
Proceedings of the 12th INDIACom; INDIACom-2018; IEEE Conference ID: 42835
 2018 5th International Conference on “Computing for Sustainable Global Development”, 14th – 16th March, 2018

Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

An Approach to Automate the Audit Testing of Web
Services

Anwar Bari
Department of Computer

Application, Integral University,
Lucknow, India.

dranwarbari@gmail.com

 Mohd. Faizan Farooqui

Department of Computer
Application, Integral University,

Lucknow, India.
faizan_farooqui2000@yahoo.com

A. A. Zilli
Department of Comp. Sc. & Engg,

 Lucknow University,
 Lucknow, India.

aazilli@gmail.com

Abstract – Web service is a piece of software easily
available on the internet used to share functionality of
organization. However, software undergoes maintenance
and evolution activities. These can be due to the addition of
new features, or corrective maintenance. Different types of
changes may be the reason behind nonconformance of
assumptions with integrator. Well-organized testing
techniques are required which automatically verifies that
the updated web services are in conformance with the
requirements of the client or integrators. Audit testing is
performed for making sure that new web service is also
acceptable to the integrators. This paper provides an
overview of audit testing of web services and the different
types of changes occurring in web services. An approach to
implement the framework for automating the audit testing
of web service is also presented.

Keywords – Audit Testing; Change Detection; Web
Services.

I. INTRODUCTION
Web service is a piece of software easily available on the

internet containing a collection of methods having predefined
input and output types used to share functionality of
organization. Service providers do not share internal source
code or company policies to any third party for testing their
web service. As web services are available without awareness
of its internal coding details black-box testing is the only
approach to test web services [2].

Upon discovering a service system integrator starts using
it, taking interfaces and test cases as contracts between web
service subscribers and providers. However, web services
have to be modified regularly to satisfy changes in the

requirements or to fix bugs. Changes in a web service can
affect the system of its integrators. In this paper a discussion on
the different types of changes occurring in web services has
been carried out.

The coding of web services is independent of programming
language and platform, only requirement is usage of Web
Services Description Language (WSDL) as standardized XML
interface description, Simple Object Access Protocol (SOAP)
as standardized messaging protocol and Universal Description,
Discovery and Integration (UDDI) [3].

The tester of web services is having information related to
service interface in WSDL, so it is quite difficult to test web
services. Hence in this paper a framework for testing and
automating the audit testing of web services along with its
implementation details has been discussed.

II. OVERVIEW OF AUDIT TESTING OF WEB
SERVICES

Web service is an autonomous collection of methods
bundled into a single package having predefined input and
output accessible over the Internet. In order to fix errors or to
enhance their functionality web services are usually updated.
When services are updated, the user software or websites which
incorporates these new services are required to be retested, so
as to be sure that the already working functionalities are not
affected because of updates and do not lead to adverse effects.
Such testing is known as regression testing. Audit testing is a
special type of regression testing having restriction on time and
cost [4].

Due to security reasons or company policies the code of
web service is not available to the user or client and hence

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 5370

Proceedings of the 12th INDIACom; INDIACom-2018; IEEE Conference ID: 42835
2018 5th International Conference on “Computing for Sustainable Global Development”, 14th - 16th March, 2018

testing web service become very difficult. The interface of
web service is described using WSDL, so to perform audit
testing the following procedure is generally applied.

In the start source code is generated using WSDL which
helps in the process of generating test cases and also in its
execution.

For each individual method wrapper classes are also
generated related to the operations present in the web service
respectively. Using any test generation tool a test suite is
generated for these wrapper classes.

This generated test suite is used with the generated source
code [1]. The execution of this test suite will automatically call
the web service by sending request messages [1].

The outputs received from the web service are then
collected. Which is analyzed to show problems and manual
inspection may be done on the same.

III. TYPES OF CHANGES OCCURING IN WEB
SERVICES

Upon discovering a service system integrator starts using
it, selection of services for integration depends on functional
and non-functional requirements. The software system used
for developing service goes through maintenance for bugs
fixing (cope with problems arisen during the service usage) or
evolution of the existing ones such as addition of new features
to satisfy changes in the requirements.

The services may be re-tested from time to time to be sure
that the service provides the required functionality and fulfills
the Quality of Service requirements. Any change in a web
service might affect the systems using the service. Here, the
clients or testers should be aware of types of changes
occurring in a web service so as to analyze the effect on their
systems.

Two kinds of changes occurring in web service can be
identified depending on the effects and side effects they might
cause:

Shallow changes: In shallow changes the effects are confined
to a service or clients of that service only.

Deep changes: In deep changes the effects are of cascading
types which may extend beyond the clients of a service.

For proper interaction services must mutually arrive to a
service level agreement deciding the specifications between
the service provider and the service client.

Whenever a new version of web service is released the
following different scenarios can happen:

• Change in the service functional behavior: the new
version responds to inputs in a different way or there is a
difference in exception handling of the service and thus
behaves differently which may cause failures in the
system.

