
BIJIT -  BVICAM’s International Journal of Information Technology 
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA) 

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658                      537 

Knowledge Representation in pAninI Framework Using Neural Network Model 
 

Smita Selot1, Neeta Trpathi2 and A.S Zadgaonkar3 

 
Submitted in October 2012; Accepted in February 2013 

Abstract - Knowledge representation is base for expressing 
semantic content of input in intelligent information retrieval 
systems. Identification of semantic requires processing of 
input language at various levels.  To make system understand 
text or speech is a challenging task as it involves extracting 
semantics of the language which itself is a complex problem. 
At the same time languages posses with multiple ambiguities 
and uncertainty which needs to be resolved at various phases 
of language processing. Level of understandability depends 
upon the grammar, syntactic and semantic representation of 
the language and methods employed for these analysis. 
Processing depends on the type of language, grammar of the 
language, ambiguities present and size of corpus available. 
Order free language posses different features as compared to 
rigid order language. Most of the Indian languages are order 
free; hence mechanism for such language needs to be 
formulated. One of the ancient Indian Sanskrit grammarians, 
pAninI has defined grammar of Sanskrit language in such a 
way that it is suitable for computational analysis. Six main 
semantic class identified under this theory is a baseline model 
for knowledge representation. This paper exploits the features 
of the language, applicability of rules and resolving 
ambiguities using neural network model. A hybrid model 
incorporating the features of rules based and neural network  
the  is designed and implemented for pAninI  based semantic 
analysis, generating case frames as output. 
 
Index Terms - pAninI Grammar framework, Knowledge 
Representation, Case Frame, Natural Language Processing, 
Semantic.  
 
1. INTRODUCTION 
Knowledge representation is a technique to represent the 
meaningful and logical content embedded in the language; in a 
structured form. Development of such tool requires an 
exhaustive analysis of input language at syntactic and semantic 
level with capacity to handle ambiguities at each level. Natural 
languages are not so natural for computer processing; hence a 
KR tool acts as bridge between the natural language and 
understanding of language by machine. Development of such 
tool is heavily guided by language processing techniques and 
type of language. Order free language posses different 
characteristics than rigid order language. As most of the Indian 
languages are order free, they require different mechanism to 
handle their processing. KR, Natural Language Processing 
(NLP) and Information Retrieval (IR) are close module of such 
applications as depicted in Figure 1. 
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Figure 1: Inter relation between NLP and KR 

Statistical methods are applied for syntactic analysis of Indian 
language with Hidden Markov Model(HMM) [12], support 
Vector machine (SVM) being popular statistical Technique [4] 
[19]. Application of Neural Network for classification task is 
less observed as both are complex domain. This paper presents a 
method for generation of Case Frames (CF) as KR structure for 
Sanskrit Language under pAninI framework. Method identifies 
semantic role of each word with respect to action or verb present 
in the sentence, there by presenting a verb-argument relation. 
Six main semantic classes are defined under pAninI framework.  
Identification and classification of word into one of the class is 
achieved by analyzing suffix attached to word.   Identified class 
along with word is stored in KR structure called CF. However 
while performing the classification one suffix may map into 
multiple domain resulting into conflicting output. Such conflict 
is resolved by training neural network for ambiguous cases. Non 
conflicting cases are handled by one-to-one vibhakti_kArka 
mapping resulting into a hybrid model for case frame 
generation. This paper describes the concept of pAninI grammar 
for semantic analysis, database of suffix, algorithm and 
solutions for conflict cases. KR based system are widely used in 
applications like translation system, learning algorithm and 
question answer based system 
 
