
Proceeding of the National Conference; INDIACom-2007
Computing for Nation Development, February 23 –24, 2007

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi

A Software Reliability Growth Model With Two Types of Imperfect Debugging
For Project and Product Software During Operational Phase

 P. C. Jha Anshu Gupta P. K. Kapur

 Department of Operational Research, University of Delhi, Delhi – 110007
{jhapc@yahoo.com, anshu_or@yahoo.com, pkkapur@gmail.com}

ABSTRACT
Several Software Reliability Growth Models (SRGM) have
been proposed in the literature for modeling the software
reliability growth during the testing phase. In field the
software is subject to an environment, which is different from
that of testing. Therefore a SRGM developed for the testing
phase is not suitable for estimating the reliability growth
during the testing phase. In this paper, we propose a
generalized Software Reliability Growth Model, which can be
used to estimate number of faults both in the testing and
operational phase. During the testing phase it is appropriate
to estimate the reliability growth with respect to the amount of
testing resources spend on testing while during the operation
phase the number of failure detected and hence the reliability
depends on the usage of software. Appropriate usage functions
are linked to both project and product type software. To
describe the fault removal phenomenon, imperfect debugging
environment is incorporated into the model building. Study
related to this paper highlights an interdisciplinary modeling
approach in Software Reliability Engineering and Marketing.
The proposed model is validated for both the phases by
supplying the data sets obtained from different sources. Results
are encouraging.

KEYWORDS
Software Reliability Growth Model, Imperfect Debugging,
Error Generation, Testing Phase, Operation Phase, Usage
Function, Testing Efforts, Project Software, Product Software.

1. INTRODUCTION
Advancement of Information Technology along with
Globalization and free trade during the last two decades has
changed the outlook and working of business and industry
completely. The global marketplace has become fiercely
competitive where schedule, quality and cost are parameters
with which competence is measured. The situation calls for
planning, controlling and scientific decision making for the
proper functioning of an organization and tradeoffs between
many conflicting objectives under system constraints.
Operational Research is a scientific disciple used to model
complex systems and to optimize their performance. One of
the fields where modeling, particularly stochastic modeling
and optimization have vastly been applied is reliability. The
subject has traditionally been attached to hardware systems.
But with ever increasing use of computers in present times

software reliability has also emerged as a discipline of its own
where operational researchers can meaningfully contribute.

The current scenario is that computers and computer-based
systems have invaded every sphere of human activity. Due to
ease of use and faster performance more and more systems are
being automated. Dependence of mankind on computers is
rapidly increasing. A mere postponement of a function can led
to big losses in terms of money and time. High precision and
safety of software component is desired for a smooth operation
of a system. Therefore software developers lay special
emphasis on testing their software.

During the testing phase test cases designed on the users
specification are executed on the software and if any departure
from specifications or requirements occurs, is termed as a
failure. An immediate effort is made to remove the cause of
that failure (a fault in the software). Testing goes on until the
release time set by management or a desired reliability
objective is achieved. No software can be tested exhaustively
before release due to constraints on time and cost. This is the
reason, why we often hear about failures of software in
operational phase and sometimes even for safety critical
systems. Hence it is important to study how the reliability of
software grows both during testing and operational phase.
Such a study also helps management in deciding when to stop
testing and release the software during the testing phase. Like
any other product software developers also give warranty on
their products to their licensed users. If a failure occurs in
users environment, it is reported to the developer. The
developing team isolates and removes the fault that has caused
the failure. Once the fault is removed the developer update the
licensed users code with no additional cost during the warranty
period. An early estimation of the failure\removal phenomenon
during the testing phase can assists management in decision
making related to the warranty they can offer on their product.
SRMG can help in developing such a quality metric.

Many Software Reliability Growth Models (SRGMs) have
proposed in literature to estimate the reliability of software
during testing. Many authors have tried to extend SRGMs to
represent the failure phenomenon during the operational phase,
typically used in release time problem of software [10]. But
this approach is not justified since during the operation profile
the software is subject to a different environment as compared

Proceeding of the National Conference; INDIACom-2007

to the testing phase for most of the commercial software
products. During testing phase testing is done under controlled
environment. Testing resources such as manpower and
computer time consumed can be measured and extended
further to the user phase [10,14,21]. Mathematical models have
been proposed for testing effort but they are not suitable for
measuring usage of software. The intensity with which failures
would manifest during the operational use is dependent upon
the number of times the software is used which can be well
described by a usage function, which depends on the number
of executions of the software in field.

