
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 500

Simulation Study for Performance and Prediction of Parallel Computers
Neeraj Kumar

Submitted in January 2012; Accepted in June 2012
Abstract - The issue of performance evaluation and
prediction has concerned the users throughout the history of
computer evolution. In recent times the parallel computer is
gaining popularity as an effective solution to low cost
supercomputing. In this study we discuss a simulation study,
performed for evaluating the performance of parallel
computers connected in different topologies.

Index Terms - Performance measures, Processor utilization,
System utilization, Throughput

1. INTRODUCTION
The future need of much more powerful super computation
asks for parallel (digital) computers, containing a large number
of fast processors that can cooperate quickly and efficiently. In
parallel processing, high performance data processing and data
flow are of equal importance. In practice so far, loss of
efficiency often happens for the technical reason that the
communication system of a parallel computer has not enough
capacity. Lack of communication capacity will result in
transfer bound processing instead of computation bound
processing. Loss of efficiency also often happens because a
parallel algorithm is still in the early stage of development.
That makes it difficult to define the architecture and
programming of a parallel computers such that, efficient
implementation of parallel algorithms is possible in a wide
range of applications. Moreover, the applicability of parallel
computation is hampered, since the programming in parallel
computation is still more difficult than programming in serial
computers.
 The need for computer performance evaluation exists from the
initial conception of a system’s architectural design to its daily
operation after installation. In the early planning phase of a
new computer system product, the manufacturer usually makes
two types of predictions. The first type is to forecast the nature
of applications and the levels of system workloads of these
applications. Here, the term workload means the amount of
service requirements placed on the system. The second type of
prediction is concerned with the choice between architectural
design alternatives, based on hardware and software
technologies that will be available in the design period of the
planned system. Here the criterion of selection is known as cost
performance trade off. The accuracy of such prediction rests, to
a considerable extent on the capability of mapping the
Special Centre for Sanskrit Studies, Jawaharlal Nehru
University, Delhi, INDIA
E-mail: neerajdagar685@gmail.com

performance characteristics. Such translation procedures are
by no means straightforward or well-established. After the
architectural decisions have been made and the system design
and implementation started, the scope of performance
evaluation becomes more specific. The interactions among the
operating system components—algorithms for job scheduling,
processor scheduling, and storage management must be dealt
with, and their effects on the performance must be predicted.
Comparing the predicted performance with achieved
performance often reveals major defects in the design or errors
in the system programming. Now, it is universally accepted
that the performance evaluation and prediction process should
be an integral part of the development efforts, throughout the
design and implementation activities.

2. MEASURES OF PERFORMANCE
When it is said that the performance of the computer is great,
it means, perhaps, that the quality of service delivered by the
system exceeds the expectation. But the measure of service
quality and the extent of expectations vary depending on the
individuals involved, eg, system designers, installation
managers, terminal users, etc. If an attempt is made to measure
the quality of computer performance in the broadest context,
then issues like user response (as well as the system response),
ease of use, reliability, user’s productivity, etc must be
considered as the integral parts of the system’s performance.
Since the performance analysis cannot avoid issues that are
ultimately behavioural, the scope of this is discussed only in
terms of clearly measurable quantities. This is done in the
conventional way as, for instance, the signal-to-noise ratio
probability of decoding errors as measures of performance of
communication systems.
The performance measures can be classified into two broad
categories:
(i) user oriented measures, and
(ii) system oriented measures.
The user oriented measures include such quantities as the
turnaround time in a batch system environment and the
response time in a real time and/or interactive environment.
The turnaround time is the length of time that elapses from the
submission of the job, until the availability of its processed
result. In the similar way, in an interactive environment, the
response time of a request, represents the interval that elapses
from the arrival of the request until its completion in the
system.
Usually jobs are categorized according to their priority classes.
Many factors may determine the assignment of priority to a
job: the job’s urgency, its importance and its resource demand
characteristics and utilization.

Simulation Study for Performance and Prediction of Parallel Computers

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 501

Throughput is defined as the average number of jobs processed
per unit time. It provides the degree of productivity that the
system can provide. But in this case, throughput is not an
adequate measure of performance; rather it is a measure of
system workload.

2.1 System Utilization
In an execution cycle, all the processors may not participate in
execution and may be idle throughout an execution cycle,
waiting for results from other processors. The utilization of the
system in terms of the number of processors used in an
execution cycle is quantified by the parameter Su, which is
referred to as system utilization.
An algorithm has been considered which is executed in r cycle
on P processors. Suppose, in an execution cycle of t1 time
units, P1 processors are used, and in the next execution cycle of
t2 time units, p2 processor are used , and so on then,
Su= (P1*t1+P2*t2+………+Pr*tr)/(P*(t1+t2+…….+tr)).