2. pAninI GRAMMAR 
One of the ancient languages of the world, Sanskrit, has well 
defined grammatical and morphological structure which 
precisely defines the relation of suffix-affix of the word with 
the syntactic and semantic classification of the sentence [2][3] 
[11]). Such analysis leads to development of KR structure. For 
order free language like Sanskrit, processing is quite interesting 
as suffix based analysis reveals syntacto-semantic features of 
the sentence. Sanskrit is analyzed from computational 
perspective on vedic text [7] as well as   capability of pAninI 
grammar is equivalent to finite state machine [8]. Development 
of automatic segmentiser is an effort in this field [13]. Hindi and 
Arabic clauses are also analysed from pAninian aspect [14]. 
Parallelism of pAninI  in field of computer science is well 
explained [15]. Rule based POS tagger developed at JNU,Delhi 
uses lexicon and displays all possible outcome for conflicting 
cases [9]. This paper explains processing of Sanskrit for 
classifying words in one of six semantic roles defined by pAnini  
under kAraka theory implementing a novel approach –Neural 
Network. 
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Generally, dictionary of words is maintained and each word is 
mapped to find its respective syntactic category. As pAninI has 
identified the syntacto-semantic information of the word by the 
suffix attached to the word, instead of maintaining dictionary of 
words, lexicon of suffix is sufficient for extracting features. 
kAraka roles are similar to case based semantics required for 
event-driven situations, where entities like agent , object, 
location are identified with respect to each event [6] [10]. 
pAninI, an ancient Sanskrit grammarian has given nearly 4000 
rules called  sutra to describe  behavior of the language in the 
book called asthadhyAyi; meaning eight chapters [10]. Ancient 
old kAraka theory rules are in parallel with finite state machine 
[8] and concept is being extended for English language [20]. It 
describes transformational grammar which applies sequence of 
rules to transform root word to number of dictionary words. 
From small set of root words, millions of words are generated 
by firing set of rules. For highly inflectional language like 
Sanskrit, sequence of declension tables are memorized in such a 
way that similar ending words follow the same declension. 
Hence, if one table is memorized, number of words can be 
generated if their base word falls under same group. This 
structural representation in optimum form is used to identify the 
semantic class of the word. In Sanskrit language, fundamental 
six roles, given by pAninI  as kAraka values, are key semantic 
component of a sentence as described in Table 1. 

  

Table 1: Six kAraka in pAnanian model. 
 
Suffix driven analysis is performed by mapping the suffix to 
database which contains suffix and a key number.  Key is 
designed in such a way that it contains all the syntactic 
information as per grammar of the language  
 
3. KEY NUMBER DESIGN FOR SUFFIX 
All the nouns in the language follow nominal declension tables 
for each category of word. For example all ‘a’ ending word 
follow the declension given in Table 2 with word as ‘rAma’ and 
Table 3 shows the suffix attached to the word. 

Table 2: Declension set for rAma 

Table 3: Suffix for all a ending word 
Each row corresponds to a vibhakti value and column represents 
the number or vachan. Unlike   English language, which 
contains only singular and plural, Sanskrit has singular as 
ekvachan , plural as bahuvachan and two in number is labeled 
as dwivachan. Vibhakti  is related to kArka values, Suffixes 
present in first row or vibhakti is kartA  kAraka (agent). 
Likewise each row represents a kArka role as given in the Table 
3.1.Sixth vibhakti is not included in Table 3.1 as it is sambandh 
kAraka which has relation with its immediate argument and not 
related to verb directly, hence not considered as kAraka by 
pAninI. 
Four digit key number schemes for noun suffix is designed as 
given in Fig 2 

Figure 2: Four digit number scheme for noun 
Type of ending is in first column where 9 different type of 
ending is considered with values in range 1-9.Gender are 
masculine, feminine and neuter with values 1,2 and 3. Seven 
vibhakti from 1 to 7 and three number from 1to 3 are 
considered. For example suffix ‘am’ is present in second row, 
first column as given in Table 2.2; it is assigned the value 1121 
where description of each digit is as follows: 

1: a ending 
1: Masculine gender 
2: dvitIyA vibhakti 
1: ekvachan 

On similar guideline, five digit number schemes is designed for 
storing verb suffix [16]. In Sanskrit grammar, verbs are 
classified into ten groups called gan represented by most 
significant place in the number scheme. When a root word joins 
with the suffix (pratya), some changes takes place at the 
junction. With respect to these changes verbs are classified into 
nine different gan. Second digit from left denotes pad which 
occur in three different forms- Atmnepad, parsmaipad and 