Before we describe how to model the reliability growth firstly
we classify the software into two categories - Project type
software and Product type software. Project type software is
designed for specific applications for known operational
environment as specified by the user. However multiple usage
of the software is possible with in that user environment. The
developer does not market such software. Product type
softwares are developed for the general purpose and are
marketed in the open market. Many distinct users may buy a
licensed copy of such software and use it for their own
purpose. During the testing phase the type of software under
testing does not affect the reliability growth since in this phase
the testing environment doesn’t depends on the type of
software. However during the reliability growth is greatly
influenced by the type of software. The usage function of
project type software is different form that of product type
software. However in literature no distinction is made between
the two types of software.

Kenny [12] has proposed a model to estimate the number of
faults remaining in the software during its operational use. He
has assumed a power function to represent the usage rate of the
software. The author assumes that the rate at which the
commercial software is used is dependent upon the number of
its users; but the model proposed by him fails to capture the
growth in number of users of the software. Kapur et al [6,11]
proposed a model in this series where a marketing model (Bass
model [1]) describing number of adoption of a product over
time is used to model the user growth. However both of these
models considers product type software and a perfect
debugging environment. In this paper we develop an SRGM
for testing phase, which can be extended to the operational
phase, thus providing a unique approach to modeling both
testing and operational phase under imperfect debugging
environment. An attempt has been made to model the
reliability growth of both type of software during the operation
phase linking to an appropriate usage function.

In real life situations, most of the debugging processes or the
fault removal efficiency is not perfect. The fault removal team
may not be able to remove the fault perfectly on the detection
of a failure and the original fault may remain or replaced by
another fault. When a failure occurs, the cause of the failure is
identified and removed. To ensure that the cause is perfectly

fixed, the software is tested for the same input and if a failure
occurs again, the code is checked again. Two possibilities
occur. The fault, which was thought to be perfectly fixed, has
been imperfectly repaired and caused same type of failure
again when checked on the same input. However, it may also
happen some other kind of failure occurs which might be due
to the fact that the fault was perfectly removed but some other
fault was generated while removing the cause of the failure.
This is called error generation, which can be known only
during the removal phase. Imperfect fault debugging causes
more failures as compared to removals by time infinity but the
fault content remains the same. However, when a fault is
generated, the number of failures increases because the fault
content has increased. Some models have been developed in
literature to incorporate the effect imperfect debugging in
modeling software reliability [9,16,18,23]. In the proposed
model we have incorporated the effect of both type of
imperfect debugging on the removal process.

This paper is organized as follows: First in section 2 a general
description of a NHPP based SRGM is given. Then a general
framework of the model is developed in section 2.2. In section
3 we have discussed about modeling the testing effort function.
Further in section 4 we model the usage function for both
product and project type software. The parameter estimation
also constitutes an important part of model building. Parameter
estimation of the models proposed in the paper have been
discussed and illustrated on software failure data sets cited in
literature [3,13] in section 5. Finally conclusions are drawn in
section 6.

2. FRAMEWORK FOR MODELING

2.1 NHPP SRGM BASED – AGENERAL DESCRIPTION
Several SRGM have been proposed in literature to measure the
reliability of software during the testing phase. Many of these
can be classified under the title of Non Homogeneous Poisson
Process (NHPP) models. These NHPP models are based on the
assumption that ‘Software failure occurs at random times
during testing caused by faults lying dormant in the software’.
Hence NHPP can be used to describe the failure phenomenon
during both these phases. The counting process
{ }0),(≥ttN of an NHPP process is given as follows.

Pr. { } { })(
!
)()(tm

k
e

k
tmktN −== , k = 0,1,2, …(2.1)

and ∫=
t

dxxtm
0

)()(λ

The intensity function λ(x) (or the mean value function m(t)) is
the basic building block of all the NHPP models existing in the
software reliability engineering literature. These models
assume diverse testing environments like distinction between
failure and removal processes, learning of the testing
personnel, possibility of imperfect debugging and error
generation etc.