2.2 Processor Utilization
When the sub-domains assigned to different processors are not
equal, then some processors finish computation earlier than
others. As synchronization takes place at the end of every
cycle, these processors wait for others to finish. This leads to
idling and under- utilization of some processors which is
quantified by the parameter Piu for processor i. It characterises
the load balancing of the system. Perfect load balancing occurs
when the sizes of the sub-domains assigned to all the
processors are equal, i.e, when Piu=1, for i=1,2,….,p (where P
is the number of processors in the system).

2.3 Inter-Processor Communication Time
In a message passing through multiprocessor, if tstart-up
represents the message start-up overhead or latency; tsend
represents transmission time (which is inverse of the link
bandwidth); ‘k’ bytes between two neighbouring processor
involve a communication time, tcomm=tstart-up+tsend*k.

When the communication is not between two near neighbours,
the communication time is estimated by assuming that it takes
place in hops, and each hop corresponds to a near neighbour
communication. The communication time between two
processors is n*tcomm, where n is the number of hops by which
the two processors are separated.

3. ANALYSIS OF PARALLEL ALGORITHMS
Once an algorithm for a new problem has been developed, it is
usually evaluated using the following criteria: running time,
number of processor used and cost1.Besides these standard
metrics, a number of other technology related measures are
sometimes used when it is known that the algorithm is destined
to run on a computer based on that particular technology.
Running Time
As the speed is emerging to be the main reason behind the
growing interest in the field of parallel computers, the most

important measure of a parallel algorithm is, therefore, the
running time. According to AK11, running time is defined as
parallel computer, that is, the time elapsed from the moment
the algorithm starts to the moment it terminates. If the various
processors do not begin and end their computation
simultaneously, then the running time is equal to the time
elapsed between the moment the first processor to begin
computing starts and the moment the last processor to end
computing terminates.
In evaluating a parallel algorithm for a given problem, it is
quite natural to do it in terms of the best available sequential
algorithm for that problem. Thus a good indication of the
quality of a parallel algorithm is the ‘speed-up’ it produces.
This is defined as
 Speed-up= (worst-case running time of fastest known
sequential algorithm for the problem)/(worst-case running time
for the parallel algorithm).

3.1 Number Of Processors
The second most important criterion in evaluating a parallel
algorithm is the number of processor it requires to solve a
problem. It costs money to purchase, maintain and run
computers. When several processors are present, the problem
of maintenance, in particular, is compounded, and the price
paid to guarantee a high degree of reliability rises sharply.
Therefore, the large the number of processor an algorithm uses
to solve a problem, the more expensive it becomes to obtain
the solution. For a problem of size n, the number of processors
required by an algorithm, a function of n, will be denoted by
p(n). Sometimes the number of processor is a constant
independent of n.

4. IMPLEMENTATION
In traditional implementation of parallel programs, there is
often no way of ensuring that the code implements designer’s
intentions. For example, a simple typographical mistake
during coding can cause two processor to communicate when
they should not, leading to disastrous, unpredictable
consequences. If the design specifications could somehow be
fed directly to the language processor, this unintended
communication could be diagnosed syntactically. Inorder to be
viable, the design must be formally defined as a computer
language.

5. DESIGN OF SIMULATOR
In this simulator, a multiprocessor environment is simulated to
evaluate the performance of different standard computation
under various topologies. All the standard topologies like bus,
ring, torus, hypercube, mesh, and tree are considered.
The simulation is done in c language
5.1 Assumptions
The model proposed here for performance prediction assumes
that all inter processor communication times can be estimated
a priori and that there are no unpredictable queuing delays in
the system. An input file, having two fields containing

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 502

processor-ID name and process, and also the communication
file is available. It is also assumed that any process can
complete its message passing in one communication cycle if
the route is free and the receiving process is ready.

