END TERM EXAMINATION

SECOND SEMESTER [MCA] MAY - JUNE 2016

Paper Code: MCA102

Subject: Data & File Structure

Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q no.1 which is compulsory.

Q1 (a) Compute the time complexity of the following code segment written in C.(5x5=25)

for (j=1;j< n, j=K*j) Statement 1;

Assuming that n is size of input data and K is a constant.

(b) Implement multistacks using on 1D array. Write algorithms for push and pop operation in the its stack.

(c) Write a c function that detects a circle within a linear linked list.

Prove that for any non empty binary tree T, if n_0 is the number of leaf nodes and n_1 is the number of nodes of degree 2, then $n_0 \approx n_1 + 1$.

(e) Prove that the sum of the degrees of the vertices of an undirected graph is twice the number of edges.

- Q2 (a) Write a C function to evaluate a postfix expression. (6.5)
 - (b) What do you mean by a sparse matrix? Write procedure to add two sparse matrices.
- Q3 (a) Write C functions to delete and add a node in a doubly linked list (6.5)
 - (b) How is a circular queue advantageous over a queue linear? Explain the addition and deletion operations in it. (6)
- (a) How AVL tree is useful over a binary search tree? Insert following nodes with key values 10, 20, 30, 42, 28, 29, 50 in the order of their existence. (6.5)
 - (b) What is a threaded binary tree? Write a C function to delete a node from this tree.
- Q5 Explain various techniques of a graph representation. Describe Floyd Warshall's algorithm with suitable example. (12.5)
- Of (a) Explain Kruskal's algorithm of minimum spanning tree with suitable grample.
 - (6) What do you mean by a binary search tree? Write procedures for various traversals of this tree.
- (a) Explain with suitable example the radix sort and compute its time
 - (b) What do you mean by sequential file organization? Explain its advantages and disadvantages.
- (6.5)

 (a) What is B+ tree indexing? Explain with suitable example.

(6.5) Explain different collision resolution techniques in hashing. (6.5)

P