A Software Reliability Growth Model Under Two Type Of Imperfect Debugging Environment During Testing And Operational Phase

2.2 MODEL DEVELOPMENT
In this section we develop the general framework of the
proposed model. In models proposed by Yamada et al. [21]
and Trachtenberg [19], the effect of intensity of testing effort
on the failure phenomenon has been studied. During the testing
phase test cases stimulating the users environment are
executed, and if a failure occurs the corresponding fault is
identified and removed. In the testing phase the most
dominating factors affecting the failure phenomenon are the
test cases, testing environment and the testing efforts spend
during testing. Testing efforts include the manpower and the
computing time. Efficiency and skill of the testing\fault
removal team greatly influence the debugging process. While
in operational phase the most dominating factor affecting the
reliability growth is the rate at which failures would occur
which depends upon its usage. The number of executions in
the operational profile describes usage function. Hence SRGM
should incorporate the effect of testing effort in the testing
phase and the usage function in the operation phase. A number
of functions exist in the literature that can be used to describe
the testing effort or the usage function with time.

Imperfect debugging greatly influence the reliability growth
both during testing and operational phase. The fault removal
rate per remaining fault reduces due to imperfect fault
debugging. We assume that fault removal rate per remaining
fault is a function of both time and perfect debugging
probability p. Whereas due to fault generation the initial fault
content of the software increases as the testing progresses. We
have assumed a constant error generation rate. Using the basic
building blocks of this framework SRGM for both testing and
operational phases can be developed with ease. The proposed
model is based upon the following basic notations and
assumptions.

Notations:
m(t) : Expected number of faults identified in the time

interval (0,t]
λ(t) : Failure rate, λ(t) = dm(t)/dt.
W(t) : Cumulative testing effort\Usage in the time interval

(0,t] and
)()(twtW

dt
d

=

a : Constant, representing the number of faults lying
dormant in the software at the beginning of testing.

a(t) : S-expected fault content at time t, a>0.
p : Probability of perfect debugging of a fault.
α : Constant rate of error generation.
β,μ, : Constants
c, k, r, s : Constants
W : Constant, representing the saturation point for the

testing effort of software.
N : Constant, representing the saturation point for the

user growth of software.
F(t) : is the fraction of ultimate potential adopters of the

software.

Assumptions
1. The Non-homogeneous Poisson Process (NHPP) can

describe software failure phenomenon.
2. As soon as a failure occurs the fault causing that failure

is immediately identified.
3. Software is subject to failures during execution caused

by faults remaining in the software.
4. Reliability growth during the testing phase is dependent

upon the testing efforts spend on testing.
5. The number of failures during operation phase is

dependent upon the usage function.
6. Usage function\testing effort function is a function of

time and usage function depends on the number of
executions of the software in field.

7. When a software failure occurs, an instantaneous repair
effort starts and the following may occur:

 (a) Fault content is reduced by one with probability p
 (b) Fault content remains unchanged with probability 1-p.

8. During the fault removal process, whether the fault is
removed successfully or not, new faults are generated
with a constant probability α.

9. Fault removal rate per remaining fault is assumed to be
non-decreasing inflection S-shaped logistic function.

Using the assumptions 4, 5 and 6 the removal phenomenon can
be described with respect to time as follows:
 () () ()

()
dm t d m t dW t

d t dW t d t
= …(2.2)

Further using assumptions 7, 8 and 9 equation (2.2) can be
expanded as

() ()(, ())(() ())d m t d W tb p W t a t m t
d t d t

= − …(2.3)

Where

()(, ()) and () (())
1 bpW t

bpb p W t a t a m t
e

α
β −= =

+
+ …(2.4)

Equation (2.3) using (2.4) can be further written as

()
() ()(() ())

1 bpW t
dm t bp dW ta m t m t

dt dte
α

β −= + −
+

 …(2.5)

Solving equation (2.5) under the initial condition m(0) = 0 and
W(0) = 0 we get

(1)()

()
(1)() 1

1 1

b p W t

r b p W t
a em t

e

α
β

α β

−−

−

⎡ ⎤⎛ + ⎞
⎢ ⎥= − ⎜⎜ ⎟−

⎟
⎢ ⎥+⎝ ⎠⎣ ⎦

 …(2.6)

In the next two sections we discuss how to model the testing
effort and usage functions.

