
Proceedings of the 12th INDIACom; INDIACom-2018; IEEE Conference ID: 42835
2018 5th International Conference on “Computing for Sustainable Global Development”, 14th - 16th March, 2018

Bharati Vidyapeeth's Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Study of Automated Testing of Web Services

Anwar Bari
Department of Computer

Application, Integral University,
Lucknow, India.

dranwarbari@gmail.com

 Mohd. Faizan Farooqui

Department of Computer
Application, Integral University,

Lucknow, India.
faizan_farooqui2000@yahoo.com

A. A. Zilli
Department of Comp. Sc. & Engg,

 Lucknow University,
 Lucknow, India.

aazilli@gmail.com

Abstract – Web services are popularly supported by top
industrial players. To guarantee the perfection in working of web
service testing is done. As human testing is tiresome, efficient
techniques are required which automatically generate test cases,
execute and analyze the result for testing web services. Web
services are easily accessible on the internet but the original
implementation information is hidden. Having understanding
about WSDL, automation tools generates the code to run as a
client. The automation tools generate unit test cases and run
these unit tests, which calls the service for testing. This paper
offers a study on automated testing of web service. Although a lot
of research is being done for testing web service. Web services
progress rapidly to cope up with technological and organizational
policies modifications. Testing is therefore necessary for ensuring
that these updated or new services are working properly. Such
kind of testing is done in audit testing which is a kind of
regression testing. This paper is focused on proposing a
framework which can perform both web services testing and
auditing.

Keywords – Audit Testing; Automated Testing; Web Services.

I. INTRODUCTION
Web service is an independent software module having

definite boundary containing a collection of methods which is
available on the Internet [1]. Every service is developed so as to
execute a definite utility for any kind of operation. Service
providers do not share internal source code or company
policies to any third party for testing their web service. As
web services are available without awareness of its internal
coding details black-box testing is the only approach to test
web services [2].

In this paper, a study has been carried out on automated
testing of web services. The coding of web services is
independent of programming language and platform, only
requirement is usage of Web Services Description Language
(WSDL) as standardized XML interface description, Simple
Object Access Protocol (SOAP) as standardized messaging
protocol and Universal Description, Discovery, and
Integration (UDDI) [3].

During automation of web services the tester is having

information related to service interface in WSDL, code is
generated for service invocation to the service provider. Test
classes are also generated that relate a single method to all the
service operations. Generated classes are given to a test
generation tool for object-oriented programs, which generates
tests. Execution of the unit tests routinely sends requests to the
web service.

This is quite clear that knowing only a web service WSDL,
test cases considered precisely for validation of web services
can certainly be automatically generated [4].

II. THEORETICAL BACKGROUND
Having knowledge about interface description from WSDL

of a service, start with generating source code in Java to
support the test cases generation process and also their
execution.

Wrapper classes are also generated which relate each
individual method to all operation offered by the service
respectively. Then test suite is generated by giving these
wrapper classes to test generation tool.

This generated test suite is used with the generated source
code [1]. Executing this test suite will automatically call the web
service by sending request messages [1]. The outcomes returned
from the web service are then collected. Then problems can be
detected by analyzing these accumulated outcomes.

In particular for automatic testing of web services the
following four steps are generally followed [1]:

A. Code Generation

The code generation module produces necessary stubs and
skeleton in Java using the WSDL [1]. WSDL is written in XML
and describes the protocol bindings, message formats, and
supported operations [2] needed for communicating with the
web services enumerated in the UDDI [2]. The Axis utility,
WSDL2Java, analyzes WSDL to generate the source code from
a service provider’s WSDL [1]. Axis [5] provides necessary Java
code implementation of the SOAP protocol. The code
generation component uses Axis to produce four classes or

