
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 519

Performance Evaluation of Superscalar Processor Architecture Through UML

Taskeen Zaidi¹ and Vipin Saxena²

Submitted in May 2012, Accepted in October 2012
Abstract - In the current scenario, most of the applications
are based upon graphical user interface and dependent upon
the object-oriented technology. Software Industries are
interested to convert old structured based softwares into
object-oriented based softwares and also to reduce the lines of
the code of application for reduction in the execution time of
application. Therefore, it is a big challenge to reduce the
execution time of the application based upon the object-
oriented technology. The present work deals with the
reduction of execution time for the superscalar machine by
the use of object-oriented approach. A well known modeling
language i.e. Unified Modeling Language (UML) is used to
model the superscalar pipeline architecture. UML class and
sequence models are designed before computations of the
execution time and computed results are depicted in the form
of tables and graphs. The comparisons are also made by
taking the two object-oriented programming languages.

Index Terms - Superscalar pipeline architecture, performance
evaluation, class model, sequence model and unified
modeling language.

1. INTRODUCTION
Pipelining is one of the important techniques which have been
implemented to improve the performance of a processor. It
allows the concurrent execution of several instructions. A task
or program or process is divided into sequence of subtasks and
each task is executed by a specialized hardware stage which
operates concurrently with other stage in pipeline. There are
several categories of pipeline like arithmetic pipeline,
instruction pipeline, memory access pipeline and superscalar
pipeline. Superscalar pipeline architecture can start two or more
instructions in parallel in one core, and independent
instructions may get executed out-of-order. For parallelism,
scalabilityand programmability, [1] is an important release
which describes these aspects with increasing system resources
and accordingly to parallel, vector and scalar instructions.
Mano [2] describes the computer organization and design as
well as programming using basic components.
Patterson and Hennessey [3] covers the most fundamental areas
of computer architecture including recent technologies, like
multicores and multiprocessors.
The depth treatment with the implemented details of pipelined
processors and memory systems; the “micro architecture” of

1, 2 Department of Computer Science, Babasaheb Bhimrao
Ambedkar University, Lucknow (U.P.), INDIA
E-mail: ¹taskeenzaidi867@gmail.com and
²vsax1@rediffmail.com

the modern computers and microprocessors by exploring the
techniques for solving design problems inherent in computers
with high level concurrency as the demand for a memory
system with low latency and high bandwidth are described by
Cragon and Saini [4,5].
Unified Modeling Language (UML) is a general purpose
modeling language which is used to model various kinds of the
research problem widely accepted by the software professionals
and created by Object Management Group (OMG [6,7] and
development stages are well explained by Booch et al. [8]. The
fundamentals of UML using hands-on projects, drills and
mastery checks which illustrates how to read, draw, and use
this visual modeling language to create clear and effective
blueprints for software development projects are explained by
Roff [9]. UML is also used to model the concurrent distributed
and real time applications which help the researchers to
leverage the powerful flexibility and reliability of the system.
UML also helps the designers at every stage of the analysis and
design process and offers exceptional insight into dynamic
modeling, concurrency and distributed applications designing
and performance analysis of real time designs [10]. By using
distributed computing, the performance of processors for
different object-oriented software system framework has been
measured by Saxena et al. [11]. They have chosen two types of
object-oriented software system frameworks C# based on
Microsoft.NET framework and Visual C++ based on Microsoft
Foundation Classes (MFC) and computed the performance of
these two object-oriented languages. The UML modeling for
instruction pipeline design by two techniques i.e. data
forwarding and without data forwarding are explained by
Saxena and Raj [12]. The modeling and specification of
floating point numbers are implemented by Boldo et al. [13]. It
extends an existing tool for the verification of C programs, with
the new notations specific to the floating point arithmetic. It
also provides a way to perform the full formal proof by use of
COQ proof assistant and an open framework which is
implemented to other floating point models. But the main
limitation is that it is applicable only to programs using basic.
The IEEE standard is the most widely used standard for
floating point and arithmetic representation. It is implemented
on most of Central Processing Units (CPU’s) and Floating
Points Units (FPU’s); explained with basic and extended
floating point number formats, operations such as add,
multiply, divide, square root, etc. It is also used to implement
the conversion between integer and floating point formats, but,
it does not specify the decimal strings and integers,
interpretation of NAN’s and conversion of binary to decimal to
and from extended format [14]. Saxena and Shrivastava [15]
have attempted to increase the performance of arithmetic

