
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 537

Knowledge Representation in pAninI Framework Using Neural Network Model

Smita Selot1, Neeta Trpathi2 and A.S Zadgaonkar3

Submitted in October 2012; Accepted in February 2013

Abstract - Knowledge representation is base for expressing
semantic content of input in intelligent information retrieval
systems. Identification of semantic requires processing of
input language at various levels. To make system understand
text or speech is a challenging task as it involves extracting
semantics of the language which itself is a complex problem.
At the same time languages posses with multiple ambiguities
and uncertainty which needs to be resolved at various phases
of language processing. Level of understandability depends
upon the grammar, syntactic and semantic representation of
the language and methods employed for these analysis.
Processing depends on the type of language, grammar of the
language, ambiguities present and size of corpus available.
Order free language posses different features as compared to
rigid order language. Most of the Indian languages are order
free; hence mechanism for such language needs to be
formulated. One of the ancient Indian Sanskrit grammarians,
pAninI has defined grammar of Sanskrit language in such a
way that it is suitable for computational analysis. Six main
semantic class identified under this theory is a baseline model
for knowledge representation. This paper exploits the features
of the language, applicability of rules and resolving
ambiguities using neural network model. A hybrid model
incorporating the features of rules based and neural network
the is designed and implemented for pAninI based semantic
analysis, generating case frames as output.

Index Terms - pAninI Grammar framework, Knowledge
Representation, Case Frame, Natural Language Processing,
Semantic.

1. INTRODUCTION
Knowledge representation is a technique to represent the
meaningful and logical content embedded in the language; in a
structured form. Development of such tool requires an
exhaustive analysis of input language at syntactic and semantic
level with capacity to handle ambiguities at each level. Natural
languages are not so natural for computer processing; hence a
KR tool acts as bridge between the natural language and
understanding of language by machine. Development of such
tool is heavily guided by language processing techniques and
type of language. Order free language posses different
characteristics than rigid order language. As most of the Indian
languages are order free, they require different mechanism to
handle their processing. KR, Natural Language Processing
(NLP) and Information Retrieval (IR) are close module of such
applications as depicted in Figure 1.

1SSCET, Bhlai, 2SSITM, Bhilai, India
3C V Raman University, Bilaspur, E-mail: 1sselot@sify.com

Figure 1: Inter relation between NLP and KR

Statistical methods are applied for syntactic analysis of Indian
language with Hidden Markov Model(HMM) [12], support
Vector machine (SVM) being popular statistical Technique [4]
[19]. Application of Neural Network for classification task is
less observed as both are complex domain. This paper presents a
method for generation of Case Frames (CF) as KR structure for
Sanskrit Language under pAninI framework. Method identifies
semantic role of each word with respect to action or verb present
in the sentence, there by presenting a verb-argument relation.
Six main semantic classes are defined under pAninI framework.
Identification and classification of word into one of the class is
achieved by analyzing suffix attached to word. Identified class
along with word is stored in KR structure called CF. However
while performing the classification one suffix may map into
multiple domain resulting into conflicting output. Such conflict
is resolved by training neural network for ambiguous cases. Non
conflicting cases are handled by one-to-one vibhakti_kArka
mapping resulting into a hybrid model for case frame
generation. This paper describes the concept of pAninI grammar
for semantic analysis, database of suffix, algorithm and
solutions for conflict cases. KR based system are widely used in
applications like translation system, learning algorithm and
question answer based system

2. pAninI GRAMMAR
One of the ancient languages of the world, Sanskrit, has well
defined grammatical and morphological structure which
precisely defines the relation of suffix-affix of the word with
the syntactic and semantic classification of the sentence [2][3]
[11]). Such analysis leads to development of KR structure. For
order free language like Sanskrit, processing is quite interesting
as suffix based analysis reveals syntacto-semantic features of
the sentence. Sanskrit is analyzed from computational
perspective on vedic text [7] as well as capability of pAninI
grammar is equivalent to finite state machine [8]. Development
of automatic segmentiser is an effort in this field [13]. Hindi and
Arabic clauses are also analysed from pAninian aspect [14].
Parallelism of pAninI in field of computer science is well
explained [15]. Rule based POS tagger developed at JNU,Delhi
uses lexicon and displays all possible outcome for conflicting
cases [9]. This paper explains processing of Sanskrit for
classifying words in one of six semantic roles defined by pAnini
under kAraka theory implementing a novel approach –Neural
Network.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 538