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 4298

Proceedings of the 12th INDIACom; INDIACom-2018; IEEE Conference ID: 42835
2018 5th International Conference on “Computing for Sustainable Global Development”, 14th - 16th March, 2018

interfaces from the WSDL file. First classes in Java are
generated for all methods considering the input and output
parameters contained within service. Second a Java interface
defining the connection point is generated for each port type.
For all bindings, a stub class describing the message format
and protocol is generated. The binding element has attribute
name describing name of the service and a type attribute
describing the port of the binding. Third service interface and
their codes are generated. The service input output parameters
defines the visible web services. These input output
parameters assists in calling web service for testing purpose [1].
Fourth wrapper classes are generated to allow calling of
available service. These wrapper classes have the web service
invocation code for all methods held in the web service.

B. Test Generation

The test generation module is provided with these
generated classes for generating unit test cases in Java for
creation of a validation suite that drills those services pointed
by the WSDL[1]. Required test cases are acquired by analyzing
and converting test suites which are created for the system
using the service’s features [12]. It is required that any
expression part of an assertion needs to be calculated and
decoded into a literal. This methodology can function
independent of the tool used for test generation [5] (e.g.
JCrasher [8], Agitar Agitator [9], and Parasoft Jtest [2]).

More specifically, test generator examines the kind of
information available in Java classes and creates a code
portion which builds different types of calls to the web service
for testing the performance of all procedures contained in the
web service. The code portions along with the unit tests
generated are called for providing inputs to all supported
operations in a web service under test [2]. The supporting
operation to be tested is within the wrapper class. For each
service in WSDL a method is declared and for each input
parameter in that service a method argument is designated [1].
Test generator produces unit tests which pass the required
input parameters in order to call the web service.

C. Test Execution

The test execution module mainly executes the generated
validation suite on the wrapper class in the stubs [1]. Each test
case generated invokes the supporting operation within the
wrapper class. These supporting operations are developed so
as to pull the generated stubs which intern invokes the remote
skeleton to be tested [1].

JUnit [2] invokes the unit tests corresponding to the
generated wrapper class. JUnit is used to run a unit-test from
the validation suite as regression testing framework against the
wrapper class for testing [9]. If any failure occurs this
execution of validation class can throw an exception [12].

D. Response Analysis

Whenever the service is invoked the consumer diverts the
request to Response Analysis module, where the request is

noted and redirected to the provider. This module will also note
the responses or error condition as returned by the provider and
redirects the same to the consumer. The response analysis
component works as a man-in-the-middle in order to collect
web service responses, between the consumer and the
provider[1].

The collected responses are analyzed to indicate problems
and may be presented for manual inspection.

Upon occurrence of an exception, manual assessment might
determine if it might be triggered by an error in the code of
web service or the inputs given did not follow the service
provider’s assumptions [1]. Such execution of the web service
must return useful error message.

The response analysis module shortlists those tests from the
responses which might show errors and sends the particular
tests for manual assessment.

III. PROBLEMS AND NEED OF AUDIT TESTING
A critical analysis of issues occurring in Audit Testing of

Web Services was performed in our previous work [12]. When
services are updated, the user software or websites which
incorporates these new services are required to be retested, so
as to be sure that the already working functionalities are not
affected because of updates. Audit testing of web services has
restriction on time and cost.

We identified these problems which need to be well-
thought-out while performing research on audit testing of
services.

A. Problem 1: Online Testing
The test of services by working online should be

compulsory done by audit testing for checking that newly
incorporated services are well integrated and the intended
application is working as required [4]. Portion of testing time
should certainly be given for online testing, or testing by
invoking services in real. Although such service invocation
could upset the external applications in an undesired manner
permanently. Currently there is no standard or infrastructure for
supporting online testing of services [12].

B. Problem 2: Change Detection
When services are updated, it is not be detected by clients

using these services, this is because of lack in standard for
notifying of updates to clients using the service. Applications
therefore depend on monitoring to judge each time something
uncertain happens during invocation [12]. Therefore updates in
service should first be detected so that audit testing of updated
service can be done [4]. As updates are not suitably notified,
changes can be detected by taking into account traces of
executions of the service and analyzing the performance
automatically.