3. MODELING TESTING EFFORT
The resources that govern the pace of testing for almost all
software projects [14] are

1. Manpower, which includes
(a) Testing\Failure identification personnel
(b) Programmers\Failure correction personnel

2. Computer time
Various testing effort functions have been discussed in
literature. Three forms viz. Exponential, Rayleigh and Weibull

Proceeding of the National Conference; INDIACom-2007

functions can be derived under the assumption that, "the
testing effort rate is proportional to the testing resource
available at that time” differential equation describing the
testing effort expenditure rate is given by

_() () ()d W t c t W W t
d t

⎡
= −⎢

⎣ ⎦

⎤
⎥

)
⎞
⎟

 …(3.1)

Where c(t) is the time dependent rate at which testing
resources are consumed, with respect to remaining available
resources. Solving equation (3.1) under the initial condition
W(t=0)=0, we get

_

0
() 1 e x p ()

t
W t W c x d x

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= − ⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∫
 …(3.2)

If c(t)=c (a constant) an exponential curve is obtained

(
_

() 1 ctW t W e−= − …(3.3)

If c(t)=ct, (3.2) gives Rayleigh type curve
2_

/ 2() 1 ctW t W e−⎛= −⎜
⎝ ⎠

 …(3.4)

If , a more flexible and general testing effort
function is obtained given by a Weibull function and the
cumulative testing effort consumed in the interval (0,t] has the
following form

1c(t) c tμ−= μ

_

() 1 c tW t W e
μ−⎛= −⎜

⎝ ⎠
⎞
⎟ …(3.5)

Exponential and Rayleigh curves become special cases of the
Weibull curve for μ = 1 and μ = 2 respectively.

Huang et al. [7] developed an SRGM, based upon NHPP with
a logistic testing effort function. The cumulative testing effort
consumed in the interval has the following form],0(t

_
W()

1 c tW t
eμ −=

+

 …(3.6)

SRGM with logistic testing effort function provides better
result on some failure data sets. To study the testing effort
process, one of the above functions can be chosen depending
upon the testing process.

4. MODELING THE USAGE FUNCTION IN THE

OPERATIONAL PHASE
In the operation phase the rate at which failure would occur is
dependent upon the usage of software. The mathematical form
of usage function is dependent upon the number of executions
of the software in field and is a function of time. However the
usage function of project type software is different from that of
product type software. In literature no distinction is made
between the two type of software, but the models due to Kenny
and Kapur et al address to the product type software.

4.1 USAGE FUNCTION FOR A PROJECT TYPE

SOFTWARE

Project type software is owned by a specific organization
running it for their specific use, for example computerized
banking system. With in the organization many users may be
assessing it either at a single location or at different locations.
We propose an exponential function given by equation (4.1) to
model the usage function for such software.
 …(4.1) () (1)c tW t r s e −= + −
Where r represent the initial usage of the software when it is
implemented in the user environment. As the time progress the
usage of software grows within the organization until it
reaches the saturation level r+s. Although some other
functional form can also be used depending upon the user
environment, number of people assessing the software and the
usage of the software at each terminal.

4.2 Usage function for a Product Type Software

Product type softwares are the general-purpose software and
are marketed in the open market. Many different customers
may buy a licensed copy of the software for different purpose.
At any licensed buyer end many uses might be assessing it. For
example an educational institution buy software and many
students and\or faculty members might be assessing it. Number
of executions of product software depends on the total number
of user of the software using it for their own specific purpose.
Although commercial software products are there in the market
for the last two decades identifying the target customers with
certainty is impossible. However product software also come
into the category of technological products and as such
behaves as a new product or an innovation when released in
the market.
Kenny [12] used the power function given as
 ()

(1)

(1)tW t
k

k
=

+

+ …(4.2)

to describe the growth in the user population of software in
operational phase. The function can correctly describe the
users growth in terms of

a) A slow start but gain in growth rate
b) A constant addition of users
c) A big beginning and tail off in the usage rate.

But in the Marketing literature power function is seldom used
for the purpose as described above. One of the reasons can be
that the parameters of the function are not amenable to
interpretations.

Kapur et al[11] used Bass model for innovation diffusion [1] in
marketing for the dynamic market of software products for
predicting the successive growth in the number of adopters of
a product over time. The parameter of the model explicitly
categorizes the adopters into innovators and imitators.
Innovators have independent decision making abilities whereas
imitators make the purchase decisions after getting first hand
opinion from a user. The model can adequately describe the
users growth in terms of the factors stated above. Adopters (or
users) of software report a failure caused by some fault
remaining in the software to the developer. Once the number
of users of the software is known, the rate at which instructions

A Software Reliability Growth Model Under Two Type Of Imperfect Debugging Environment During Testing And Operational Phase

in the software are executed can be estimated. For applying the
Bass model it is assumed that there exists a finite population of
prospective users who with time increasingly become actual
users of the software (no distinction is made between users and
purchasers here as Bass model has been successfully applied to
describe the growth in number of both of them). In each period
there will be both innovators and imitators using the software
product. However as the process continues the relative number
of innovators will diminish monotonically with time. Imitators
are however influenced by the number of previous buyers and
increase relative to the number of innovators as the process
continues.

