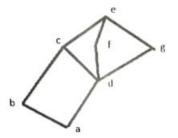
2022 – 2024 Batch Question Paper (Internal)

Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM), A-4, Paschim Vihar, New Delhi-63



	FIRST SEMESTER [MCA] Internal Examination, December 2022 Subject: Discrete Struct	tures
Paper Code: MCA-101 Maximum M		
Time: 2 Hours	mpt THREE questions in all. Question No. 1 is compulsory, and attempt or	e
Note: Atter	question from each unit.	
va ngoosayayaya	all the following questions briefly: - 1.5×10	= 15
	we A \cap (B-C) = (AAB) - (C-A)	CO
1 /	ke a vein diagram and shade $A' \cap B'$	CO
(b) Ma	termine which relation is a function with domain $\{1,2,3,4\}$. If any relation is	CO
(c) Det	a function, explain why. i) $\mathbb{R}1=\{(1,1)(2,1),(3,1),(4,1),(3,3)\}$ ii) $\mathbb{R}2=\{\{1,2\}(2,3)\}$	
	velop CNF of the ($p \rightarrow (p \land (q \rightarrow p)))$	CO
10 C	we by mathematical Induction if $n \ge 1$, $1(1!)+2(2!)+3(3!)+n(n!)=(n+1)!-1$	CO
	velop the existential formula for the sentence" Not all rainy days are cold"	CO
	sidering R(d) : Rainy days and C(x): Cold days	
	sume A={1,2,3,4,5,6,8,9,12,18,24}. Consider partial order of divisibility on	co
16.07	Draw hasse diagram for the PoSet.	
~ /		CO
S.	p iff a=2b	
(i) Det	ermine all possible sublattice from this lattice	CO
All contracts	~8	
	\sim	
	\sim \sim \sim	
	\sim	
	X X	
	3	
A Sev	en members of a family have total Rs. 2886 in their pockets. How much	co
mo	ney will be found at least in one of persons pocket.	-
/	UNIT - I	
3 (a) - i) A	issuming repetitions are not allowed, how many 4 digit numbers can 5	CC
	D	

Page 1 of 3

 be formed from 6 digits 1, 2, 3, 5, 7, 8? iii) How many of these are less than 4000? iii) How many in part i) are even? iii) How many in part i) contain both 3 and 5? (b) Consider A= [4,6,8,10] and R= [(4,4),(4,10),(6,6),(6,8),(8,10)] Eyaluate 	5	CO2			
< 1) Reflexive closure					
ii) Symmetric closure					
(iii) Transitive closure $2a = 2a = a = 2a$					
(c) Find the solution of recurrence relation $a_r = a_{r-1} + 2a_{r-2}$ with $a_0=2$ and $a_1=7$		CO1			
a (a) A current on a sample of 25 new cars being sold by an auto dealer was	5				
conducted to see which of the three popular options, an conducted to					
radio and power windows were already installed. The survey found: 15					
had air conditioner, 12 had radio, 11 had power windows, 5 had air					
conditioner and power windows, 9 had air conditioner and radio, 4 had					
radio and power windows and 3 had all 3 options. Find no. of cars					
i) Only power window					
ii) Only one of the options iii) At least one option					
iii) At least one option iv) None of the options					
and the second	5	CO2			
		001			
 having property i) R1 is irreflexive and antisymmetric 					
ii) R2 is asymmetric and antisymmetric					
iii) R3 is asymmetric but R3 U R3 4 is symmetric					
iv) R4 is transitive but R4 U R44 is not transitive					
(c) Solve the recurrence relation $a_r \ast a_{r\cdot 1} \ast a_{r\cdot 2} = 0$ and find the particular solution if $a_0 = 0$ and $a_1 = 2$	5	CO3			
UNIT – II					
(a) Prove the argument is valid by specifying rules	5	CO2			
i) p -> 'q, q V r, p V u, 'r - u					
ii) p V r, p V q - q V r					
(b) Determine whether following lattice is distributive, complementary,	5	CO2			
both or neither					

Page 2 of 3

(c) Minimize expression using k-map F(A,B,C,D)=∑(0,1,2,3,5,7,8,9,11,14)	5	CO3
(a) Draw the Hasse diagram of D ₁₂ and find the complement of each element it D ₄₂	5	CO3
 (b) j) Construct an argument using rules of inference to show that the hypothesis "she worked hard". "If she works hard, then she is intelligent" and if she is intelligent, then she will not go for movie" Therefore "She will not go for movie" ii) Let p(x)= x is weak student, q(x)= x is logical, r(x)= xis able to pass exam. Assume universe as set of students. Express the following in quantifiers 1. Weak students are illogical 	5	CO2
 Weak students are not able to pass exam 		
(e) Minimize the four variable expression $f(A,B,C,D)=ABC'D+A'B'CD+A'B'C'+A'B'D'+AC'+AB'C+B'$	5	CO3

Page 3 of 3