Generally, dictionary of words is maintained and each word is
mapped to find its respective syntactic category. As pAninI has
identified the syntacto-semantic information of the word by the
suffix attached to the word, instead of maintaining dictionary of
words, lexicon of suffix is sufficient for extracting features.
kAraka roles are similar to case based semantics required for
event-driven situations, where entities like agent , object,
location are identified with respect to each event [6] [10].
pAninI, an ancient Sanskrit grammarian has given nearly 4000
rules called sutra to describe behavior of the language in the
book called asthadhyAyi; meaning eight chapters [10]. Ancient
old kAraka theory rules are in parallel with finite state machine
[8] and concept is being extended for English language [20]. It
describes transformational grammar which applies sequence of
rules to transform root word to number of dictionary words.
From small set of root words, millions of words are generated
by firing set of rules. For highly inflectional language like
Sanskrit, sequence of declension tables are memorized in such a
way that similar ending words follow the same declension.
Hence, if one table is memorized, number of words can be
generated if their base word falls under same group. This
structural representation in optimum form is used to identify the
semantic class of the word. In Sanskrit language, fundamental
six roles, given by pAninI as kAraka values, are key semantic
component of a sentence as described in Table 1.

Table 1: Six kAraka in pAnanian model.

Suffix driven analysis is performed by mapping the suffix to
database which contains suffix and a key number. Key is
designed in such a way that it contains all the syntactic
information as per grammar of the language

3. KEY NUMBER DESIGN FOR SUFFIX
All the nouns in the language follow nominal declension tables
for each category of word. For example all ‘a’ ending word
follow the declension given in Table 2 with word as ‘rAma’ and
Table 3 shows the suffix attached to the word.

Table 2: Declension set for rAma

Table 3: Suffix for all a ending word
Each row corresponds to a vibhakti value and column represents
the number or vachan. Unlike English language, which
contains only singular and plural, Sanskrit has singular as
ekvachan , plural as bahuvachan and two in number is labeled
as dwivachan. Vibhakti is related to kArka values, Suffixes
present in first row or vibhakti is kartA kAraka (agent).
Likewise each row represents a kArka role as given in the Table
3.1.Sixth vibhakti is not included in Table 3.1 as it is sambandh
kAraka which has relation with its immediate argument and not
related to verb directly, hence not considered as kAraka by
pAninI.
Four digit key number schemes for noun suffix is designed as
given in Fig 2

Figure 2: Four digit number scheme for noun
Type of ending is in first column where 9 different type of
ending is considered with values in range 1-9.Gender are
masculine, feminine and neuter with values 1,2 and 3. Seven
vibhakti from 1 to 7 and three number from 1to 3 are
considered. For example suffix ‘am’ is present in second row,
first column as given in Table 2.2; it is assigned the value 1121
where description of each digit is as follows:

1: a ending
1: Masculine gender
2: dvitIyA vibhakti
1: ekvachan

On similar guideline, five digit number schemes is designed for
storing verb suffix [16]. In Sanskrit grammar, verbs are
classified into ten groups called gan represented by most
significant place in the number scheme. When a root word joins
with the suffix (pratya), some changes takes place at the
junction. With respect to these changes verbs are classified into
nine different gan. Second digit from left denotes pad which
occur in three different forms- Atmnepad, parsmaipad and

Vibhakti Ekvachan Dwivacahn Bahuvachan
1 rAmH rAmau rAmAH
2 rAmam rAmau rAmAn
3 rAmen rAmAbhyAm rAmaiH
4 rAmAya rAmAbhyAm rAmebhyH
5 rAmAt rAmAbhyAm rAmebhyH
6 rAmasya rAmayoH rAmAnAm
7 rAmen rAmayoH rAmeShu

Vibhakti Ekvachan Dwivacahn Bahuvachan
1 H Au AH
2 Am Au An
3 En AbhyAm aiH
4 Aya AbhyAm ebhyH
5 At AbhyAm ebhyH
6 Asya yoH AnAm
7 En yoH eShu

x ending Gender Vibhakti Number

Knowledge Representation in pAninI Framework Using Neural Network Model

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 539

ubhaypad. Verbs whose outcome is for another person, they
fall under
Parasmaipad and verbs whose outcome is for one self come
under Atmnepad. Verbal words whose outcome is for both,
other person and one self, they come under ubhaypad. Time in
which action takes place is given in various tenses. There are
10 different tenses in Sanskrit [5]. Giving the context of the
person is purush and number is vachan. A five digit number
scheme for verb is presented in Fig 3.

