
Proceedings of the 4th National Conference; INDIACom-2010
Computing For Nation Development, February 25 – 26, 2010

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

File Transfer Using Secure Sockets in Linux Environment

Abhipal Singh Gurneet Singh Sethi Kavleen Kaur Oberoi Jasleen Kaur
abhipal_singh@hotmail.com gurneetsethi@hotmail.com kavleenoberoi@gmail.com sippy16@yahoo.com

Guru Tegh Bahadur Institute of Technology, GGSIP University, Delhi

ABSTRACT
File transfer over a network is done in various ways and using
different protocols. But a file transferred over a network is not
secure. When the network architecture consists of hubs or is
wireless then the packets are broadcasted to every computer on
that network. In hubs these packets are broadcasted because a
hub does not remember what all devices are attached to it. It
just takes a packet and sends it on all its ports. Similarly in
wireless networks the data packets are broadcasted. In normal
circumstances, the computer devices which are supposed to get
the file receive it and the other computers reject it. Now, the
problem arises when a computer’s system is cracked and that
computer starts accepting the data it is not supposed to accept.
This is the case with packet sniffing. The files sent during a
transaction may be captured or “sniffed” by third party tools
called “Sniffers”. If a sniffer is placed in promiscuous mode,
then it can capture all the incoming datagrams and it can
reconstruct the original file from those datagrams. To ensure
privacy and security we will implement file transfer over
Secure Sockets Layer (SSL) so that the file is not interpreted by
a sniffer. SSL is a communications protocol layer. It intercepts
traffic and provides security between client and the server.
Encryption is used to guarantee secure communication in an
insecure environment. The encryption/decryption algorithm
used for the purpose is Caesar Cipher. First, a file transfer
program will be developed using socket programming under
Linux environment and then security will be implemented using
the above encryption/decryption algorithm.

KEYWORDS
Secured File Transfer, SSL, Cryptography, Caesar Cipher,
Socket Programming, Sockets.

1.0 INTRODUCTION
This document aims at defining the overall details for ‘File
Transfer using Secure Sockets Layer’. Its purpose is to transfer
a file from one PC to another using encryption. It also shows
how unsecured files can be easily sniffed by a simple ‘sniffer’
application. The intended audiences are all the people who
transfer highly confidential data over Internet through TCP/IP
layer. This is implemented in Linux environment using C-
language. Linux O/S is a preferred choice because it provides
the basic framework and header files for implementing socket
programming in C. [3][6]

The project is based on a client and server architecture.

2.0 THE CLIENT SERVER ARCHITECTURE
In the work, client-server architecture is used to send and
receive a file using the sockets made with socket programming.
With the code implemented any computer can act as a server or
client. Now, the user who wants to send a file is the client and
the other computer here acts as a server. The client-server
architecture is shown below.

Fig1: client – server architecture

The file which is being transferred is first encrypted and then
the file is decrypted by the private key at the server side after
the file is received. The figure below shows the secured file
transfer [4].

Fig2: Secured File Transfer

Client Server Secured File Transfer

3.0 SNIFFING OVERVIEW
On a network the data is formatted in packets containing our
information and communication overhead information.
The computer contains one or several network interface cards.
Each of those cards has a unique MAC address and IP address.
When two people establish a connection, each packet contains
the address of the two network cards, and those addresses are
used to route the packet to the correct PC. But a PC connected
to a network sees all the data packets travelling on the wire. In
the usual case, only those packets with the NIC address of one
of our cards are fetched and sent to the software.

Now the case not only here makes the sniffer able to see all the
packets, but also to jump on the traffic without participating

Proceedings of the 4th National Conference; INDIACom-2010

directly to any conversation. This is what sniffing is all about
[3].

 Fig3: Packet Sniffer on network

4.0 SOCKET PROGRAMMING – SOCKETS
In this work we have first created a program to send and
receive a file through sockets in the linux environment. A
socket is a point for communication which is identified by the
machine's IP address and the protocol port number. It is an
Application Programming Interface to access transport
protocols of an operating system.
Processes on different/same computers communicate with each
other through sockets. For example, sockets can be used for
Unix inter process communication. Unlike FIFOs, sockets are
bidirectional. This forms the basis of much of Internet
networking. [6]

Advantages of sockets in C/C++ over Java:
 Sockets in C/C++ are much faster than any other language

such as java. Since C/C++ has much lower abstraction
level therefore it provides much more functionality.

 The functionality is more in case of C/C++ because the
things which are done automatically in languages like java
have to be done manually with C/C++. This gives the
programmer a better insight of the code and its
functionality.

 For example: Functions such as connect(), listen() and
bind() are not explicitly used in java.

Other Advantages of Sockets
 Computers on different platforms can also communicate

through sockets.
 Same procedure and complexity is followed whether the

communication is done on the same computer or on far
away places.

 Sockets use file descriptors, so many standard Unix file
handling calls can be used. Like: read(), write(), close()
etc.

A call to function socket() with appropriate arguments is made
to create a Unix socket. A Unix socket can be of two types as
follows:
1) Unix internal (local) sockets

Similar to FIFOs - can only be used between processes running
on the same machine.
2) Unix network (internet) sockets
Communication between any two processes on any machines
that are networked is done.
Sockets are so called because one socket is “plugged into”
another socket for communication over a network [6] [7].