Vibhakti Ekvachan Dwivacahn Bahuvachan 
1 rAmH  rAmau  rAmAH 
2 rAmam rAmau rAmAn 
3 rAmen rAmAbhyAm rAmaiH 
4 rAmAya rAmAbhyAm rAmebhyH 
5 rAmAt rAmAbhyAm rAmebhyH 
6 rAmasya rAmayoH rAmAnAm 
7 rAmen rAmayoH rAmeShu 

Vibhakti Ekvachan Dwivacahn Bahuvachan 
1 H Au AH 
2 Am Au An 
3 En AbhyAm aiH 
4 Aya AbhyAm ebhyH 
5 At AbhyAm ebhyH 
6 Asya yoH AnAm 
7 En yoH eShu 

x ending Gender Vibhakti Number 
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ubhaypad. Verbs whose outcome is for another person, they 
fall under  
Parasmaipad and verbs whose outcome is for one self come 
under Atmnepad. Verbal words whose outcome is for both, 
other person and one self, they come under ubhaypad. Time in 
which action takes place is given in various tenses. There are 
10 different tenses in Sanskrit [5]. Giving the context of the 
person is purush and number is vachan. A five digit number 
scheme for verb is presented in Fig 3. 

Figure 3: Five Digit Number Scheme for Verb Suffix 
 
Verbs in Sanskrit decline with respect to gan, pad, tense, 
person and number. These are influential parameters as they 
govern the behavior of the nouns in the sentence. Range and 
example values associated with each field are described in 
Table 4. 

 
Table 4: Range and Example Values for Each Digit Position 

of Verb Number Scheme 
 
For example paThati (to read), has suffix ti which extracts the 
number 11011 from database there by giving the following 
information: 

1-bhavAdigan; 
1-parasmaipad;0-latlakAr(Present tense); 
1-pratham puruSh (Third Person);  
1-ekvachan  (singular) .  

Pronouns decline in manner similar to noun and total number 
of pronoun is less, hence set of most commonly used pronoun 
are stored in a separate database with their key values[17]. 
Number scheme for pronouns is given in Fig 4. 

 
Figure 4: Four Digit Number Scheme for Pronoun 

 
P_number identifies a particular pronoun like serva, sH etc. For 
example, 1 is given to tad, meaning ‘that’ in English. Rests of 
digit have same values as for noun. All the pronouns stated in 
rachanAnuvAdakaumudI are considered with nearly 400 entries 
in database [5].  Some words which do not change their form 
under any condition, they are termed as avyay. List of these 
words are maintained separately. 
 
4. ALGORITHM FOR CASE FRAME 
Objective is to generate the CF by identifying the semantic role 
(kAraka value) of each word with respect to action in a given 
sentence. Every word within the sentence is searched in avyay 

list. On unsuccessful search in the list, word is mapped in 
pronoun, verb suffix and then noun suffix database. This order 
has been followed as the quantity of words in each category 
follows an ascending order.  
After check in avyay list; word wi, is mapped in pronoun 
database; If found, its semantic role is identified by extracting 
the 4th digit from its key and performing vibhakti kAraka 
mapping on it. Otherwise next look up is performed on verb 
database (VDB) followed by noun database (NDB).  
String is processed in reverse order from right to left. Last 
character of the word wi is identified (x) and all the suffix 
which has x as their last character is extracted from the VDB 
and stored it in a set. If any one of the value from this set 
matches as suffix in word; word wi, it is added to list of mapped 
suffix.  If this list contains one element then a unique mapping 
has been found, else multiple matches are discovered. In case 
of multiple matches, splitter algorithm is activated to check for 
the category of word. Splitter breaks the word in base word and 
suffix. If base word is present in lexicon of verbal base, current 
word is tagged as action entity. If no match is found in verbal 
base then check for noun is performed.  
A similar mapping process is also performed for nouns, but this 
mapping process face a problem as occurrence of suffix in 
database is not unique; at time multiple matches are obtained.  
It is due to intergroup and intragroup redundancy of suffix. 
Occurrence of same suffix within one declension table is 
intragroup redundancy and occurrence of same suffixes across 
tables is intergroup redundancy. Depending upon frequency of 
occurrence and redundancies, suffixes are divided into three 
classes. Class I identifies unique occurrence of suffix, class II 
identifies intergroup redundancy and class III identifies 
intragroup redundancy. 
Class 1:    Unique suffix  
    Suffix with frequency of occurrence =1. 
    Format of the data is  
    (<key number>, <suffix>, <frequency of         
     occurrence>) 
    Example: (1111, ’H’, 1) 
Class 2:   Intragroup redundancy 
    Suffix with frequency of occurrence greater   
    than 1 and same kAraka value  
    Example: (1131, ’en’, 2)(1331, ’en’, 2), 
   suffix ‘en’ have same kAraka value 3. 
Class 3: Intergroup redundancy 
     Suffix with frequency of occurrence greater    
     than 1 and different kAraka value. 
      Example: (1112, ’au’, 4) (1122, ’au’,4)     
      (2171, ’au’, 4)(3171, ’au’, 4),  
      suffix ‘au’ has kAraka values 1, 2, 7, 7.  
kAraka value is the 3rd digit in the key from left. Categorization 
of the suffixes is presented in Fig 5 
 