Figure 3: Five Digit Number Scheme for Verb Suffix

Verbs in Sanskrit decline with respect to gan, pad, tense,
person and number. These are influential parameters as they
govern the behavior of the nouns in the sentence. Range and
example values associated with each field are described in
Table 4.

Table 4: Range and Example Values for Each Digit Position

of Verb Number Scheme

For example paThati (to read), has suffix ti which extracts the
number 11011 from database there by giving the following
information:

1-bhavAdigan;
1-parasmaipad;0-latlakAr(Present tense);
1-pratham puruSh (Third Person);
1-ekvachan (singular) .

Pronouns decline in manner similar to noun and total number
of pronoun is less, hence set of most commonly used pronoun
are stored in a separate database with their key values[17].
Number scheme for pronouns is given in Fig 4.

Figure 4: Four Digit Number Scheme for Pronoun

P_number identifies a particular pronoun like serva, sH etc. For
example, 1 is given to tad, meaning ‘that’ in English. Rests of
digit have same values as for noun. All the pronouns stated in
rachanAnuvAdakaumudI are considered with nearly 400 entries
in database [5]. Some words which do not change their form
under any condition, they are termed as avyay. List of these
words are maintained separately.

4. ALGORITHM FOR CASE FRAME
Objective is to generate the CF by identifying the semantic role
(kAraka value) of each word with respect to action in a given
sentence. Every word within the sentence is searched in avyay

list. On unsuccessful search in the list, word is mapped in
pronoun, verb suffix and then noun suffix database. This order
has been followed as the quantity of words in each category
follows an ascending order.
After check in avyay list; word wi, is mapped in pronoun
database; If found, its semantic role is identified by extracting
the 4th digit from its key and performing vibhakti kAraka
mapping on it. Otherwise next look up is performed on verb
database (VDB) followed by noun database (NDB).
String is processed in reverse order from right to left. Last
character of the word wi is identified (x) and all the suffix
which has x as their last character is extracted from the VDB
and stored it in a set. If any one of the value from this set
matches as suffix in word; word wi, it is added to list of mapped
suffix. If this list contains one element then a unique mapping
has been found, else multiple matches are discovered. In case
of multiple matches, splitter algorithm is activated to check for
the category of word. Splitter breaks the word in base word and
suffix. If base word is present in lexicon of verbal base, current
word is tagged as action entity. If no match is found in verbal
base then check for noun is performed.
A similar mapping process is also performed for nouns, but this
mapping process face a problem as occurrence of suffix in
database is not unique; at time multiple matches are obtained.
It is due to intergroup and intragroup redundancy of suffix.
Occurrence of same suffix within one declension table is
intragroup redundancy and occurrence of same suffixes across
tables is intergroup redundancy. Depending upon frequency of
occurrence and redundancies, suffixes are divided into three
classes. Class I identifies unique occurrence of suffix, class II
identifies intergroup redundancy and class III identifies
intragroup redundancy.
Class 1: Unique suffix
 Suffix with frequency of occurrence =1.
 Format of the data is
 (<key number>, <suffix>, <frequency of
 occurrence>)
 Example: (1111, ’H’, 1)
Class 2: Intragroup redundancy
 Suffix with frequency of occurrence greater
 than 1 and same kAraka value
 Example: (1131, ’en’, 2)(1331, ’en’, 2),
 suffix ‘en’ have same kAraka value 3.
Class 3: Intergroup redundancy
 Suffix with frequency of occurrence greater
 than 1 and different kAraka value.
 Example: (1112, ’au’, 4) (1122, ’au’,4)
 (2171, ’au’, 4)(3171, ’au’, 4),
 suffix ‘au’ has kAraka values 1, 2, 7, 7.
kAraka value is the 3rd digit in the key from left. Categorization
of the suffixes is presented in Fig 5

