2022 – 2024 Batch Question Paper (External)

END TERM EXAMINATION

FIRST SEMESTER [MCA] FEBRUARY 2023 to Structures

FIRST SEMESTER [M Paper Code: MCA-101	Cublect: Discrete Structure
Time: 2 H	Maximum Marks: 75
Note: Attempt fine questions i	n all including Q. No.1 which is question from each unit.
compulsory. Select one	
 Q1 Answer the following question: (a) Prove that an irreflexive relative provement of the every positive in powers of 2. (b) Prove the validity of the follow of the cup is white then it is in the cup is not white. Therefore, the cup is not mining of prove that the mathematical of integers. (c) Prove that is a Boolean Expression of Write five negative integers of the prove the the mathematical of the cup is the term left Coset at the prove term left Coset at term left Coset at the prove term left Coset at term coset at term left Coset at term	a:- (2.5x10=25) ion with a suitable example. teger can be written as sum of integral ing statement:- my cup. • structure (Z, ≤) is a Poset, where Z is set n? hat are congruent to 3 (modulo 7). ed right Coset in a group.
	of an Encryption System. possible for a 3-regular graph to contain 5
1	JNIT-I
Q2 (a) Convert the following expres	ssion in CNF. (6)
<pre>(p∨~q ↔ q→p)∧(p→r) (b) In an examination, if you 1 then there is at least one o statement.</pre>	nave to answer 6 questions for 50 marks, question of minimum 9 marks. Prove this (6.5)
 committee of four persons i written on a slip of paper, the slips are put in 15 hats. 9 slips of paper. (b) Let f: A→B be a function ar two statements are equivale (i) f is one to one, (ii) f is onto. 	
	JNIT-II
is the relation of divisibility	where $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and $< defined on A such that x < y if x divides y. (6.5es, Contradiction and Contingency with a(6)$
(b) Consider the multiplication	orphic lattice with a suitable example. (6) of bacteria in a controlled environment. bacteria there are on r^{th} day. If $a_r - 2a_{r-1}$ day and that the rate of growth doubles that $a_0 = 1$. (6.5) P.T.O.

MCA-101

(6.5) P.T.O.

UNIT-III

	E for integers y and
Q6 (a) Solve the equatio	n 19x + 17y = 5 for integers x and y. (6)
a commital	ion groun and show that product of two more
permutations in a	a group is again an even permutation. (6.5)
	ind atteorem Evaluin is
Q7 (a) State Chinese R	emainder Theorem. Explain its application with an
example.	15 -
(b) What is Euler phi	i function? Compute φ(19). (6.5) (6.5)
	UNIT-IV
Q8 (a) What is chromati	c number and chromatic polynomial? Determine the
chromatic numbe	er and chromatic polynomial for a complete bipartite
K10.10.	(6)
of a graph that is	
of a graph that is Q9 (a) With a suitable g	Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and
of a graph that is	Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and
of a graph that is 09 (a) With a suitable g articulation poin	s Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and at. (6)
of a graph that is Q9 (a) With a suitable g articulation poin (b) Define isomorph	s Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and it. (6) ism of graphs with a suitable example. What is degree
of a graph that is 09 (a) With a suitable g articulation poin (b) Define isomorph spectrum? Can	s Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and it. (6) ism of graphs with a suitable example. What is degree we use degree spectrum to determine isomorphism of
of a graph that is Q9 (a) With a suitable g articulation poin (b) Define isomorph	s Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and it. (6) ism of graphs with a suitable example. What is degree
of a graph that is Q9 (a) With a suitable g articulation poin (b) Define isomorph spectrum? Can	Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and it. (6) isom of graphs with a suitable example. What is degree we use degree spectrum to determine isomorphism of (6.5)
of a graph that is Q9 (a) With a suitable g articulation poin (b) Define isomorph spectrum? Can	s Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and it. (6) ism of graphs with a suitable example. What is degree we use degree spectrum to determine isomorphism of
of a graph that is (a) With a suitable g articulation poin (b) Define isomorph spectrum? Can	Hamiltonian but not an Euler Graph. (6.5) graph, explain the meaning of cut vertex, cut edge and it. (6) isom of graphs with a suitable example. What is degree we use degree spectrum to determine isomorphism of (6.5)