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 520

pipeline especially for floating point computations after
designing the complete UML model of static arithmetic
pipeline design. They presented UML diagrams to model the
system architecture and timing behavior. Saxena and
Shrivastava [16] also presented floating point computations by
using nonlinear arithmetic pipelining for instruction coupled on
Visual C++ and Visual C#. The computations are performed
inside a loop by varying the number of repetition of terms for
getting their sum. In the current scenario, distributed computing
approach is most popular approach and in this regards, a
comparative study of the distributed computing paradigms is
presented in [17]. Quality of services is one of the major issue
for the distributed computing applications and these are
described by Mohan et al. [18] for the process centric
development. The design patterns for the service oriented
architecture implementation are described by Tere and
Jhadav[19].
In the present work, UML is used to model class and sequence
diagrams for superscalar pipeline architecture which can
execute two or more instructions in parallel and authors
evaluated the performance of the two object-oriented languages
like Visual C++ and Visual C# and some of the important
observations are recorded in the form of table and graphs.

2. BACKGROUND
2.1 Process Definition
Let us first explain the process which is considered as a
program which is to be executed. It can be defined as a unit of
work in modern time sharing systems. For defining the process
processing element is needed to be defined as stereotype and is
used to handle some modeling elements based on UML base
classes. A UML Class for process is shown in figure1 and is
identified by its own identification number represented as
Process-id. The other attributes are Process-size for the size of
a process; Process_in_time and Process_out_ time are for start
at out time of the process. The attribute Process_priority
controls the priority of the incoming process. These attributes
work on the operations like Process_create(), Process_delete,
Process_ update, Process_ join, Process_suspend, and
Process_synchronize. The visibility modes along attribute and
operation are also shown in the figure. A stereotype processing
unit is also depicted in figure 2, the instance and multiple
instances of class Process class are shown in Figures 3(a) and
3(b), respectively. The process may consist of segments of code
whose identification numbers are generated; recorded into a list
and granted processing unit as per the priority of that segment
code behaving as a process. The segments may be synchronized
with the processing unit as per the time of completion of that
segment; therefore, multiple instances of a process are shown in
figure 3(b).

2.2 Thread
A thread is defined to control a block of code that runs
concurrently with other threads within same process. It is a
sequential flow of instructions and it is considered as
lightweight process. It is easily handled in object-oriented way.

Threads run simultaneously in process and can access the same
object to implement their functionality.

Figure 1: UML class diagram of a process

Figure 2: UML class for processing unit

 3(a) 3(b)

Figure 3a: Single instance, Figure 3b: Multiple instances

In the current scenario, most of the window based applications
are based upon the thread concept as system supports
synchronization of sub tasks of a process. Threads are
initialized and after the use these are automatically destroyed,
therefore, it has a life cycle. Object-oriented representation of
thread is shown below in figure 4, in which it is identified by
an attribute called as Thread_id. The other attributes associated
with thread and thread operations are also shown below in the
figure 4.

 :abc

<<processing_unit>>
Process

+Process_id: integer
+Process_size: integer
+Process_in_time: string
+Process_out_time: string
+Process_priority: integer
+Process_create()
+Process_delete()

+Process_update()
+Process_join()
+Process_suspend()
+Process_synchronize()

 <<Stereotype>>
 processing_unit

 Process_id: integer
 Process_type: string
 Process_cardianality: integer

 Base Class

 :abc

Performance Evaluation of Superscalar Processor Architecture Through UML

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 521

Process

PEC MemoryProcessor

Core1 Core2

Fetch unit

Instruction
queue

Decoder

Register
Allocator

Retirement
unit

Scheduler

Cache RAM ROM

MICROCODE
ROM

L1_cacheL2_cache

I_cache

D_TLB D_cache

Multiplier

Adder

Logic

Load
FPUSUALU

Register_
file

Writeback

1 1 1 1

1

 Figure 4: UML Class Diagram of a Thread

2.3 Superscalar Processor Architecture
Superscalar processor architecture has a versatile design with
the two pipelines and it can issue the instructions per cycle, if
there is no resource conflict and no data dependence problem.
Both pipelines have four processing stages namely fetch,
decode, execute and store.
Each pipeline has its own fetch, decode, execute and store unit.
The two store units can be dynamically used by the two
pipelines, depending upon its availability at particular cycle. It
has four functional unit adder, multiplier, logic and load unit.
These all functional units are shared by pipelines on dynamic
basis. There is a lookahead window with its own fetch and
decoding logic. Lookahead window is used in case of out of
order instruction to achieve better pipeline throughput.