All x-ending suffixes si, are extracted from NDB and stored in a
set. If suffix belong to class I, it is easily given a kAraka role. If
more than one suffix is present, then for every suffix si, word wi
is split in base word and suffix using splitter algorithm. This

Gan Pad Tense and mood Person Number

Digit Gan Pad Tense &
mood

Person Number

Range 0-9 1-3 0-9 1-3 1-3
Examp
le

bhavAd
igan,

Parasma
ipad

Latlakar pratham
puruSh

Ekvach
an

P_number Gender Vibhakti Number

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 540

base word is searched in lexicon of base words. If a match is
found, then si and its key number are stored as final suffix and
final number in a list. Class II type Intergroup redundancy of
the suffixes are handled by splitter routine. Ambiguity related
to class III may still exist. To resolve such cases conflict
resolution using neural network is applied. Vibakti kAraka
mapping is applied to 4th digit of this number and a semantic
tag is assigned to the word. All the words with their semantic
tag are stored in the case frame.

Figure 5: Categorization of Suffix with Respect to their
kAraka Value

Out of the total 252 suffixes for noun, number of suffix
belonging to each class is given in Table 5.

Quantitative parameter for noun suffix Quantity
Number of suffix 252
Number Unique suffix 120
Class 1 55
Class 2 22
Class 3 43

Table 5: Class wise Quantification of Suffix Data
Algorithm for hybrid model
vlist = lexicon of verb bases
nlist= lexicon on nominal bases
wi = word under process
si = suffix
x= last character of word under
 process.
verb_xmatch: set of all suffix ending with x
verb_suffix: set of all suffix in verb_xmatch which map as
suffix in word wi
noun_xmatch: set of all suffix ending with x
noun_suffix: set of all suffix in noun_xmatch which map as
suffix in word wi
frame: is structure for storing elements like action, agent, object
etc.

Pseducode

 Input sentence S.
for each word wi € S
match wi in pronoun database
 if match found then

 wi.cat=pronoun
 get key number from database of wi
 vibhakti kAraka mapping
 Frame.<case>= wi
 Break
 else
 last char of wi = x
 verb_xmatch = si from VDB such that
 last_char(si) = x
 verb_suffix= suffix in verb_xmatch that
 appear in word wi as suffix
 if verb_suffix != NULL then
 for each si € verb_suffix do

 (base, si)=splitter(wi si)
 If base € vlist then frame.action = wi
 end for

endif
if match not found in VDB, then check in NDB
 noun_xmatch = all suffixes si from NDB such
 that last_char(si)=x
 noun_suffix = all suffix in noun_xmatch that
 appear in word wi as suffix
 num_set = respective number of matched
 suffix
 if noun_suffix != NULL then
 for each si € noun_suffix and numi € num_set
 (base, suffix)=splitter(wi si, , numi,)
 if base € nlist then

Identify the vibhakti of the word
 If class =1 then one value of vibhakti is obtained else
 If class=2 then one value of vibhakti is obtained else
 If class=3 then more than one value of vibhakti is
obtained
 Call for conflict resolution using NN
 Perform vibhakti-kAraka mapping
Store the kAraka value as semantic role of the word
 frame.<case> = wi

 end for
endif
Return frame

Results of the algorithm is discussed in last section, here
conflict cases under class II are resolved using neural network.
, discussed in next section.

5. CONFLICT RESOLUTION USING NN
For nouns in Sanskrit, intragroup redundancy of type III can be
resolved using either statistical methods or NN based method.
Statistical techniques require large corpus of data, due to lack of
large size data with good vocabulary coverage, NN is
implemented for conflict resolution. Back propagation algorithm
with three layers is used to train the system for conflict cases. A
set of pre annotated text is prepared which contain the suffix,
category and vibhakti for each word of sentence. Sample of the
annotated text is presented in Fig 6.