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 4299

Study of Automated Testing of Web Services

C. Problem 3: Test Case Selection, Minimization and
Prioritization
Having so less knowledge about services accessible for

audit testing of service, we consider that the current scenarios
for automated testing in use cannot be accepted for audit
testing of services [12], for the reasons discussed below:

1. Test Case Selection:

As new compositions of service are being done from time
to time, test case selection is used to identify those test cases
which can target only the updated part of web service
composition [3].

The portion of web service which can be validated by any
test case is mysterious, so selecting the test cases for the code
portion where changes have been made in the service
composition is challenging for audit testing of services, due to
non-observance of the service execution [12]. Therefore test
case selection remains dependent on self-determining test
cases which might call the updated service. Thus conditions
for selection are not so strong. Further dominant procedures
for selection are required.

2. Test Case Minimization:

The main objective of test case minimization is majorly in
attaining the smallest section from the selected test cases
which fulfills some acceptability norm [3].

Due to less observability of services test case minimization
depending on code portion tested by test case (e.g., searching
the least number of test suite which reserves certain level of
coverage) is difficult to attain during automated testing [12]. It
is unclear if test suite minimization can attend a defined code
portion for audit testing of service which goes through
updating. We reason that innovative minimization strategies
are required for minimization [4].

3. Test Case Prioritization:

The main objective of test case prioritization is to put the
minimized test cases in a manner such that the utmost
significant test cases are called first (e.g., possible finding
error) [3].

Although test case prioritization depending on percentage
of service composition tested by applying test case is a useable
choice, but undoubtedly not the efficient choice [12]

Using this problems centric discussion it is rather pointed
out that extra research is needed, as neither common nor
effective testing techniques are present for discussed problems
and which can efficiently perform audit testing of web
services [12].

IV. METHODOLOGY FOR AUDIT TESTING OF WEB
SERVICES

Audit testing is useful for being sure that if any new service
is introduced or old service is updated, then that service is
correctly incorporated in the current system or application. In
this present study, a framework has been proposed for testing
and auditing of web service as shown in fig. 1, its efficiency in
comparison to available techniques needs to be checked.

Fig. 1. Framework for Audit Testing of Web Services

As shown in fig. 1 the testing procedure is divided into
steps. In step 1 taking into account the input and output
parameters and other information available from WSDL of a
service, we will first automatically generate code for creating
stub for working as a client (service consumer) and send
service requests to the skeleton (service provider). We will
generate a wrapper class which covers all methods to a
respective existing service operation. This wrapper class
contains the service calls. This wrapper class will be passed on
to any one of the test generation tool, which generates unit test.

In step 2 run this generated validation suite with the stub
code, which will send SOAP requests to the skeleton. These
will inevitably effect in sending web service requests to the
service provider.

In step 3 Monitor intercepts the messages between service
requester and web service in recessive method, transform the
intercepted message into standard format, collect the responses
returned and then outputs it to message logs.

In step 4 Analyzer judges whether the components of web
service meets the requirement of the standards using a testing
suite. After analyzing the large number of request-response
pairs, we generate conformance report.

Hence, recognize the need for audit testing of a web
service. Next we will implement measures for selection,
minimization and prioritization of audit test cases. Test the
technique. Analyze and evaluate the results obtained.

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 4300

Proceedings of the 12th INDIACom; INDIACom-2018; IEEE Conference ID: 42835
2018 5th International Conference on “Computing for Sustainable Global Development”, 14th - 16th March, 2018

V. CONCLUSIONS AND FUTURE WORK
We have studied about the automatic testing of web

services which included the automatic generation of code for
implementing a client along with its supporting wrapper class
and invocation of web services from the given service
provider’s WSDL[1]. Then with the use of automated unit test
generation tools generated unit tests for the wrapper class and
finally executed the generated unit test cases that invoked the
service for testing. It shows that many web service tests can be
successfully accomplished for any service provider. The
generated requests are ready to expose bugs in the service
provider’s code.