• Change in the service non-functional behavior: if there is
any change in service implementation, supporting
hardware or network configuration it might modify the
service non-functional behavior.

During modification if interface and/or specification is not
changed it remains unknown to service client. The system
integrator now unintentionally uses the updated service and the
response of the service for some inputs, might be different from
previous responses. As the current version of a service meets
integrator requirements, future versions may not.

Services generally evolve while applying changes such as
Structural changes, Business protocol changes, Policy induced
changes and Operational behavior changes.

IV. WEB SERVICE AUDIT TESTING PROCESS
In our previous work a critical analysis of issues occurring

in Audit Testing of Web Services [13] was performed where the
drawbacks of regression testing was discussed and the need and
challenges for audit testing of web services was bought into
light [14]. Audit testing is useful for being sure that if any new
service is introduced or old service is updated, then that service
is correctly incorporated in the current system or application[11].
In this present work an approach to automate the
implementation of proposed framework [16] has been bought
forward for testing and auditing of web service.

The technique for audit testing is divided into modules. The
testing technique starts by Code Generation module
considering the input and output parameters, protocol bindings,
message formats and supported operations [2] needed for
communicating with the web services enumerated in the
UDDI[2] using the WSDL [1] of a service, automatically
generate code in Java by creating necessary stub for working as
a client (service consumer) and send service requests to the
skeleton (service provider).

The Axis utility, WSDL2Java, analyzes WSDL to generate
the source code from a service provider’s WSDL [1]. Axis [5]
offers required Java code implementation of the SOAP
protocol. In code generation module Axis is used to produce
four classes or interfaces using the WSDL of web service. The
classes are generated in Java respective to all methods in that
class taking into account the input and output parameters
contained within service. Then an interface in Java for each
port type defining the connection point is generated. For all
bindings, a stub class describing the message format and
protocol is generated. The binding element has attribute name
describing name of the service and a type attribute describing
the port of the binding. Now codes for service interface and
generated. The service input output parameters defines the
visible web services. These input output parameters assists in
calling web service for testing purpose [1]. Finally generate
wrapper classes which cover every method to a respective
existing service operation. Wrapper class allow calling of

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 5371

An Approach to Automate the Audit Testing of Web Services

available service. This wrapper class will be passed on to any
one of the test generation tool, which generates unit test.

The next module in the framework is Test Generation
module which is inputted with the classes generated by code
generation module. Test generation module examines the kind
of information available in Java classes and creates a code
portion which builds different types of calls to the web service
for testing the performance of all procedures contained in the
web service. All such unit test cases are collected to form a
validation suite that tests the services pointed by the WSDL [1].
Required test cases are acquired by analyzing and converting
test suites which are created for the system using the service’s
features [12]. It is required that any expression part of an
assertion needs to be calculated and decoded into a literal.

The code portions along with the unit tests generated are
called for providing inputs to all supported operations in a web
service under test [2]. The supporting operation to be tested is
within the wrapper class. For each service in WSDL a method
is declared and for each input parameter in that service a
method argument is designated [1]. Test generator produces
unit tests which pass the required input parameters in order to
call the web service.

This methodology can function independent of the tool
used for test generation [7].

JCrasher[8] observes the kind of information from a
collection of Java classes and creates portion of programs
which creates calls of different types for validation of behavior
of methods.

JCrasher tests errors by attempting the web service to be
tested to crash. JCrasher transitively analyzes methods, finds
out the scope of each tested method's parameter-space and
selects parameter combinations and therefore test cases at
random, considering the time given for testing it determines
heuristics for deciding if any Java exception should be taken
as a coding error or the assumptions taken by programmer
have been violated by JCrasher supplied inputs.

After creation of test cases the Test Execution module
executes the generated validation suite on the wrapper class
with the stub code [1]. Each generated test case calls the
supporting operation in the wrapper class. These supporting
operations have been coded in such a way to pull the
generated stubs which send SOAP requests to the skeleton to
be tested [1].

JUnit [10] automates the execution of test cases and
facilitates the collection of test case results, but does not offer
any assistance in implementing test cases. JUnit [2] invokes the
unit tests corresponding to the generated wrapper class. JUnit
is used to run a unit-test from the validation suite as regression
testing framework against the wrapper class for testing [9]. If
any failure occurs this execution of validation class can throw
an exception [12].

The process of generating service test cases from JUnit test
suites can be completely automatic, or user-guided. In the first
case, the JUnit test suite is translated so that operation
invocations are left symbolic, whilst other expressions are
evaluated and translated into literals. In the second case, the
user can select the JUnit test cases that should be considered to
generate service test cases.

The Response Analysis module consists of Monitor and
Analyzer, whenever the service is invoked the consumer
diverts the request to response analysis module, where the
monitor intercepts the messages between service requester and
web service in recessive method, transform the intercepted
message into standard format, request is noted and redirected to
the provider. Also collect the responses or error condition
returned to message logs and redirects the same to the
consumer. The monitor module works as a man-in-the-middle
in order to collect web service responses, between the
consumer and the provider [1].