Suffix

 Multiple occurrence
Freq_of_occ(suff)>1

 Class I
Freq_of_occ(suff)=1

 Class II
Same kAraka value Class III

Different kAraka value

Knowledge Representation in pAninI Framework Using Neural Network Model

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 541

Figure 6: Sample annotated data

Most common ambiguous cases for vibhakti or kAraka value
fall under four main domain (1,2),(1,2,7),(3,4,5) and(4,5). NN
takes features of corpus as input and final vibhakti or kArka
value as output. Features selected for training network is given
in Table 6

Table 6: Feature selected for NN training
A NN based system takes the input in numerical form; hence
the word features are converted into suitable numerical value.
Mapping of features into numerical values is shown in Table 7.
Input coding algorithm reads the pre annotated text and
generates the data for training the neural network.
BPN is feed forward multi layer network consisting of mainly
three layers. Algorithm uses two passes - forward and
backward pass. In the forward pass, inputs are multiplied by
respective weight and a bias added to it. Weighted sum of
input along with bias is fed as input to hidden layer. Hidden
layer uses a squashing function to limit the output value in
desired range. Output from hidden layer is multiplied by
respective weight and fed to output layer. Sigmoid function is
used to limit the range of output. Output obtained is compared
with actual value and error is calculated as difference of the
two. Error is a measure of difference between actual and the
desired output. This calculated error is propagated back in the
backward pass. To improve the performance of the network,
weights are modified as a function of propagated error. In the
forward pass, weights of the directed links remain unchanged at
each processing unit of the hidden layer. For n input values
weighted sum is obtained and sigmod function is applied to this
weighted sum. Time taken to train the network is directly
proportional to size of data. If number of neurons is increased,
training time increases. Classification of pAninI kAraka with
NN require large size corpus for training. Hybrid model
overcomes the problem of large training time by classifying the
word with their vibhakti value in non-conflicting situations and
applying NN under conflicting situations only. This requires a

small set of data and network is trained for conflicting classes
only, thereby reducing the time. All the cases under same
conflicting domain require same network. Major conflicting
domains are (1, 2) (3, 4, 5) (6, 7).As data set for each
conflicting case focuses on limited set of suffix, small data size
is sufficient. For example am ending suffix fall in two class 1
and 2; NN was trained on these cases and result of the cases is
presented next section.

Table 7: Sample set of encoded values

6. CONFLICT RESOLUTION USING NN
For nouns in Sanskrit, intragroup redundancy of type III can be
resolved using either statistical methods or NN based method.
Statistical techniques require large corpus of data, due to lack of
large size data with good vocabulary coverage, NN is
implemented for conflict resolution. Back propagation algorithm
with three layers is used to train the system for conflict cases. A
set of pre annotated text is prepared which contain the suffix,
category and vibhakti for each word of sentence. Sample of the
annotated text is presented in Fig 7.

Figure 7: Sample annotated data

Most common ambiguous cases for vibhakti or kAraka value
fall under four main domain (1,2),(1,2,7),(3,4,5) and(4,5). NN
takes features of corpus as input and final vibhakti or kArka
value as output. Features selected for training network is given
in Table 8
A NN based system takes the input in numerical form; hence
the word features are converted into suitable numerical value.
Mapping of features into numerical values is shown in Table 9.

Parameter Feature type
Candidate suffix Morphological feature
Candidate word category Syntactic feature
Verb suffix Morphological feature
Verb prefix Morphological feature
Verb root Lexical feature
Successive word Context based feature
Previous word Context based feature
Probability vector for
suffix

Corpus based feature

tvam/am.p.1 bhojanam/am.n.2 pachasi/si.v.x.pach|
devH/H.n.1 vanam/am.n.2 gachchhati/ti.v.x.gachch|
hariH/H.n.1 putrAya/Aya.n.4 bhojanahm/am.n.2
pachati/ti.v.x.pac|
rathavAhakH/H.n.1 aShvebhyH/ebhyH.n.4 ghAsam/am.n.2
anayati/ti.v.x.anaya|
idam/am.p.1 chAtrasya/asya.n.6 pustakam/am.n.2 asti/ti.v.x.as|
devH/H shakten/en.n.7 gRAmam/am.n.2

