=2\)
That means, \(\mathbf{T}(\mathrm{n}) \leq \mathrm{C} *\) nlogn
}
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Recursive Algorithm Analysis : Substitution Method}

Guess: \(T(n)=O(n \operatorname{logn})\) i.e \(T(n) \leq\) cnlogn
Proof:
Induction Step: Assume holds for \(\mathbf{n} / \mathbf{2}: \boldsymbol{T}\left(\frac{\boldsymbol{n}}{2}\right) \leq \boldsymbol{c} \frac{n}{2} \log \frac{n}{2}\)
Now we prove that holds for \(\mathrm{n}: \mathrm{T}(\mathrm{n}) \leq \mathrm{cnlog} \mathrm{n}\)
\(\mathbf{T}(\mathrm{n})=\mathbf{2 T}(\mathrm{n} / 2)+\mathrm{n}\) \(\leq 2(\mathrm{cn} / 2 \log n / 2)+n\)
\(=\operatorname{cn} \log n / 2+n\)
\(=\mathbf{c n l o g n}-\mathrm{cnlog} 2+\mathrm{n}\) \(=\mathbf{c n l o g n}-\mathbf{c n}+\mathbf{n}\) \(\leq \operatorname{cnlogn}+\mathrm{n}(1-\mathrm{c})\)
Thus, \(\mathbf{T}(\mathbf{n})=\mathbf{O}\) (nlogn)
Similarly, it can be shown that \(T(n)=\Omega(n \operatorname{logn})\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Recursive Algorithm Analysis : Master Theorem}

Let \(\mathrm{a} \geq 1\) and \(\mathrm{b}>1\) be constants, let \(f(n)\) be a function, and let \(T(n)\), monotonically Increasing function, be defined on the nonnegative integers by the recurrence
\[
T(n)=a T(n / b)+f(n)
\]
where, we interpret \(\mathrm{n} / \mathrm{b}\) to mean either \(\mid n / b\rceil\) or \([n / b\rceil\). Then \(f(n)\) has the following asymptotic bounds:
1. If \(f(n)=O\left(n^{\log _{b} a-\epsilon}\right)\) for some constant \(\epsilon>0\left(\epsilon \in \mathbb{R}^{+}\right)\), then \(T(n)=\theta\left(n^{\log _{b} a}\right)\)
2. If \(f(n)=\theta\left(n^{\log _{b} a}\right)\) then \(T(n)=\theta\left(n^{\log _{b} a} / g n\right)\)
3. If \(f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)\) for some constant \(\epsilon>0\left(\epsilon \in \mathbb{R}^{+}\right)\), and if \(a f(n / b) \leq c f(n)\) for some constant then \(c<1\) and all sufficiently polynomialy large \(n\), then \(T(n)=\theta(f(n))\) source: Introduction to Algorithms, MIT Press by \(T\) Cormen, CLeiserson, et ol
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
- Example 1: \(T(n)=9 T(n / 3)+n\)
- Compare the equation with \(T(n)=a T(n / b)+f(n)\) \(\qquad\)
- \(a=9 \quad b=3 \quad f(n)=n\)
- Calculate \(n^{\log _{b} a}=n^{\log _{3} 9}=n^{2}\) \(\qquad\)
Now check each case of Master Theorem one by one
Let's check first case, \(f(n)=O\left(n^{\log _{b} a-\epsilon}\right)\) i.e. \(n \leq \mathrm{cn}^{2}\) ?
\(\qquad\)

Since,,\(f(n)=O\left(n^{\log _{3} 9-\epsilon}\right)\) where \(\epsilon=1\) we can apply case1. \(\qquad\)
Hence, according to Master Theorem, \(\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{2}\right)\) \(\qquad\)

\section*{Recursive Algorithm Analysis : Master Theorem}
xample 2: \(T(n)=T(2 n / 3)+1\)
- Compare the equation with \(T(n)=a T(n / b)+f(n)\)
- \(a=1 \quad b=3 / 2 \quad f(n)=1\)
- Calculate \(n^{\log _{b} a}=n^{\log _{3 / 2} 1}=1\)

Now check each case of Master Theorem one by one.
Let's check first case, \(f(n)=O\left(n^{\log _{b} a-\epsilon}\right)\)
Since,,\(f(n) \neq O\left(n^{\log _{3 / 2} 1-\epsilon}\right)\) where \(\epsilon>0\), we can't apply case1. Why?
Let's Check for second case i.e. \(f(n)=\theta\left(n^{\log _{b} a}\right)\) i.e. \(c_{2} n^{\log _{b} a} \leq f(n) \leq c_{1} n^{\log _{b} a}\) Since \(f(n)=\theta\left(n^{\log _{b} a}\right)\), we can apply case 2

Hence, according to Master Theorem, \(\mathrm{T}(\mathrm{n})=\Theta\left(n^{\log _{b} a} \operatorname{Ign}\right)=\Theta(\log n)\)
© Bharat Vidyapeeth's institute of Computer Applications and Management, New Delhi.63 by Dr. Saumya Bansal
- Example 3: T(n)=3T(n/4)+nlogn
- Compare the equation with \(T(n)=a T(n / b)+f(n)\)
- \(a=3 \quad b=2 \quad f(n)=n \log n\)
- Calculate \(n^{\log _{b} a}=n^{\log _{4} 3} \approx n^{0.79}\)

Now check each case of Master Theorem one by one
Since \(f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)\), we can apply case 3 , but before that we must check two conditions.
1. \(f(n)\) should be polynomially larger than \(n^{\log _{b} a}\)
2. Check Regularity condition (af( \(n / b) \leq c f(n)\) for some constant then \(c<1\) )

\section*{Recursive Algorithm Analysis : Master Theorem}
- Example 3: \(T(n)=3 T(n / 4)+n \operatorname{logn}\)
- Compare the equation with \(T(n)=a T(n / b)+f(n)\)
- \(a=3 \quad b=2 \quad f(n)=n \log n\)
- Calculate \(n^{\log _{b} a}=n^{\log _{4} 3} \approx n^{0.79}\)

Condition 1:f \((n)\) should be polynomially larger than \(n^{\log _{b} \text { a }}\)
"Polynomially larger" means that the ratio of the functions falls between two polynomials, asymptotically. Specifically, \(f(n)\) is polynomially greater than \(g(n)\) if and only if there exist generalized polynomials (fractional exponents are allowed) \(p(n), q(n)\) such that the following inequality holds asymptotically: \(p(n) \leq f(n) / g(n) \leq a(n)\)
https:///math.stackexchange.com/questions/1614848/meaning-of-polynomially-larger \(p(n) \leq n \log n / n^{0.79} \leq q(n) \Rightarrow p(n) \leq n^{0.21} \log n \leq q(n) \Rightarrow n^{.01} \leq n^{0.21} \log n \leq n^{2}\)
Hence, \(f(n)\) should be polynomially larger than \(n^{\log _{b} a}\)

\section*{Recursive Algorithm Analysis : Master Theorem}

Example 3: \(T(n)=3 T(n / 4)+n \operatorname{logn}\)
- Compare the equation with \(T(n)=a T(n / b)+f(n)\)
- \(a=3 \quad b=2 \quad f(n)=n \log n\)
- Calculate \(n^{\log _{b} a}=n^{\log _{4} 3} \approx n^{0.79}\)

Condition 2: Check Regularity condition \((a f(n / b) \leq c f(n)\) for some constant then c<1)
\(a f(n / b)=3(n / 4) \log (n / 4) \leq(3 / 4)\) nlogn, here \(c=3 / 4\) and \(c<1\)
Now, Both the conditions have been satisfied, therefore, we can apply case 3.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Recursive Algorithm Analysis : Master Theorem
- Example 4: \(T(n)=2 T(n / 2)+n \log n\)
- Compare the equation with \(T(n)=a T(n / b)+f(n)\)
- \(a=2 \quad b=2 \quad f(n)=n \log n\)
- Calculate \(n^{\log _{b} a}=n^{\log _{2} 2}=\mathrm{n}\)

Since \(f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)\), we can apply case 3
Condition 1: \(f(n)\) should be polynomially larger than \(n^{\log _{b} \text { a }}\) \(\qquad\)
\(p(n) \leq n \log n / n \leq q(n)=>p(n) \leq \log n \leq q(n)\)
We cannot find any polynomial for \(\mathrm{p}(\mathrm{n})\).
Hence, \(f(n)\) is not polynomially larger than \(n^{\log b a}\)
Here, Master theorem can't be applied