While researches are being done on testing of web
services. Web services are progress at a fast pace to fulfill the
technological and organization policies update. Because of
this, clients often get confused in deciding whether to be use
up-to-date by incorporating the latest updates in the service
composition, or keep using the current version in spite of
knowing that this current version may be having issues, risks
and limited support[12]. Most frequently the clients accept the
updated version. As the current version may be discarded, as
moving on to the latest version becomes necessary. Audit
testing is done to cope up with these problems i.e. for being
convinced that updated services are correctly incorporated in
the current system or application.

In this regard a framework has been proposed for both
testing and auditing of web services. In future work, the
implementation of this approach may be planned to improvise
and validate the effectiveness of this approach.

REFERENCES
[1] Evan Martin Suranjana Basu Tao Xie, “Automated Testing and

Response Analysis of Web Services”, IEEE International Conference on
Web Services (ICWS 2007), 07/2007.

[2] E. Martin, S. Basu, and T. Xie, “Automated robustness testing of web
services”, In Proceedings of the 4th International Workshop on SOA
And Web Services Best Practices (SOAWS 2006), October 2006.

[3] Masood, Tehreem, Aamer Nadeem, and Shaukat Ali. "An automated
approach to regression testing of web services based on WSDL
operation changes", 2013 IEEE 9th International Conference on
Emerging Technologies (ICET), 2013.

[4] http://www.s-cube-network.eu/results/deliverables/wp-jra-1.3/PO-JRA-
1.3.1-Survey-of-qualityrelated-aspects-relevant-for-SBAs.pdf

[5] Apache. Axis. http://ws.apache.org/axis/
[6] M. Di Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora, “Web

services regression testing,” in Test and Analysis of Web Services, L.
Baresi and E. D. Nitto, Eds. Springer, 2007, pp. 205–234.

[7] M. D. Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora, “Test
and Analysis of Web Services - Web Services Regression Testing”.
Springer Berlin Heidelberg, 2007.

[8] C. Csallner and Y. Smaragdakis. “JCrasher: an automatic robustness
tester for Java. Software: Practice and Experience”, 34:1025–1050,
2004.

[9] Agitar. Agitar Agitatior 2.0, Novermber 2004.
http://www.agitar.com/

[10] E. Gamma and K. Beck. JUnit, 2003. http://www.junit.org

[11] K. Ashok, G. Kumar, A. Dhawan, and A. Dharani, “Automated
regression suite for testing web services,” in Int. Conf. Software
Maintenance (ICSM), November 2009, pp. 590–592.

[12] Tao Xie. "WebSob: A Tool for Robustness Testing of Web Services",
29th International Conference on Software Engineering (ICSE 07
Companion), 05/2007.

[13] Anwar Bari, A. A. Zilli and S. Qamar Abbas. "Critical Analysis of Issues
in Audit Testing of Web Services" International Journal for Scientific
Research and Development 4.8 (2016): 645-650.

[14] C. D. Nguyen, Alessandro Marchetto, Paolo Tonella, “Challenges in
Audit Testing of Web Services” 2011 Fourth International Conference on
Software Testing, Verification and Validation Workshops

[15] Cu D. Nguyen, Alessandro Marchetto and Paolo Tonella, "Test Case
Prioritization for Audit Testing of Evolving Web Services using
Information Retrieval Techniques," In.proc.of the IEEE International
Conference on Web Services (ICWS), Washington, DC, pp.636 - 643,
2011.

Copy Right © INDIACom-2018; ISSN 0973-7529; ISBN 978-93-80544-28-1 4301

http://www.junit.org/�

	Problem 1: Online Testing
	Problem 2: Change Detection
	Problem 3: Test Case Selection, Minimization and Prioritization