tvam/am.p.1 bhojanam/am.n.2 pachasi/si.v.x.pach|
devH/H.n.1 vanam/am.n.2 gachchhati/ti.v.x.gachch|
hariH/H.n.1 putrAya/Aya.n.4 bhojanahm/am.n.2 pachati/ti.v.x.pac|
rathavAhakH/H.n.1 aShvebhyH/ebhyH.n.4 ghAsam/am.n.2
anayati/ti.v.x.anaya|
idam/am.p.1 chAtrasya/asya.n.6 pustakam/am.n.2 asti/ti.v.x.as|
devH/H shakten/en.n.7 gRAmam/am.n.2 gachchhati/ti.v.x.gachch|
sH/H.p.1 mitre/e.n.7 vishvAsam/am.n.2

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 542

Table 8: Feature selected for NN training

Table 9: Sample set of encoded values

Input coding algorithm reads the pre annotated text and
generates the data for training the neural network.
BPN is feed forward multi layer network consisting of mainly
three layers. Algorithm uses two passes - forward and
backward pass. In the forward pass, inputs are multiplied by
respective weight and a bias added to it. Weighted sum of
input along with bias is fed as input to hidden layer. Hidden
layer uses a squashing function to limit the output value in
desired range. Output from hidden layer is multiplied by
respective weight and fed to output layer. Sigmoid function is
used to limit the range of output. Output obtained is compared
with actual value and error is calculated as difference of the
two. Error is a measure of difference between actual and the
desired output. This calculated error is propagated back in the
backward pass. To improve the performance of the network,
weights are modified as a function of propagated error. In the
forward pass, weights of the directed links remain unchanged at
each processing unit of the hidden layer. For n input values
weighted sum is obtained and sigmod function is applied to this
weighted sum.
Time taken to train the network is directly proportional to size
of data. If number of neurons is increased, training time
increases. Classification of pAninI kAraka with NN require
large size corpus for training. Hybrid model overcomes the
problem of large training time by classifying the word with
their vibhakti value in non-conflicting situations and applying
NN under conflicting situations only. This requires a small set
of data and network is trained for conflicting classes only,
thereby reducing the time. All the cases under same conflicting
domain require same network. Major conflicting domains are
(1, 2) (3, 4, 5) (6, 7).As data set for each conflicting case
focuses on limited set of suffix, small data size is sufficient. For
example am ending suffix fall in two class 1 and 2; NN was

trained on these cases and result of the cases is presented next
section.

7. RESULT AND DISCUSSION
Training time for each conflicting domain is reported in Table
10.

Table 10: Performance of NN for Various Data Set
Training Size=50 Test Data Size=10

 Fifty sentences used in training phase and ten sentences in
testing phase. As depicted in the Table 6.1; 90% accuracy is
achieved in am and ebhyH domain. Training of network for am
abhyam conflicting case is given in Fig 8 and Fig 9.

Figure 8: Training graph for am data set

Figure 9: Training data for abhyam data set

After training the network for conflicting cases; algorithm is
tested on 100 sentences and accuracy of the output obtained is
calculated by finding the F-score as given in Eq 6.1

 --------------- (6.1)
It uses precision (p) and recall (r) to compute the score.
Precision (p) = Number of correct result / Number of returned
result

Parameter Feature type
Candidate suffix Morphological feature
Candidate word category Syntactic feature
Verb suffix Morphological feature
Verb prefix Morphological feature
Verb root Lexical feature
Successive word Context based feature
Previous word Context based feature
Probability vector for
suffix

Corpus based feature

pAninI
class

F n C P R k

Karta 122 110 108 0.981 0.885 0.930
Karma 64 61 58 0.951 0.906 0.931
Karan 52 50 49 0.980 0.942 0.957
sampradAn 35 30 29 0.966 0.828 0.891
apAdAn 34 30 32 0.93 0.823 0.873
Adhikaran 38 35 33 0.943 0.868 0.903

Knowledge Representation in pAninI Framework Using Neural Network Model

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 543

Recall (r) = Number of correct result / Number of results that
should have been returned.
F_score is understood as weighted average of precision and
recall and is calculated as given in Eq (6.1). F-Score of each
class under NN is given in Table 11.
f= frequency of occurrence
n= number present in the data
c=number correctly identified