\section*{Recursive Algorithm Analysis : Master Theorem}

Some more recurrence relation where Master theorem can't be applied
- \(T(n)=2^{n} T(n / 2)+n^{n} \Rightarrow\) Does not apply (a is not constant) \(\qquad\)
- \(T(n)=2 T(n / 2)+n / \log n \Rightarrow\) Does not apply \((f(n)\) is not polynomially larger than \(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\) )
- \(T(n)=0.5 T(n / 2)+1 / n \Rightarrow\) Does not apply \((\mathrm{a}<1)\) \(\qquad\)
- \(T(n)=64 T(n / 8)-n^{2} \operatorname{logn} \Rightarrow\) Does not apply \((f(n)\) is not positive)
- \(\mathrm{T}(\mathrm{n})=\) sinn \(\Rightarrow\) Does not apply ( \(\mathrm{T}(\mathrm{n})\) is not monotone)
\(\qquad\)

\section*{d \\ Recursive Algorithm Analysis : Master Theorem}
- Extended Master Theorem: (Source: Data Structure and Algorithm Made Easy by Narasimha Karumanchi)

If the recurrence is of the form
\(T(n)=a T(n / b)+\Theta\left(n^{k} \log ^{p} n\right)\)
where \(a \geq 1, b>1, k \geq 0\) and \(p\) is a real number, then:
- 1) If \(a>b^{k}\), then \(T(n)=\Theta\left(n^{\log _{b} a}\right)\)
- 2) If \(a=b^{k}\)
\(\checkmark\) a. If \(p>-1\), then \(T(n)=\Theta\left(n^{\log \mathrm{b}}{ }^{\mathrm{a}} \log ^{p+1} n\right)\)
\(\checkmark\) b. If \(p=-1\), then \(\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}} \log \log n\right)\)
\(\checkmark\) c. If \(p<-1\), then \(T(n)=\Theta\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\right)\)
- 3) If \(a<b^{k}\)
\(\checkmark\) a. If \(p \geq 0\), then \(\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{k}} \log ^{\mathrm{p}} \mathrm{n}\right)\)
\(\checkmark\) b. If \(p<0\), then \(T(\mathbf{n})=O\left(\mathbf{n}^{k}\right)\)
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-68 by Dr. Saumya Bansal

\section*{Recursive Algorithm Analysis : Master Theorem}
- Solve following recurrence relation using extended Master Theorem
- \(T(n)=3 T(n / 4)+n \log n \quad\) Solution: \(\Theta(n \log n)\)
- \(T(n)=2 T(n / 2)+n \log n \quad\) Solution: \(\theta\left(n \log ^{2} n\right)\)
- \(T(n)=3 T(n / 2)+n^{2} \quad\) Solution: \(\theta\left(n^{2}\right)\)
- \(T(n)=4 T(n / 2)+n^{2} \quad\) Solution: \(\theta\left(n^{2} \log n\right)\)
\(\qquad\)
- \(T(n)=16 T(n / 4)+n \quad\) Solution: \(\Theta(n \log n)\)
- \(T(n)=2 T(n / 2)+n / \log n \quad\) Solution: \(\Theta(n \log \log n)\)
- \(T(n)=2 T(n / 4)+n^{0.5} \quad\) Solution: \(O\left(n^{0.5}\right)\)