The likelihood of adoption at time t given that one has yet not
occurred is [15]

() (() ()
1 ()

f t r s F t
F t

= +
−

) …(4.3)

Where f(t) is the density function of F(t). The term
[]()r sF t+ represent the combined rate of first purchasing
of innovators and imitators per remaining adoption and
increases through time because F(t) increases through time.
Whereas the fraction of non-adopters (1-F(t)) will decrease
with time. The shape of the resulting sales curve will depend
upon relative rate of these two tendencies. If software product
is successful, the coefficient of imitation is likely to exceed the
coefficient of innovation i.e., r<s. On the other hand, if r>s, the
sales curve will fall continuously.
The solution of (4.3) for F(t = 0) = 0 is

()

()

()
1 exp()

1 / exp

r s t

r s tF t
s r

− +

− +
−

=
+

 …(4.4)

So if N denote upper limit on the number of license buyers of
the software and γ is the average number of users within the
user environment then total number of users of the software by
time t is given as

() () ()S t N F t mF t Where m Nγ γ= = = …(4.5)

Givon et al. [4] have used the modified version of the above
model to estimate the number of licensed users as well as users
of pirated copies of the software. Though it can be reasonably
assumed that only the licensed-copy holders would report the
failures, and hence equation (4.5) can be used to find the
expected number of users at any time during the life cycle of
the software. If the new software is expected to go through the
same history as some previous software (very likely for
versions of the same software) the parameters of earlier growth
curve may be used as an approximation.
Estimating the expected number of licensed user of software
the rate at which instructions in the software are executed can
be estimated. Since the usage function depends on the number
of executions of the software Therefore we assume the usage
function for product type software is a function of the total
number of users of the software. For simplicity we that ν is

the average execution rate at which the software is used within
a user environment i.e.

()() () ()W t f S t S tν= = …(4.6)
Some other functional relationship can be assumed used
depending upon the user environment and number of people
assessing the software within a particular licensed user
environment.

The various testing effort functions and the usage functions
discussed above can be used in the SRGM given by equation
(2.6) to model the reliability growth of software in testing and
operational phase respectively depending upon the testing
efforts used or the type of software.

5. MODEL VALIDATION AND PARAMETER

ESTIMATION
The success of software reliability growth model depends
heavily upon quality of failure data collected. The parameters
of the SRGMs are estimated based upon these data. Method of
least squares or maximum likelihood has been suggested and
widely used for estimation of parameters of an SRGM. The
models discussed in this paper are non-linear model and it is
difficult to find solution for nonlinear models using Least
Square method and require numerical algorithms to solve it.
Statistical software packages such as SPSS help to overcome
this problem.

5.1 COMPARISON CRITERIA
1. The Mean Square Fitting Error (MSE):
The model under comparison is used to simulate the fault data,
the difference between the expected values, and the
observed data yi is measured by MSE as follows.

)(ˆ itm

2

1

ˆ(())k
i i

i

m t y
MSE

k=

−
= ∑

Where k is the number of observations. The lower MSE
indicates less fitting error, thus better goodness of fit.
2. Coefficient of Multiple Determination (R2):
We define this coefficient as the ratio of the sum of squares
resulting from the trend model to that from constant model
subtracted from 1.

5.2 MODEL VALIDATION
To validate the models three real software failure data sets
have been chosen. First is collected during the testing phase,
Second data set is based on the failure reports of software in
operation phase for project software while Third data sets are
based on failure reports of software in operational use for
product software. First using the observed data we have
estimated the testing effort function. The testing effort function
which best describe the data is chosen and using those
estimated values parameters of the SRGM for testing phase are
estimated. To estimate the parameters of the SRGM for
operation phase first we substitute the usage functions in the
model expression and then estimate the parameters for both

Proceeding of the National Conference; INDIACom-2007

SRGM and usage function for both type of softwares since the
data related to the usage of software is not available.

