5 CO1

Bharati Vidyapeeth's

Institute of Computer Applications and Management (BVICAM)

A-4, Paschim Vihar, New Delhi-63

THIRD SEMESTER [MCA] Internal Examination, September 2023

Paper Code: MCA-203		de: MCA-203 Subject: Artificial Intelligence and Machine Lea	Subject: Artificial Intelligence and Machine Learning			
Time: 2 Hours		ours Maximum Mar	ks: 45			
	Note:	Attempt THREE questions in all. Question No. 1 is compulsory, and attempt or	ne			
		question from each unit.				
1	. Ans	nswer all the following questions briefly: - 1.5 × 1				
	(a)	Differentiate between Artificial Intelligence (AI), Machine Learning (ML) and	CO1			
		Deep Learning (DL).				
	(b)	Explain the purpose of Turning Test.	CO1			
	(c)	Summarize four main approaches to Artificial Intelligence.	CO1			
	(d)	Explain Artificial Intelligence based on functionality.	CO1			
	(e)	Compare Local maxima and Global maxima in Hill Climbing Algorithm.	CO1			
	(f)	Propositional logic has very limited expressive power, thus first order predicate	CO2			
		logic is used. Justify the statement.				
	(g)	What are various inference rules? Explain.	CO2			
	(h)	Outline the concept of non-monotonic reasoning with example.	CO2			
	(i)	Compare and contrast procedural knowledge and declarative knowledge	CO2			
	(j)	Differentiate Forward Versus. Backward Reasoning.	CO2			

UNIT - I

2.	(a)	Trace the constraint satisfaction procedure to solve the following	5	CO1
		cryptarithmetic problem:		

+	S	E	N	D
	M	O	R	E
M	0	N	Е	Y

(b) Consider the graph below:

Apply AO* algorithm to reach cost effective solution. Consider in the above example all numbers in brackets are the heuristic value i.e h(n). Each edge is considered to have a value of 1 by default i.e. g(n).

(c) Given an initial and final state of 8 puzzle problem. Find the most cost- ⁵ CO1 effective path to reach the final state from initial using A* algorithm.

Goal State			
2 8		1	
	4	3	
7	6	5	

- 3. (a) Analyze the Travelling Salesman Problem (TSP) with respect to the seven 5 CO1 problem characteristics.
 - (b) Define state spaces in AI. Why are they useful? Write state space for any 5 CO1 suitable problem of your choice.
 - (c) Trace the constraint satisfaction procedure to solve the following 5 CO1 cryptarithmetic problem:

UNIT - II

4.	(a)	Translate each of the following sentence into First Order Logic (FOL).		
		1. Every connected and circuit-free graph is a tree.		
		2. Not all that glitters is gold.		
		3. Some numbers are not real.		
		4. There is a barber who shaves all men in the town who do not shave		
		themselves.		
		5. Someone has visited every country in the world except Libya.		
	(b) Check the validity of the following implications via truth table.		5	CO2
		$P \rightarrow (Q \rightarrow R)$ equivalent to $(P \rightarrow Q) \rightarrow (P \rightarrow R)$		
	(c)	What are forward and backward search planning? Explain with the help of	5	CO2
	example.			
5.	(a)	Explain the following term providing an example	5	CO2
		1. Modus Ponen		
		2. Modus Tollen		
	(b)	Summarize approaches to Knowledge Representation (KR).	5	CO2
	(c)	Show that the following propositions are valid.	5	CO2
		$[\forall x P(x) \rightarrow Q]$ equivalent to $[\exists x P(x) \rightarrow Q]$		