\section*{Recursive Algorithm Analysis : Master Theorem}
```

- Solve following recurrence relation using extended Master Theorem
- $T(n)=T(V n)+1$
Let $\mathrm{n}=2^{\mathrm{m}}$
$\mathrm{T}\left(2^{\mathrm{m}}\right)=\mathrm{T}\left(2^{\mathrm{m} / 2}\right)+1 \ldots \ldots .$. Eqn(1)
Let $S(m)=2^{m}$, Now, Eqn(1) can be rewritten as
$\mathrm{S}(\mathrm{m})=\mathrm{S}(\mathrm{m} / 2)+1$
Now, use the master theorem
$S(m)=\Theta(\log m)$.
We have $n=2^{m}$, take log both the side, $m=\log n$
Now, put the value of $n$, hence, $T(n)=\theta(\log \log n)$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Recursive Algorithm Analysis : Master Theorem

- Master Theorem for Subtract and Conquer. (Source: Data Structure and Algorithm Made Easy by Narasimha Karumanchi)
Let $T(n)$ be a function defined on positive n , and having the property
$\qquad$
$\qquad$

$$
T(n)= \begin{cases}c, & \text { if } n \leq 1 \\ a T(n-b)+f(n), & \text { if } n>1\end{cases}
$$

for some constants $c, a>0, b \geq 0, k \geq 0$, and function $f(n)$. If $f(n)$ is in $\mathrm{O}\left(n^{k}\right)$, then

$$
T(n)= \begin{cases}O\left(n^{k}\right) & \text { if } a<1 \\ O\left(n^{k+1}\right) & \text { if } a=1 \\ O\left(n^{k} a^{\frac{n}{b}}\right) & \text { if } a>1\end{cases}
$$

- Variant of Subtraction and Conquer Master Theorem

The solution to the equation $T(n)=T(\alpha n)+T((1-\alpha) n)+B n$, where $0<\alpha<1$ and $B>0$ are constants, is $\mathrm{O}(n \log n)$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Definition: The amount of space required to solve an instance of a problem |
| :--- |
| against the input size " n ". |
| Auxiliary space: Space other than that consumed by the input. |
| We often speak of Auxiliary space (extra memory) needed, not counting the |
| memory needed to store the input itself. |
| © Bharati vidyapeeth's Institute of Computer Applications and management, New Delli-63 by Dr. Saumya Bansal |

$\qquad$


## Space Complexity

Example:
int Fn ( int n )
\{
if( $\mathrm{n}==0$ ) In recursive algo, the function call stack is also
return; considered.
else
Fn( n -1);
\}

## Space Complexity

|  | Space Complexity |
| :---: | :---: |
| ```Example: int Fn( int n) { if(n==0) return; else Fn(n/2); }``` | Auxiliary space $=$ Stack used for each recursion= $\mathbf{O}(\operatorname{logn})$ <br> In recursive algo, the function call stack is also considered. |


|  | Space Complexity |
| :---: | :---: |
| ```Example: int Fn( int n) { if(n==0) return; else Fn(n/2); Fn(n/2); }``` | Auxiliary space $=$ Stack used for each recursion= $\mathbf{O}(\operatorname{logn})$ <br> In recursive algo, the function call stack is also considered. <br> Note that the stack space is reused here. Once a function call terminates, it removes from the stack. |
|  |  |

## Recursive Algorithm Analysis : Correctness of Algorithm

Definition: An algorithm Is called totally correct for the given specification if and only if for any correct input data it:
$\qquad$

- Terminates and
- Returns correct output
$\qquad$
$\qquad$
- Correct input data is the data which satisfies the initial condition of the specification
- Correct output data is the data which satisfies the final condition of the specification


## Recursive Algorithm Analysis : Correctness of Algorithm

Problem: "Given the array and its length compute the sum of numbers in the array"
The corresponding Specification could be:
Name: Sum (Arr, len)
input: (initial condition)
Algorithm gets 2 following arguments (input data):

1. Arr-array of integer numbers
2. len - length of Arr (natural number)
output:(Final condition)
Algorithm must return:

## Recursive Algorithm Analysis : Correctness of Algorithm

The Proof of total correctness of the algorithm involves following steps.

1. Prove that the algorithm always terminates for any correct input data.
2. Prove that the algorithm produces correct output for any correct input data. (Partial Correctness)

Partial Correct Algorithm: An algorithm is said to be partial correct if it guaranties the correct output for any correct input data.
Partial correct algorithm does not make the algorithm stop.
The proof of termination can never be fully automated, since the halting problem is undecidable problem.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Recursive Algorithm Analysis : Correctness of Algorithm

There are two main methods to prove correctness of an algorithm.
$\qquad$

Empirical Method

- Run the program and check its correctness

Formal Reasoning

- Loop Invariant Method
$\qquad$

Correctness of Algorithm: Empirical Method

Now, Check if the algorithm totally correct i.e.

1. whether the algorithm stops?
2. whether algorithm gives correct output for every valid input?

| Algorithm | Implementation |
| :---: | :---: |
| FindMax(Arr, len) | int Findmax([nt all, int $n$ ) |
|  |  |
| max $\leftarrow-1$ | int $i=0, \max =1 i^{\text {a }}$ |
| for ito to lent |  |
| if (Aarrili $>$ max) ( | $\max ^{(1)}$ |
| , max \& Arrli] | 1 |
| \} return max |  |

$\qquad$
$\qquad$
$\qquad$

Input 1: Arr=\{10,15,6,4,9\}

Input 2: Arr=\{-10,-4,-15,-3,-15\}