3. UML MODELING FOR SUPER SCALAR

PIPELINE DESIGN
3.1 UML Class Diagram
The figure5 shows the architectural model of superscalar
processor. The class process interacts directly with PEC which
executes the assigned task. The PEC controlled the process by
exchanging message between classes processor and memory.
The processor class has two cores i.e. Core1 and Core2 and
each core has many components which help in process
execution as shown in figure.
In this figure, class L2_cache is shared by two cores and caches
instruction through the class I Cache whereas D_cache caches
the data, which itself is subclass of L1_cache. The class ALU
computes integer arithmetic and logical operations; FPU is
used for floating point operations as shown in figure. SU is
used for storing the outputs. FPU class contains four classes as
namely Adder, Multiplier, Logic and Load unit.

3.2 UML Sequence Diagram
The UML Sequence diagram represents the dynamic behavior
of system in which objects are interacted with the help of

message communications. The vertical line shows the life line
of object or dynamic representation of system, a UML
sequence diagram is shown in figure 6 for process execution in
Superscalar pipeline architecture.

Figure 5: UML class diagram for superscalar process

The processor executes the instructions fastly through
execution pipelining, which execute multiple instructions at
same time. The instruction fetched, decoded and finally goes to
PEC where instructions executed and results store in
Registerfile and then Writeback.

 Thread

+Thread_id: integer
+Thread_size: integer
+Thread_name: string
+Thread_priority: integer

+Thread_start ()
+Thread_stop ()
+Thread_interrupt ()
+Thread_join ()
+Thread_synchronize ()
+Thread_sleep ()
+Thread_resume ()
+Thread_suspend ()
+Thread_destroy ()

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 522

Figure 6: UML sequence diagram for superscalar processor

4. EXPERIMENTAL STUDY
On the basis of above object-oriented design, let us consider the
two object oriented languages i.e. VC++ and VC# which work
on the .Net platform. For these two programming languages, a
relative performance of the superscalar processor is computed.
In the computation, let us consider N are the independent
instructions which can be executed in parallel through pipeline
method and k is taken as the time required to execute
instructions through m pipeline simultaneously, then the ideal
time required by scalar base machine is
T (1, 1) =k + N-1……………………. (i)
The ideal execution time is computed by
 T (m, 1) =k + (N-m)/m…………….. (ii)
The computations for ideal execution time are done by taking
lines of code varying from 10² to 10⁵ and these instructions are
considered by increasing the size of loop. Execution time is
computed by taking average of five runs and results are
depicted in the table1. As expected lines of code are increasing,
execution time is also increasing but if one compares VC++
andVC#, for long computations in milliseconds, it is observed
that VC++ takes lesser time in computation than VC#. These
results are also graphically represented infigures 7 and 8 given

on next page for 10², 10³ and 10⁴,10⁵ lines of code (LOC),
respectively.

5. CONCLUSION
From the above work, it is concluded that UML is powerful
modeling language accepted by software Professionals and also
used to represent hardware architecture problems. For the long
computations, software professionals are facing the problems
for selection of best object oriented Programming language
which works well on any kinds of processor architecture.
Therefore, superscalar processor architecture is modeled by the
use of UML classes and experimental results are performed by
taking two object-oriented programming language like Visual
C++ and Visual C# and concluded that Visual C++ is better in
comparison to Visual C# as one is performing the long
computations.

REFERENCES
[1]. Hwang, K., Advanced Computer Architecture:

Parallelism, Scalability, Programmability, Fourteenth
Reprint, Tata McGraw-Hill Edition, ISBN-0-07-053070-
X-2007.

[2]. Mano Morris, M., Computer System Architecture, Third
Edition, Prentice Hall of India Pvt Ltd. ISBN-978-81-
203-0855-8, 2007.

[3]. Patterson, A. David and Hennessy, L. John, Computer
Organization and Design: The Hardware/Software
Interface, Morgan Kaufmann Publishers Elsevier Inc.,
2005.

[4]. Cragon, G. Harvey, Memory Systems and Pipelined
Processors, Narosa Publishing House, New Delhi, 1998.

[5]. Saini, A., “Design of the Intel Pentium TM Processor”,
Intel Corporation, IEEE, and Available: http://ieee
xplore.ieee.org/stamp/stamp.jsp?arnumber=00393370
(Accessed on 14th March 2012).

[6]. OMG (2001),“Unified Modeling Language
Specification”, Available online via
http://www.omg.org.