All x-ending suffixes si, are extracted from NDB and stored in a 
set. If suffix belong to class I, it is easily given a kAraka role. If 
more than one suffix is present, then for every suffix si, word wi 
is split in base word and suffix using splitter algorithm. This 

Gan Pad Tense and mood Person Number 

Digit Gan Pad Tense & 
mood 

Person Number 

Range   0-9 1-3 0-9 1-3 1-3 
Examp
le 

bhavAd
igan,  

Parasma
ipad 

Latlakar pratham 
puruSh 

Ekvach
an 

P_number Gender Vibhakti Number 
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base word is searched in lexicon of base words. If a match is 
found, then si and its key number are stored as final suffix and 
final number in a list. Class II type Intergroup redundancy of 
the suffixes are handled by splitter routine. Ambiguity related 
to class III may still exist. To resolve such cases conflict 
resolution using neural network is applied. Vibakti kAraka 
mapping is applied to 4th digit of this number and a semantic 
tag is assigned to the word. All the words with their semantic 
tag are stored in the case frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Categorization of Suffix with Respect to their 
kAraka Value 

Out of the total 252 suffixes for noun, number of suffix 
belonging to each class is given in Table 5. 
   

Quantitative parameter for noun suffix Quantity 
Number of suffix  252 
Number Unique suffix 120 
Class 1 55 
Class 2 22 
Class 3 43 

Table 5: Class wise Quantification of Suffix Data 
Algorithm for hybrid model 
vlist =   lexicon of verb bases 
nlist=  lexicon on nominal bases 
wi  =   word under process 
si  =   suffix  
x=   last character of word under  
  process. 
verb_xmatch:  set of all suffix ending with x 
verb_suffix:     set of all suffix in verb_xmatch which map as 
suffix in word wi 
noun_xmatch: set of all suffix ending with x 
noun_suffix:  set of all suffix in noun_xmatch which map as 
suffix in word wi  
frame: is structure for storing elements like action, agent, object 
etc. 
 
Pseducode 
 
 Input sentence S. 
for each word wi € S  
match wi in pronoun database 
 if  match found then 

     wi.cat=pronoun 
     get  key number from  database of wi 
     vibhakti kAraka mapping 
     Frame.<case>= wi  
     Break 
 else 
      last char of wi = x 
      verb_xmatch = si from VDB such that  
                               last_char(si) = x 
      verb_suffix= suffix in verb_xmatch that  
                            appear in word wi   as suffix   
 if verb_suffix != NULL then 
 for each si € verb_suffix do 

   (base, si)=splitter(wi si) 
        If base € vlist then frame.action = wi 
  end for 

endif 
if match not found in VDB, then check in NDB 
   noun_xmatch =   all suffixes si from NDB such  
                              that last_char(si)=x 
   noun_suffix =  all suffix in noun_xmatch that  
                           appear in word wi   as suffix   
   num_set =  respective number of matched  
                     suffix 
    if noun_suffix != NULL then 
   for each si  € noun_suffix and numi € num_set 
       (base, suffix)=splitter(wi si, , numi, ) 
       if base € nlist  then 

Identify the vibhakti of the word 
 If class =1 then one value of vibhakti is obtained else 
 If class=2 then one value of vibhakti is obtained else 
 If class=3 then more than one value of vibhakti is 
obtained 
 Call for conflict resolution using NN  
 Perform vibhakti-kAraka mapping 
Store the kAraka value as semantic role of the word  
 frame.<case> = wi 

   end for 
endif 
Return frame 
 
 
Results of the algorithm is discussed in last section, here 
conflict cases under class II are resolved using neural network. 
, discussed in next section. 
 