Data set-1: This failure data set is for a command, control and
communication system cited in Brooks and Motley [3]. The
software was tested for 12 months and 2657 faults were
identified during this period. The estimated values of testing
effort functions discussed in this paper are given in table 1.
From the table 1 it can be seen that exponential testing effort
functions fits best to this data set. Using the estimated values
of exponential effort function parameter of the mean value
function for the SRGM for testing phase given by equation
(2.6) are estimated and are tabulated in table 2. The Fitting of
the models is illustrated graphically in figure 1 and 2.
Table-1 Estimation results for Testing Effort Functions

Estimated Parameters Comparison Criteria Testing Effort
Function W c μ MSE R2

Exponential 35237 0.0297 - 12869.59 0.99854

Rayleigh 10153 0.0491 - 414823.9 0.95302

Logistic 11714 0.3488 8.773 25977.78 0.99706

Weibull 33524 0.0313 1.002 13070.04 0.99852

Table-2 Estimation Results of SRGM for Testing Phase
with Exponential Effort Function

Estimated Parameters Comparison Criteria

a α β b p MSE R2

3756 0.00998 0.00001 0.000058 0.203 923.3002 0.99812

Figure 1:
Fitting of Testing Effort Functions

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12
t

W
(t)

W(t) Exponential
Rayleigh Logistic
Weibull

Figure 2:

Fitting of SRGM for Testing Phase

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12

W(t)

m
(t)

Observed Data

Estimated Values

Data Set 2: This failure data is for Real time system collected
for operation phase cited in Musa [13]. The data is available

for 192 days during which 37 faults were identified.
Substituting the usage functions given by equation (4.1) in
(2.6) the parameters of the mean value function for the SRGM
in operation phase for project type software are estimated and
are tabulated in table 3. The Fitting of the model is illustrated
graphically in figure 3.

Table-5 Estimation Results of SRGM for Operation
Phase for Project Type Software

Estimated Parameters Comparison
Criteria

a α β b p 56.7748 s c MSE R2
31 0.2413 56.8 0.6028 0.9680 0.1591 12.61 0.01253 1.4821 0.9880
Figure 5:

F it t ing o f SR GM fo r Operat io n P hase

0

10

20

30

40

t

m(t) Proposed M odel

Data set-3: This failure data is for an operating system
collected for operation phase cited in Musa [13]. The data is
available for 148 day during which 112 faults were identified.
Substituting the usage functions given by equation (4.2) and
(4.6) in (2.6) the parameters of the mean value function for the
SRGM in operation phase for product type software are
estimated and are tabulated in table 4. The Fitting of the
models is illustrated graphically in figure 4.

Table-6 Estimation Results of SRGM During Operation
Phase for Product Type Software

Usage
Function Estimated Parameters Comparison

Criteria
a α β b p k MSE R2 Power

Function 107 0.12587 0.78402 0.00628 0.85 0.3242 10.59705 0.98969
a α β b p

166 0.18999 20.2267 0.0028 0.7185
m r s ν

Proposed
Function

86 0.01423 0.00150 22.138

16.45913 0.99071

Figure 6:

Fitting of SRGM for Operation Phase

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

t

m
(t)

m(t)
Power Function
Proposed Function

A Software Reliability Growth Model Under Two Type Of Imperfect Debugging Environment During Testing And Operational Phase

6. CONCLUSION
In this paper we have proposed a general framework for
modeling reliability growth of software during testing and
operational phase under an imperfect debugging environment.
SRGM for the testing phase is modeled with respect to testing
effort function, which can be extended to the operation phase
simply by replacing testing effort functions by the usage
functions. An attempt has been made to model the reliability
growth of both type of software during the operation phase
linking to an appropriate usage function. Proposed models are
validated on real life data sets and the results are encouraging.

FUTURE SCOPE
In this paper we have considered a software in isolation.
However large software systems are not designed in isolation
rather a software developer develops and releases multiple
versions of a software product successively. The latest version
of software retains some code of the previous version of the
software, some proportion of which can also be retained in the
versions to be released in future and some new code is added
to the software to further enhance the functioning of the latest
version. Therefore there is some interdependence in the failure
phenomenon of these releases. In future we will focus on
developing a SRGM considering the interdependence in the
failure phenomenon of multiple releases.