Table 11: Result for Hybrid Classification

Hybrid model is better approach for semantic classification as
compared to pure rule based system or NN based system.
Performance of NN is dependent on the size of annotated corpus
available for training with good coverage of the vocabulary and
suffix. As it is suffix driven analysis, annotated corpus must
include the suffix attached to the words. Due to lack of
availability of corpus, with good coverage, results of pure NN
based system lags behind hybrid system. Hybrid model exploits
the potential of rules of the grammar and handles conflicting
situation by implementing NN model. Requirement of large
size corpus is reduced as corpus is designed for conflicting
cases only. Pure rule base system require in depth knowledge
and understanding of complex set of recursive and meta rules
for transformation and exceptional cases. A person with good
computational skill along with complete pAninian knowledge is
difficult to achieve.
Case frames for 100 sentences are generated by three
algorithms and accuracy is checked at word level and sentence
level. Word level accuracy is correctness of semantic tag
assigned to each word and sentence level accuracy is
correctness of generated case frame. Word level accuracy is
discussed in Table 5.3, 5.6 and 5.8. For sentence level
accuracy, accuracy of case frame is calculated. Accuracy of
case frame depends upon two parameters:-
• Number of significant words from a sentence appearing in

case frame ---(x)
• number of words tagged correctly ----(y)

For hybrid model, sentence level accuracy is calculated and
presented in Table 12.

Table 12.: Case Frame Accuracy for 100 Sentences under
Hybrid Model

Out of 72 CF with all significant word of sentences; 56 are
correctly tagged giving the accuracy of 77 % which is so far the
best as none of the NLP processor for Sanskrit language has
worked on KR tool generation for Sanskrit language.
Use of NN in NLP is less frequent due to complexity prevailing
in both domains [1]. Sanskrit language has rich inflectional
morphological structure suitable for computational processing.
Tabular declension of words with syntactic-semantic
significant suffix occupying predefined cell position drives the
path for well structure knowledge representation mechanism.
Identifying the semantic class of the word with suffix driven
analysis under pAninI concept was the main theme of the work.
Use of NN for resolving conflicting kAraka role under pAninI
framework appears to be a better mechanism for semantic
labeling of words. Initial identification is a baseline model
upon which further extensions can be developed. Enhanced
corpus with better coverage can further improve the results.

REFERENCES
[1]. Babu, A. Suresh, K. & Pavan, P.N.V.S. 2010.

Comparing Neural Network Approach With N-Gram
Approach For Text Categorization. International Journal
on Computer Science and Engineering. 2(1): 80-83.

[2]. Bharati, A. & Kulkarni, A. 2007. Sanskrit and
Computational Linguistic. First International Sanskrit
Computational Symposium. Department of Sanskrit
Studies, University of Hyderabad.

[3]. Bharati, A., Kulkarni, A. & Sivaja S. N. 2008. Use of
Amarako´sa and Hindi WordNet in Building a Network
of Sanskrit Words. 6th International Conference on
Natural Language Processing.-ICON-08.Macmillan
Publishers. India.

[4]. Brants, T. 2000. TnT - A Statistical Part Of Speech
Tagger. Proceedings of the 6th Conference on Applied
Natural Language Processing 2000.

[5]. Briggs, R. 1995. Knowledge Representation in Sanskrit
and Artificial Intelligence. AI Magazine, 6 (1): 32-39.

[6]. Dwivedi, K. (padamshri) 2002. Prarambhik
RachanAnuvAdakumaudi. VishavavidyAlaya
PrakAshan. Varanasi. 19th ed. ISBN:81-7124-86-0

[7]. Hellwig, O. 2007. SanskritTagger, a stochastic lexical
and POS tagger for Sanskrit. First International Sanskrit
Computational Linguistics Symposium. LNCS Springer.
5402:266-277.

[8]. Huet, G. 2003. Towards Computational Processing of
Sanskrit. Recent advances in Natural Language
Processing. Proceedings in International conference
ICON.:1-10

[9]. Hyman D. M. 2009 From pAninian sandhi to finite state
calculus. Sanskrit Computational Linguistics Springer-
Verlag.