5. CONFLICT RESOLUTION USING NN 
For nouns in Sanskrit, intragroup redundancy of type III can be 
resolved using either statistical methods or NN based method. 
Statistical techniques require large corpus of data, due to lack of 
large size data with good vocabulary coverage, NN is 
implemented for conflict resolution. Back propagation algorithm 
with three layers is used to train  the system for conflict cases. A 
set of pre annotated text is prepared which contain the suffix, 
category and vibhakti for each word of sentence. Sample of the 
annotated text is presented in Fig 6. 

Suffix 

  Multiple occurrence 
Freq_of_occ(suff)>1 

          Class I 
Freq_of_occ(suff)=1 

       Class II 
Same kAraka value          Class III 

Different kAraka value  
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Figure 6: Sample annotated data 

Most common ambiguous cases  for vibhakti or  kAraka value 
fall  under four main domain (1,2),(1,2,7),(3,4,5) and(4,5). NN 
takes features of corpus as input and final vibhakti or kArka 
value as output. Features selected for training network is given 
in Table 6 

Table 6: Feature selected for NN training 
A NN based system takes the input in numerical form; hence 
the word features are converted into suitable numerical value. 
Mapping of features into numerical values is shown in Table 7. 
Input coding algorithm reads the pre annotated text and 
generates the data for training the neural network. 
BPN is feed forward multi layer network consisting of mainly 
three layers. Algorithm uses two passes - forward and 
backward pass. In the forward pass, inputs are multiplied by 
respective weight and a bias   added to it. Weighted sum of 
input along with bias is fed as input to hidden layer. Hidden 
layer uses a squashing function to limit the output value in 
desired range. Output from hidden layer is multiplied by 
respective weight and fed to output layer. Sigmoid function is 
used to limit the range of output. Output obtained is compared 
with actual value and error is calculated as difference of the 
two. Error is a measure of difference between actual and the 
desired output. This calculated error is propagated back in the 
backward pass. To improve the performance of the network, 
weights are modified as a function of propagated error. In the 
forward pass, weights of the directed links remain unchanged at 
each processing unit of the hidden layer.  For n input values 
weighted sum is obtained and sigmod function is applied to this 
weighted sum. Time taken to train the network is directly 
proportional to size of data. If number of neurons is increased, 
training time increases. Classification of pAninI kAraka with 
NN require large size corpus for training. Hybrid model 
overcomes the problem of large training time by classifying the 
word with their vibhakti value in non-conflicting situations and 
applying NN under conflicting situations only. This requires a 

small set of data and network is trained for conflicting classes 
only, thereby reducing the time. All the cases under same 
conflicting domain require same network. Major conflicting 
domains are (1, 2) (3, 4, 5) (6, 7).As data set for each 
conflicting case focuses on limited set of suffix, small data size 
is sufficient. For example am ending suffix fall in two class 1 
and 2; NN was trained on these cases and result of the cases is 
presented next section. 
 

 
Table 7: Sample set of encoded values 

  
6. CONFLICT RESOLUTION USING NN 
For nouns in Sanskrit, intragroup redundancy of type III can be 
resolved using either statistical methods or NN based method. 
Statistical techniques require large corpus of data, due to lack of 
large size data with good vocabulary coverage, NN is 
implemented for conflict resolution. Back propagation algorithm 
with three layers is used to train  the system for conflict cases. A 
set of pre annotated text is prepared which contain the suffix, 
category and vibhakti for each word of sentence. Sample of the 
annotated text is presented in Fig 7. 
 