REFERENCES
[1] Bass FM. “A new product growth model for consumer

durables” Management Science 15(5): 215-224, 1969.
[2] Bardhan AK. “Modelling in software reliability and its

interdisciplinary nature” Ph.D. thesis, University of Delhi,
Delhi 2002.

[3] Brooks WD, Motley RW. “Analysis of discrete software
reliability models - Technical Report (RADC-TR-80-84)”
New York: Rome Air Development Center, 1980.

[4] Givon M, Mahajan V, Muller E. “Software piracy:
Estimation of lost sales and the impact on software
diffusion” Journal of Marketing 59: 29-37,1980.

[5] Goel AL, Okumoto K. “Time dependent error detection
rate model for software reliability and other performance
measures” IEEE Transactions on Reliability R-28(3):
206-211,1979.

[6] Jha. P.C. “Optimization and Modeling in Software
Reliability and Marketing”, Ph.D. thesis, University of
Delhi, Delhi 2003..

[7] Huang C-Y, Kuo S-Y, Chen JY. “Analysis of a software
reliability growth model with logistic testing effort
function”, Proc. 8th International Symposium on Software
Reliability Engineering, 378-388, November 1997.

[8] Kapur PK, Garg RB. “A software reliability growth model
for an error removal phenomenon” Software Engineering
Journal 7: 291-294, 1992.

[9] Kapur, P.K. and Younes, S., “Modeling an Imperfect
Debugging Phenomenon in Software Reliability”,
Microelectronics and Reliability, 36(5), pp 645-650,1996.

[10] Kapur PK, Garg RB, Kumar S. “Contributions to
hardware and software reliability”, World Scientific,
Singapore, 1999.

[11] Kapur P.K., Jha P. C., Goswami D.N., Shatnawi O and
Bardhan A.K., “General Framework for Modeling
Software Reliability Growth During Testing and
Operational Use”, Recent Developments in Quality,
Reliability and Information Technology, P. K. Kapur
(Eds), IMH-Publisher, New Delhi, India, 2003.

[12] Kenny GQ. “Estimating defects in a commercial
software during operational use” IEEE Trans. on
Reliability 42(1); 107-115, 1993.

[13] Musa JD. “Software reliability data” Data and Analysis
Center for software, USA and www.dacs.dtic.mil/,1980.

[14] Musa JD, Iannino A, Okumoto K. “Software reliability:
Measurement, Prediction, Applications” New York: Mc
Graw Hill, 1987.

[15] Norton, J. A. and Bass, F. M., “A diffusion theory
model of adoption and substitution for successive
generations of high-technology products”, Management
Science, 33 (9), 1069-1086, 1987.

[16] Ohba M. and Chou, X.M., “Does Imperfect Debugging
Effect Software Reliability Growth”, proceedings of
11th International Conference of Software Engineering,
pp 237-244, 1989.

[17] Ohba M. “Software reliability analysis models ”,IBM
Journal of Research and Development 28: 428-443,
1984.

[18] Pham, H., Nordmann, L. and Zang, X., “A General
Imperfect Software Debugging Model with S-Shaped
Fault Detection Rate”, IEEE Trans. Rel., Vol. 48, pp
169-175, 1999.

[19] Trachtenberg M. “A general theory of software
reliability modeling” IEEE Trans. on Reliability”,
39(1), 92-96, 1984.

[20] Wood A. “Predicting software reliability” IEEE
Computers, 11: 69–77, 1996.

[21] Yamada S, Ohtera H, Narihisa H. “Software reliability
growth models with testing-effort”, IEEE Trans. on
Reliability R-35, 19-23, 1986.

[22] Yamada S, Hishitani J, Osaki S “Software reliability
growth model with a weibull test effort: A model and
application” IEEE Trans. On Reliability, R-42, 100-106,
1993.

[23] Zang, X., Teng, X. and Pham, H., “Considering Fault
Removal Efficiency inSoftware Reliability
Assessment”, IEEE Trans. on Systems, Man and
Cybernetics-Part A: Systems and Humans, Vol. 33, (1),
114-120, 2003.

	 Department of Operational Research, University of Delhi, Delhi – 110007
	Assumptions

	c) A big beginning and tail off in the usage rate.
	Table-5 Estimation Results of SRGM for Operation Phase for Project Type Software
	Table-6 Estimation Results of SRGM During Operation Phase for Product Type Software
	FUTURE SCOPE
	REFERENCES