5.0 TYPES OF SOCKETS

Client
Process

Server
Proces

Fig.4: Input and output streams

a) Stream Sockets
 These sockets use TCP (Transmission Control Protocol),

which is a reliable, stream oriented protocol where
streams are used for input and output data.

 The client creates a TCP socket by specifying the
server’s IP address and port number of the server
process.

 When client creates a TCP socket it establishes a passive
connection with the server TCP.

 Server TCP creates a new TCP connection for each
client that requests a communication so that it can
handle the communication with multiple clients at the
same time.

 Once a client server control connection is created, data
can be transferred as long as that control connection is
active.

b) Datagram sockets
 These sockets use UDP (Unix Datagram Protocol),

which is unreliable and message oriented where
datagrams are used for input and output data.

 No handshaking is done with UDP sockets since the
client explicitly attaches IP address and port of
destination (i.e. server).

 Transmitted data may be received out of order or lost
completely.

Client
Socket

Threeway
handshake

bytes

Welcoming
Socket

Connection
Socket

File Transfer Using Secure Sockets In Linux Environment

 This type of packet can be sent at any time to the

destination.
 Since they are connectionless, therefore they are not

globally unique.
 These are generally smaller than TCP sockets.

c) Raw IP sockets
 These types of sockets are used to create raw IP Packets

bypassing the transport layer.
 The type SOCK_RAW is used when socket() is called.
 The packet is directly passed to the application that

needs it without making it to go through the whole
encapsulation/ decapsulation process.

 The headers are made by the process retrieving the data
from the sockets rather than the complex TCP/IP
mechanism.

 These are not used in java [6] [7].

6.0 TCP/IP CLIENT SERVER MODEL FOR SOCKET
PROGRAMMING

Fig5: Client-Server model for socket programming

The software which is developed to implement the file transfer,
first needs the server to open a socket and listen for connection
from clients. After receiving an active connection from a client
who wants to send a file to the server, it accepts the file and
then closes the socket used in the session [7].

7.0 CAESAR CIPHER

Fig6: Caesar Cipher

In cryptography, a Caesar cipher, also known as the shift
cipher, Caesar's code or Caesar shift, is one of the simplest and
most widely known encryption techniques. It is a type of
substitution cipher in which each letter in the plaintext is
replaced by a letter some fixed number of positions down the
alphabet [1] [5].

8.0 SCREEN SHOTS

At Client Side for Sending the File

socket()

bind()

listen() socket()

Start page common for both sending and receiving side.

accept() connect()

write() read()

read() write()

Input your choice for sending file with or without encryption.
close() close()

SERVER CLIENT

Enter the name of the file to send

Proceedings of the 4th National Conference; INDIACom-2010

Enter the shifting number for the caesar cipher to encrypt data.

Enter the IP address of the server machine where the file is to
be received.

At Server Side for Receiving the File

Start page common for both sending and receiving side.

Input your choice to receive an encrypted or normal file

Enter the name by which you want to save the received file

Enter the shifting number or the private key to decrypt the file

9.0 CONCLUSION
Data transfer over a network with hubs or a wireless network is
broadcasted and therefore the data is reached to all devices
connected on that network. The computer device to which this
data is intended accepts the data and other devices rejects the
data, but the devices on which special packet sniffers are
employed they also start accepting this data and then the
transfer becomes unsecure.
To make this transaction secured we encrypted the file and then
send it through the socket program code. In this case even if a
packet sniffer tries to accept this transaction, it will only get
“garbage” content and not the exact transaction contents.

10.0 FUTURE SCOPE
The file transfer in a network can be made even more secured if
we implement the Public Key Infrastructure (PKI). The PKI is
an architecture introduced to increase the level of security for
the data exchanged over a network.

Continued on Page No. 144

File Transfer Using Secure Sockets In Linux Environment

Continued from Page No. 140

It uses a mathematical technique called public key
cryptography which uses a pair of related cryptographic keys in
order to verify the identity of the sender (through signing)
and/or to ensure privacy (through encryption of data).
In this way when we have a primary and public key we can
further enhance privacy [2].

11.0 REFERENCES
[1] http://en.wikipedia.org/wiki/Caesar_cipher
[2] Mohsen Toorani, and Ali Asghar Beheshti Shirazi, "LPKI

- A Lightweight Public Key Infrastructure for the Mobile
Environments", Proceedings of the 11th IEEE
International Conference on Communication Systems
(IEEE ICCS'08), Guangzhou, China, Nov. 2008.

[3] Felix John COLIBRI, “TCP IP Sniffer” http://www.felix-
colibri.com/papers/colibri_utilities/tcp_ip_sniffer/tcp_ip_s
niffer.html'

[4] Marin, G.A., “Network Security Basics”, Security and
Privacy, IEEE, Volume -3 Nov-Dec 2005

[5] William Stallings, “Cryptography and Network Security,
Third Edition”.

[6] Gary R. Wright, W. Richard Stevens, “TCP/IP Illustrated,
Volume 2: The Implementation”.

[7] IBM -iSeries Information Center, Version 5 Release 3,
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/inde
x.jsp?topic=/rzab6/rzab6uafunix.htm