 
 
 
 
 
 
 
 

Figure 7: Sample annotated data 
 

Most common ambiguous cases  for vibhakti or  kAraka value 
fall  under four main domain (1,2),(1,2,7),(3,4,5) and(4,5). NN 
takes features of corpus as input and final vibhakti or kArka 
value as output. Features selected for training network is given 
in Table 8 
A NN based system takes the input in numerical form; hence 
the word features are converted into suitable numerical value. 
Mapping of features into numerical values is shown in Table 9. 

Parameter Feature type 
Candidate suffix Morphological  feature 
Candidate word category Syntactic feature 
Verb suffix Morphological feature 
Verb prefix Morphological feature 
Verb root Lexical feature 
Successive word Context based feature 
Previous word Context based feature 
Probability vector for 
suffix 

Corpus based feature 

tvam/am.p.1 bhojanam/am.n.2  pachasi/si.v.x.pach| 
devH/H.n.1 vanam/am.n.2 gachchhati/ti.v.x.gachch| 
hariH/H.n.1 putrAya/Aya.n.4 bhojanahm/am.n.2  
pachati/ti.v.x.pac| 
rathavAhakH/H.n.1 aShvebhyH/ebhyH.n.4 ghAsam/am.n.2 
anayati/ti.v.x.anaya| 
idam/am.p.1 chAtrasya/asya.n.6 pustakam/am.n.2 asti/ti.v.x.as| 
devH/H shakten/en.n.7 gRAmam/am.n.2 

 
     

  

tvam/am.p.1 bhojanam/am.n.2  pachasi/si.v.x.pach| 
devH/H.n.1 vanam/am.n.2 gachchhati/ti.v.x.gachch| 
hariH/H.n.1 putrAya/Aya.n.4 bhojanahm/am.n.2  pachati/ti.v.x.pac| 
rathavAhakH/H.n.1 aShvebhyH/ebhyH.n.4 ghAsam/am.n.2 
anayati/ti.v.x.anaya| 
idam/am.p.1 chAtrasya/asya.n.6 pustakam/am.n.2 asti/ti.v.x.as| 
devH/H shakten/en.n.7 gRAmam/am.n.2 gachchhati/ti.v.x.gachch| 
sH/H.p.1 mitre/e.n.7 vishvAsam/am.n.2   
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Table 8: Feature selected for NN training 
 

 
Table 9: Sample set of encoded values 

 
Input coding algorithm reads the pre annotated text and 
generates the data for training the neural network. 
BPN is feed forward multi layer network consisting of mainly 
three layers. Algorithm uses two passes - forward and 
backward pass. In the forward pass, inputs are multiplied by 
respective weight and a bias   added to it. Weighted sum of 
input along with bias is fed as input to hidden layer. Hidden 
layer uses a squashing function to limit the output value in 
desired range. Output from hidden layer is multiplied by 
respective weight and fed to output layer. Sigmoid function is 
used to limit the range of output. Output obtained is compared 
with actual value and error is calculated as difference of the 
two. Error is a measure of difference between actual and the 
desired output. This calculated error is propagated back in the 
backward pass. To improve the performance of the network, 
weights are modified as a function of propagated error. In the 
forward pass, weights of the directed links remain unchanged at 
each processing unit of the hidden layer.  For n input values 
weighted sum is obtained and sigmod function is applied to this 
weighted sum.  
Time taken to train the network is directly proportional to size 
of data. If number of neurons is increased, training time 
increases. Classification of pAninI kAraka with NN require 
large size corpus for training. Hybrid model overcomes the 
problem of large training time by classifying the word with 
their vibhakti value in non-conflicting situations and applying 
NN under conflicting situations only. This requires a small set 
of data and network is trained for conflicting classes only, 
thereby reducing the time. All the cases under same conflicting 
domain require same network. Major conflicting domains are 
(1, 2) (3, 4, 5) (6, 7).As data set for each conflicting case 
focuses on limited set of suffix, small data size is sufficient. For 
example am ending suffix fall in two class 1 and 2; NN was 

trained on these cases and result of the cases is presented next 
section. 
 