[7]. OMG (2002), “XML Metadata Interchange (XML)
Specification”, Available online via http://www.
omg.org.

[8]. Booch, G., Rambaugh, J., and Jacobson, I., The Unified
Modeling Language User Guide, Twelfth Indian Reprint
Pearson Education, 2004.

[9]. Roff, T., UML: A Beginner’s Guide, Tata McGraw–Hill
Edition. Fifth Reprint, 2006.

[10]. Gomaa, H., “Designing Concurrent, Distributed and
Real Time Applications with UML”, Proceedings of the
23rd International Conference on Software Engineering
(ICSE’01), IEEE Computer Society, 2001.

[11]. Saxena, V., Arora, D., and Ahmad, S.; “Object Oriented
Distributed Architecture System through UML”, IEEE
International conference on Advanced in Computer
Vision and Information Technology (ACVIT-07), Nov.
28-30, ISBN 978-81-89866-74-7, pp.305-310,2007.

Process Cache Fetch

Accessed by cache

PEC Registerfile Writeback

Process Completed

Execute
Instructions

Decode
Instructions

Fetch
Instructions

Writeback

Store
Results

Performance Evaluation of Superscalar Processor Architecture Through UML

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 523

[12]. Saxena, V. and Raj, D., “UML Modeling for Instruction
pipeline Design”, World Conference on Science, Eng-
ineering and Technology (WCSET,2008), www .waset.
org/ pwaset (Acessed on 16 NOV,2011).

[13]. Boldo, S. and Filliatre, J.C., “Formal Verification of
Floating Point Programs”, 8th IEEE Symposium on
Computer Ari-thmetic (ARITH ’07), pp.187-194 .
Availabale: http :/ / www. computer.org (Accessed on 16
Nov, 2011).

[14]. Lopez, G., Taufer, M., and Teller, P.J., “Evaluation of
IEEE 754 Floating-Point Arithmetic Compliance across
a wide range of Heterogeneous Computers”,
Proceedings of the 2007 Richard Tapia Celebration of
Diversity in Computing Conference, October 2007 ,
Orlando, Flor-ida ,USA.
Available:http://gcl.cis.udel.edu/publication/
conferences/ 007tapia_mlopez.pdf (Accessed on 16 Nov,
2011).

[15]. Saxena, V. and Shrivastava, M., “UML Modeling of
Static Arithmetic Pipeline Design”, The ICFAI
University Press Vol. 7(1), pp.22-31, February 2009.

[16]. Saxena, V. and Shrivastava, M., “Performance
Evaluation of Non-Linear Pipeline through UML”,
International Journal of Computer and Electrical
Engineering,Vol.2, No.5, pp.860-866, October, 2010.

[17]. Kumar, H. and Verma, A.K., “Comparative study of
Distributed Computing Paradigms”, BIJIT – BVICAM’s
International Journal of Information Technology, Vol.
1(2), Dec. 2009.

[18]. Mohan, K.K., Srividya,A., Verma, A.K. and Gedela,
R.K., “Process Centric development to Improve Qos in
Building Distributed Applications”, BIJIT – BVICAM’s
International Journal of Information Technology, Vol.
1(1), July, 2009.

[19]. Tere, G.M. and Jhadav, B.T., “Design Patterns for
successful Service Oriented Architecture
Implementation”, BIJIT – BVICAM’s International
Journal of Information Technology, Vol. 2(2), Dec.
2010.

Figure 7: Comparisons for 102 and 103 Lines of Code

Figure 8: Comparisons for 103 and 105 Lines of Code

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; January – June, 2013; Vol. 5 No. 1; ISSN 0973 – 5658 524

 VC++ VC#

Lines of Code 10² 10³ 10⁴ 10⁵ 10² 10³ 10⁴ 10⁵

Execution

Time

 (in

Milli

Seconds)

14.05

92.005

889.0005

8952.00005

14.05

108.005

920.0005

9233.00005

14.05

109.005

889.0005

8967.00005

14.05

108.005

936.0005

9170.00005

14.05

108.005

874.0005

8780.00005

14.05

108.005

920.0005

9264.00005

14.05

93.005

890.0005

8796.00005

14.05

108.005

920.0005

9249.00005

14.05

108.005

905.0005

8812.00005

14.05

108.005

936.0005

9280.00005

Average
Execution
Time

14.05

102.005

889.4005

8861.40005

14.05

108.005

926.40005

9239.20005

Table 1: Ideal execution time for superscalar processor