[10]. Jha, G. & Chandrashekar, R. 2010. Annotation
Guidelines for tagging Sanskrit using MSRI-JNU
Sanskrit tagset http://sanskrit.jnu.ac.in/corpora/
(Browsing Date: 25th Dec 2011).

Suffix Confli
cting

Training
time

Epoch
s

 Correctly
identified

am 1, 2 09.89 125 9
Abhyam 3, 4, 5 11.27 210 8
ebhyH 4, 6 08.54 116 9
e 1, 2, 7 10.32 198 7

 y
x

 100% 50-
100%

50% Total

100% 56 11 5 72
 50 -100% 12 5 2 19
 < 50% 8 1 -- 9

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 544

[11]. Kak, S. C. 1987. The panian approach to natural
language processing. International Journal of
Approximate Reasoning. Elsvier Publishing. 1(1):117-
130.

[12]. Kiparsky, P. 2002. On the architecture of P¯anini’s
grammar. International Conference on the Architecture
of Grammar.

[13]. Kumar, D. & Josan, G. 2010. Part of Speech Taggers for
Morphologically Rich Indian Languages: A Survey.
International Journal of Computer Applications. 6(5):
32-41.

[14]. Mittal, V. 2010. Automatic Sanskrit Segmentizer Using
Finite State Transducers. LRTC, Research Centre. IIIT-
Hyderabad. Proceedings of the ACL 2010:85-90.

[15]. Pedersen, M., Eades, D., Amin, S. K. & Prakash, L.
2004. Relative Clauses in Hindi and Arabic: A Paninian
Dependency Grammar Analysis in COLING.

[16]. Rao, B. N. 2005. Panini and Compuer Science – into the
future with knowledge from past. A Sourcebook:9- 13.

[17]. Selot, S. & Singh J. 2007. Knowledge representation
and Information Retrieval in PAninI Grammar
Framework. International Conference ICSCIS- 2007. 2:
45-51.

[18]. Selot, S., Tripathi, N. & Zadgaonkar, A. S. 2009.
Transition network for processing of Sanskrit text for
identification of case endings” icfai Journal of Computer
Science 3(4):32-38.

[19]. Shan, H. & Gildea, D. 2004. Semantic labelling by
Maximum entropy model. University of Rochester
Technical Reort 847.

[20]. Timothy, J. D., Hauser M. & Tecumseh, W. 2005. Using
mathematical models of language experimentally
TRENDS in Cognitive Sciences 9(6):284-289.

[21]. Vaidya, A., Husain, S., Mannem, P. & Misra, D. S.
2009. A Karaka Based Annotation Scheme for English
Language Technologies Research Centre. IIIT
Hyderabad. Springer-Verlag: LNCS 5449:41–52.

	Knowledge Representation in pAninI Framework Using Neural Network Model
	Smita Selot1, Neeta Trpathi2 and A.S Zadgaonkar3
	Figure 1: Inter relation between NLP and KR
	Four digit key number schemes for noun suffix is designed as given in Fig 2
	Table 4: Range and Example Values for Each Digit Position of Verb Number Scheme
	Figure 4: Four Digit Number Scheme for Pronoun
	Class 1: Unique suffix
	Class 2: Intragroup redundancy
	Class 3: Intergroup redundancy
	Figure 5: Categorization of Suffix with Respect to their kAraka Value
	Algorithm for hybrid model
	Pseducode
	If base € vlist then frame.action = wi
	Identify the vibhakti of the word
	If class=2 then one value of vibhakti is obtained else
	CONFLICT RESOLUTION USING NN
	Figure 6: Sample annotated data
	Table 6: Feature selected for NN training
	Figure 7: Sample annotated data
	Table 8: Feature selected for NN training
	Training time for each conflicting domain is reported in Table 10.
	Table 10: Performance of NN for Various Data Set Training Size=50 Test Data Size=10
	Figure 8: Training graph for am data set
	Figure 9: Training data for abhyam data set
	Hybrid model is better approach for semantic classification as compared to pure rule based system or NN based system. Performance of NN is dependent on the size of annotated corpus available for training with good coverage of the vocabulary and suffix...
	For hybrid model, sentence level accuracy is calculated and presented in Table 12.
	Table 12.: Case Frame Accuracy for 100 Sentences under Hybrid Model