Partial Correctness is difficult to prove using empirical method

## Correctness of Algorithm: Loop Invariant Method

There are three steps involved in loop invariant method.

- Initialization: It is true prior to the first iteration of the loop
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct

Note the similarity to mathematical induction, where to prove that a property holds, you prove a base case and an inductive step. Here, showing that the invariant holds before the first iteration corresponds to the base case, and showing that the invarian holds from iteration to iteration corresponds to the inductive step.


## Randomized Algorithm

Definition: Any algorithm that make use of randomness as part of its logic or procedure.
Example: Find a number " $X$ " in the given array, in which first half are ' $a$ 's and the other half are ' $b$ 's. $X=\{a, b\}$
$\qquad$

Algorithm:
FindElement(A, n)
begin repeat

Randomly select one element out of n elements. until ' $X$ ' is found
end (Source: https://en.wikipedia.org/wiki/Randomized algorithm)

## Monte Carlo Algorithms

Monte Carlo Algorithms:

- The Algorithm terminates when either it gets successful or reach at most k steps
- The algorithm has the deterministic time complexity.
- Easier to analyze for worst case.

Example:
FindElement $(A, n, k) / / k=$ limit of finding steps. $A$ is array and $n$ is the length of the array
begin
i=0
repeat
Randomly select one element out of $n$ elements. i=i+1 end

## Analysis : Monte Carlo Algorithms

Analysis:

- If an ' $X$ ' is found, the algorithm succeeds, else the algorithm fails.
- After $k$ iterations, the probability of finding an ' $X$ ' is:

$$
\operatorname{Pr}[\text { find } X]=1-\left(\frac{1}{2}\right)^{\mathrm{k}}
$$

FindElement $(A, n, k) / / k=$ limit of finding steps.
begin
$i=0$
repeat
Randomly select one element out of n elements. i=i+1
until li=k or 'X' is found
end

- This algorithm does not guarantee success, but the run time is bounded.
- The number of iterations is always less than or equal to $k$. Taking $k$ to be constant the run time (expected and absolute) is $\theta$ (1)


## Las Vegas Algorithm

Las Vegas Algorithm:

- The algorithm keep running infinite times. It terminates only when it gets success.
Example:
FindElement $(A, n) / / A$ is array and $n$ is the length of the array begin
repeat
Randomly select one element out of n elements.
until ' $X$ ' is found $/ / X=\{a, b\}$
end


## Analysis : Las Vegas Algorithm

Analysis:
If an ' $X$ ' is found, the algorithm succeeds, else the algorithm fails.

Expected no of iteration to find ' X '
$E[X]=1 /(1 / 2)=2$
If probability of success is $p$ in every trial, then expected number of trials until success is $1 / p$

- This algorithm does guarantee success, but the run time is determined as expected value (Not Deterministic).


## Cases to be Analysed in Algorithm

The resource of an algorithm is analyzed on the following criteria:

Best case: Best case performance measures the minimum resource utilization of algorithm with respect to input $n$.

Worst case: Best case performance measures the maximum resource utilization of algorithm with respect to input $n$.

Average case: Best case performance measures the average resource utilization of algorithm with respect to input $n$. It is calculated as the average of all possible inputs.

| Cases to be Analysed in Algorithm |  |
| :---: | :---: |
| Example: "Find <br> Best Case: Elem Gene <br> Worst case: Ele <br> co <br> Average case: |  |
|  | U1.112 |
| Cases to be Analysed in Algorithm |  |
| Example: "Find an element ' $X$ ' in a given integer array of length $n$." <br> Best Case: Element ' $X$ ' is found at the first attempt. <br> Algorithm: <br> FindMax(Arr, Ien) <br> \{ <br> $\max \leftarrow \operatorname{Arr}[0]$ <br> for $i \leftarrow 0$ to len\{ <br> if (Arr[i] > max $)$ \{ $\max \leftarrow \operatorname{Arr}[i]$ <br> \} <br> \} <br> return max <br> Best Case: Element found at first place, Hence, only one comparison is needed. therefore time complexity for best case is $\mathbf{O}$ (1) <br> Worst Case: Element found at last index. It is assumed that elements are not repeated. The $n$ comparison is required. Hence, Time complexity for worst case is $\mathrm{O}(\mathrm{n})$ |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Cases to be Analysed in Algorithm



## Topics We Have Learned So Far

- Notion of Algorithm
- Importance of Analysis of Algorithm
- Time and Space Complexities
- Asymptotic Notations $(0, \Theta, \Omega, 0$, and $\omega$ ) and their properties
$\qquad$
- Growth of Function
- Measuring Time complexity of Non-recursive Algorithm
$\qquad$
$\qquad$
easuring Time complexity of Recursive Algorithm
- Recursion Tree Method
- Iterative Method
- Master Method
- Substitution Method


## Topics We Have Learned So Far

- Measuring Space Complexity
- Correctness of Algorithm
$\qquad$
- Analysis of Randomized Algorithm
- Best, Worst and Average case analysis.
$\qquad$
$\qquad$

| O. |
| :---: |
| The test can be scheduled in any lecture |
| next week. Be Prepared. |
| mann |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