The analyzer module is used to analyze the large number of
request-response pairs to judges whether the component of web
service meets the requirement of the standards and upon
occurrence of an exception the analyzer module indicate
problem and shortlists those test cases which might show errors
in a conformance report.

This conformance report may be presented for manual
inspection to determine if it is triggered by an error in the code
of web service or the inputs given did not follow the service
provider’s assumptions [1]. Such execution of the web service
must return useful error message for the identification and
notification to clients or integrators regarding change in web
service.

Lastly measures for selection [6], minimization and
prioritization[14] of audit test cases may be applied to web
services based on the conformance report. In our previous work
a critical analysis of issues occurring in Audit Testing of Web
Services [13] we discussed the schemes for selection,
minimization and prioritization.

V. CONCLUSIONS AND FUTURE WORK
We have given an overview of audit testing of web services

where code is generated from WSDL. Unit test cases are
generated using automated unit test generation. For testing unit
test cases are executed on the code.

While being used, a service can change its behavior or its
non-functional properties, and the integrator may be not aware
of such a change. Thus a discussion on the type of changes
occurring in web services has been done. Changes in a web
service interface typically affect the systems of its subscribers.
Therefore, it is essential for subscribers to recognize which
types of changes occur in a web service interface in order to
analyze the impact on his systems.

Modifications or evolution in web services is happening

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 5372

Proceedings of the 12th INDIACom; INDIACom-2018; IEEE Conference ID: 42835
2018 5th International Conference on “Computing for Sustainable Global Development”, 14th - 16th March, 2018

quickly due to security reasons or changes in company
policies. Thus services may be re-tested from time to time to
be sure that the service provides the required functionality as
desired by the client. Audit testing is done for being convinced
that updated services fulfill the Quality of Service
requirements.

Concerning this an approach for implementing a
framework has been discussed for testing and auditing of web
services. In future work, the implementation of this approach
may be tested and improvised and its efficiency in comparison
to available techniques needs to be checked.

REFERENCES
[1] Evan Martin Suranjana Basu Tao Xie, “Automated Testing and Response

Analysis of Web Services”, IEEE International Conference on Web
Services (ICWS 2007), 07/2007.

[2] E. Martin, S. Basu, and T. Xie, “Automated robustness testing of web
services”, In Proceedings of the 4th International Workshop on SOA and
Web Services Best Practices (SOAWS 2006), October 2006.

[3] Masood, Tehreem, Aamer Nadeem, and Shaukat Ali. "An automated
approach to regression testing of web services based on WSDL
operation changes", 2013 IEEE 9th International Conference on
Emerging Technologies (ICET), 2013.

[4] Hong Zhu, Member, IEEE Computer Society, and Yufeng Zhang,
“Collaborative Testing of Web Services” IEEE transactions on Service
Computing, Vol. 5, No. 1, January-March 2012

[5] Apache. Axis. http://ws.apache.org/axis/
[6] Ruchika Malhotra, Arvinder Kaur and Yogesh Singh, "A Regression Test

Selection and Prioritization Technique", Journal of Information
Processing Systems, Vol.6, No.2, pp.235-252, Jun 2010.

[7] K. Ashok, G. Kumar, A. Dhawan, and A. Dharani, “Automated
regression suite for testing web services,” in Int. Conf. Software
Maintenance (ICSM), November 2009, pp. 590–592.

[8] C. Csallner and Y. Smaragdakis. “JCrasher: an automatic robustness
tester for Java. Software: Practice and Experience”, 34:1025–1050,
2004.

[9] Agitar. Agitar Agitatior 2.0, Novermber 2004.
http://www.agitar.com/

[10] E. Gamma and K. Beck. JUnit, 2003. http://www.junit.org
[11] M. D. Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora, Test and

Analysis of Web Services - Web Services Regression Testing. Springer
Berlin Heidelberg, 2007.

[12] Tao Xie. "WebSob: A Tool for Robustness Testing of Web Services",
29th International Conference on Software Engineering (ICSE 07
Companion), 05/2007.

[13] Anwar Bari, A. A. Zilli and S. Qamar Abbas. "Critical Analysis of
Issues in Audit Testing of Web Services" International Journal for
Scientific Research and Development 4.8 (2016): 645-650.

[14] C. D. Nguyen, Alessandro Marchetto, Paolo Tonella, “Challenges in
Audit Testing of Web Services” 2011 Fourth International Conference on
Software Testing, Verification and Validation Workshops

[15] Cu D. Nguyen, Alessandro Marchetto and Paolo Tonella, "Test Case
Prioritization for Audit Testing of Evolving Web Services using
Information Retrieval Techniques," In.proc.of the IEEE International
Conference on Web Services (ICWS), Washington, DC, pp.636 - 643,
2011.

[16] Anwar Bari, Mohd. Faizan Farooqui, A.A. Zilli, “Study of Automated
testing of Web services” Accepted in 5th International Conference on
“Computing for Sustainable Global Development”, 14th – 16th March,
2018, New Delhi (INDIA)

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 5373

http://www.junit.org/�

