Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM),

A-4, Paschim Vihar, New Delhi-63

FIRST SEMESTER [MCA] Internal Examination, December 2023

Paper Code: MCA-101

Subject: Discrete Structures

Time: 2 Hours

Maximum Marks: 45

Note: Attempt THREE questions in all. Question No. 1 is compulsory, and attempt one question from each unit.

1.	Answer all the following questions briefly: - $1.5 \times 10 = 1$							
	(a) Use the properties of sets to prove that for all the sets A and B, $A - (A \cap B) = A - B$							
	(b) Let S be the set of all points in a plane. Let R be a relation such that for							
		two points a and b: (a, b belongs to R) if b is within 2 centimeters from a						
		Show that R is an equivalence relation.						
	(c) In a small village, there are 87 families, of which 52 families have at most 2 cl							
	In a rural development programme, 20 families are to be chosen for assistance,							
		which at least 18 families must have at most 2 children. In how many ways can the choice be made?						
	(d) Develop DNF of the \sim (p V q) <-> (p ^ q)							
	(e) Show by induction that the sum of the cubes of three consecutive integers is							
		divisible by 9.						
-	(f) Develop the existential formula for the sentence" Not all rainy days are cold							
	considering R(d) : Rainy days and C(x): Cold days							
	(g) In a group of students, there are 6 boys and 4 girls. Out of 10 students, 4							
		students have to be selected. Find out how many different ways the students						
		can be selected such that at least one boy should be selected?						
	(h)	Write fog, if f: R \rightarrow R and g: R \rightarrow R are given by f(x) = 8x ³ and g(x) = x ^{1/3}						
	(i)	Find out the number of ways that the letters of the word "DETAIL" can be arranged						
		such that the vowels must occupy odd positions.						
	(j)	If f is an invertible function, defined as $f(x) = (3x-4)/5$, then write $\overline{f^{-1}(x)}$.						
		UNIT – I						
2.	(a)	i) Assuming repetitions are not allowed, how many 4 digit numbers	5	CO1				
		can be formed from 6 digits 1, 2, 3, 5 ,7 ,8?						
		ii) How many of these are less than 4000?						
		111)How many in part i) are even?						
		iv) How many in part i) contain both 3 and 5?						
	(b)	Consider A= $\{4,5,6,7\}$ and R= $\{(4,4),(5,5),(6,6),(7,7),(4,6),(6,4)\}$	5	CO2				

		Evaluate						
		i) Reflexive closure						
		ii) Symmetric closure						
		iii) Transitive closure						
	(c)	Find the solution of recurrence relation $a_r = a_{r-1} + 2a_{r-2}$ with $a_0 = 2$ and						
		a ₁ =7						
3.	(a)	A survey on of 1000 people, 595 like metro channel, 595 like Star	5	CO1				
	movies, 550 like Zee TV, 395 like both metro and star,350 like met							
		and Zee, 400 like Star and Zee, 250 like all three. How many						
		i) Do not like metro, star and Zee						
		ii) Like Metro and do not like Star and Zee						
	iii) Like Zee and do not like Metro and Star							
	iv) Like only Zee							
		v) Like atleast one channel						
	(b)	Justify by giving example of relation R1,R2,R3 and R4 on A={4,5,6,7,8 }	5	CO2				
		having property						
		i) R1 is reflexive and symmetric but not transitive						
		ii) R2 is symmetric and antisymmetric						
		iii) R3 is antisymmetric but not reflexive						
		iv) R4 is transitive but not reflexive						
	(c)	Let $A = \{a,b,c,d,e\}$	5	CO1				
		and R= $\{(a,b),(a,a),(b,a),(b,b),(c,c),(d,d),(d,e),(e,d),(e,c)\}$						
		$S=\{(a,a),(b,b),(c,c),(d,d),(e,e),(a,c),(c,a),(d,e),(e,d)\}$ be equilence relations						
		on A. Determine the partitions corresponding to i) R ⁻¹ ii) R U S iii) R \cap S						
		UNIT – II						
4.	(a)	Prove the following without truth table	5	CO2				
		i) (p V q) ->~r, r V t, p -t						
		ii) (p^q)->r,(r->q),(r->q)->(q^r) (p^q)->(q^r)						
		iii) pVq, q->r ,r^s, p->s, p s						
	(b)	Solve the recurrence relation a_{r+2} . $2a_{r+1} + a_r = 2^r$ and find the particular	5	CO2				
		solution if $a_0 = 2$ and $a_1 = 1$						
	(c)	Solve by induction $1^3 + 2^3 + 3^3 + \dots + n^3 = [n(n+1)/2]^2$	5	CO3				
5.	(a)	Translate the following into symbolic form and test the validity	5	CO3				
		i) If 6 is even then 2 does not divide 7. Either 5 is not prime or 2 divides						
		7. But 5 is prime, therefore 6 is odd						
		ii) It it rains then it will be cold. If it is cold then I shall stay at home.						
		Since it rains, therefore I shall stay at home						

(b)	Solve the recurrence relation a_{r+2} . $5a_{r+1} + 6a_r = 2$ and find the particular solution if $a_0 = 1$ and $a_1 = 2$						5	CO2
(c)	Solve by +1) = n(n+1)/	Induction (2(2n+1)	1 ² /1.3	+	2 ² /3.5	++n ² /(2n-1).(2n	5	CO3