7. RESULT AND DISCUSSION  
Training time for each conflicting domain is reported in Table 
10. 

Table 10: Performance of NN for Various Data Set 
Training Size=50 Test Data Size=10 

 Fifty sentences used in training phase and ten sentences in 
testing phase. As depicted in the Table 6.1; 90% accuracy is 
achieved in am and ebhyH domain. Training of network for am 
abhyam conflicting case is given in Fig 8 and Fig 9. 
          

 
Figure 8: Training graph for am data set 

 
Figure 9:  Training data for abhyam data set 

After training the network for conflicting cases; algorithm is 
tested on 100 sentences and accuracy of the output obtained is 
calculated by finding the F-score as given in Eq 6.1 

  --------------- (6.1) 
It uses precision (p) and recall (r) to compute the score. 
Precision (p) = Number of correct result / Number of returned 
result 

Parameter Feature type 
Candidate suffix Morphological  feature 
Candidate word category Syntactic feature 
Verb suffix Morphological feature 
Verb prefix Morphological feature 
Verb root Lexical feature 
Successive word Context based feature 
Previous word Context based feature 
Probability vector for 
suffix 

Corpus based feature 

pAninI 
class 

F n C P R k  

Karta 122 110 108 0.981 0.885 0.930 
Karma 64 61 58 0.951 0.906 0.931 
Karan 52 50 49 0.980 0.942 0.957 
sampradAn 35 30 29 0.966 0.828 0.891 
apAdAn 34 30 32 0.93 0.823 0.873 
Adhikaran 38 35 33 0.943 0.868 0.903 
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Recall (r)   = Number of correct result / Number of results that 
should have been returned. 
F_score is understood as weighted average of precision and 
recall and is calculated as given in Eq (6.1). F-Score of each 
class under NN is given in Table 11.    
f= frequency of occurrence  
n= number present in the data 
c=number correctly identified 

Table 11: Result for Hybrid Classification 

Hybrid model is better approach for semantic classification as 
compared to pure rule based system or NN based system. 
Performance of NN is dependent on the size of annotated corpus 
available for training with good coverage of the vocabulary and 
suffix. As it is suffix driven analysis, annotated corpus must 
include the suffix attached to the words. Due to lack of 
availability of corpus, with good coverage, results of  pure NN 
based system lags behind hybrid system. Hybrid model exploits 
the potential of rules of the grammar and handles conflicting 
situation by implementing NN model. Requirement of large 
size corpus is reduced as corpus is designed for conflicting 
cases only. Pure rule base system require in depth knowledge 
and understanding of complex set of recursive and meta rules 
for transformation and exceptional cases. A person with good 
computational skill along with complete pAninian knowledge is 
difficult to achieve. 
Case frames for 100 sentences are generated by three 
algorithms and accuracy is checked at word level and sentence 
level. Word level accuracy is correctness of semantic tag 
assigned to each word and sentence level accuracy is 
correctness of generated case frame. Word level accuracy is 
discussed in Table 5.3, 5.6 and 5.8. For sentence level 
accuracy, accuracy of case frame is calculated. Accuracy of 
case frame depends upon two parameters:- 
• Number of significant words from a sentence appearing in 

case frame                     ---(x) 
• number of words tagged correctly   ----(y) 

For hybrid model, sentence level accuracy is calculated   and 
presented in Table 12. 
 

Table 12.: Case Frame Accuracy for 100 Sentences under 
Hybrid Model 

Out of 72 CF with all significant word of sentences; 56 are 
correctly tagged giving the accuracy of 77 % which is so far the 
best as none of the NLP processor for Sanskrit language has 
worked on KR tool generation for Sanskrit language.  
Use of NN in NLP is less frequent due to complexity prevailing 
in both domains [1]. Sanskrit language has rich inflectional 
morphological structure suitable for computational processing. 
Tabular declension of words with syntactic-semantic 
significant suffix occupying predefined cell position drives the 
path for well structure knowledge representation mechanism. 
Identifying the semantic class of the word with suffix driven 
analysis under pAninI concept was the main theme of the work. 
Use of NN for resolving conflicting kAraka  role under pAninI  
framework appears to be a better mechanism for semantic 
labeling of words. Initial identification is a baseline model 
upon which further extensions can be developed. Enhanced 
corpus with better coverage can further improve the results. 
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