5.2 Model
The input to this simulator is given after balancing load with a
suitable load balancing technique. Here at each processor two
queues are maintained: a ready queue, and a communication
queue. In the beginning the ready queue at each processor
contains all the processes assigned to that processor and the
communication queue is kept empty. The round_ robin job
scheduling technique is followed at each processor, ie, each
process at a processor, is given a time slice for execution. An
execution cycle is followed by a communication cycle. In the
processes requiring communication among themselves
communicate. Before any of the two processes communicate,
first the links connecting them through the shortest path are
examined. Then the communication queue of the partner
processor is searched for the partner process. If it is found
there, the communication delay is added to the respective
counters and the partner process is removed from the front of
the ready queue and is placed at the rear of the ready queue.
When all the queues are exhausted then the program
terminates. Computation time is added to each process at the
end of each computation cycle. It also calculates time of
completion of each queue. That is done by adding execution
time of all the processes at each processor separately.
The different parameters and structures are described as
follows.
Structure processor includes
(i) Current state of processor, ie, ‘o’ for every 1 for ready

and 2 for idle.
(ii) Time_ stamp, clock, link clock for each link; and
(iii) Three process queues. Each queue has its own count.

(a) Ready_ queue of active processes waiting for
communication.

(b) Communication_ queue of inactive processes waiting
for communication.

(c) Wait queue of inactive processes waiting to be
creates as threads.

Proc_ array is dynamically allocates array of processors.
The declaration for the above is made as follows.
Struct processor {
Int current_ state;
Unsigned double time_ stamp , clock,*link_clk;
Int ready_process_count,comm_process_count,
Wait_process,count;
Struct process*ready_q_tl,*wait_q_t,(* comm._q_tl;

}**proc_arr;

Structure process includes
(i) Process_ id identification of the process;
(ii) Priority of the process : 1 if urgent else 0;
(iii) Current state of process 0 if over and 1 if ready;

(iv) Partner_ proc : communication partner processor

Partner_ process: communication partner Process;
(v) Instruction queue and instruction count; and
(vi) Pointer to the ‘next’ process in the linked list.
The structure process is defined as follows.
Struct process {
Int priority, process id, inst_ count state; current state;
Int partner_ proc, partner_ process;
Unsigned double clock;
Struct process*next;
Struct inst_list,*instr_ hd, *instr_ tl;
};
The structure instruction list includes
(i) Type: integer value indicating the type of instruction;
(ii) Params array : parameter required for that instruction; and
(iii) Pointer to the next instruction in the linked list.

The declaration for list_ list is given as follows:
 Struct instr_ list {
 Int type;

Int params4;
Struct instr_ list*next;
};

Other variables declared include t_ calc which store the total
computation time, ie, the time required to run the same
application on a single processor.
Initialize ()
The initializing subroutine is a semi- interactive subroutine
which initializes all parameters used afterwards by the
simulator. Here the number of nodes/ processors type of
topology
Processor used and its frequency are taken as input. Also the
clock used is initialized. All the process counts are also
initialised.

get_link(int sp.int dp)
 This subroutine takes the destination and the source processor
as input (as well as topology)and returns communication link
between those two processors. Here popular topologies like
mesh, star, hypercube, tree, torus and wk_recursive are
consider as well as the logic topologies like ring, pipeline, etc.

read_input(cha*filename)
This function reads the input file given in command line
argument. Here declaration of various dummy statements is
given which is the output file of the parser. Parser replaces the
actual parallel C statements by these dummy Statements
considering the worst case of execution. Here the queues for
different processors are maintained to be used by the
simulator. There are several smaller procedures doing different
tasks.

Simulation Study for Performance and Prediction of Parallel Computers

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 503

void create(int*pro_arr)
This creates another (thread) process. This thread which was
initially stored in wait queue and is moved to read queue. Delay
is added to the process and processor clock, and the process
input in the ready queue end.
void send(int*par_arr)
This performs the communication operation ‘send’. At first the
partner processor of processes is updated. Then the
communication queue of the partner processor is reached to
find out whether it contains partner process or not. If it is able
to find partner process, then corresponding communication
delay is added to both the processes. The partner processes is
removed from the communication queue of the partner
processor or is put in its ready queue, and the ready queue and
communication queue of the partner process are updated. On
the other hand, if it is unable to find partner process in the
communication queue of the partner processor then the current
process is put in the communication queue of the current
processor. If it is able to find the partner processor,
corresponding link delays are added, and the current process is
put in the ready queue end.
void receive(int*pro_arr)
This function performs the communication operation ‘receive’.
Here, first the communication queue of the partner processor is
reached for the partner process. If it is found, then
communication delay is added to both the processes. The
partner process is removed from the communication queue of
partner processor or is put in its ready queue. The
communication queue and ready queue of partner process are
updated. If unable to find the partner process in communication
queue of partner processor then the current process is put in the
communication queue of the current processor. If it is able to
find the partner process, the corresponding link delays are
added and the current process is put at the ready queue end (the
text is available with the author).
There are several other procedures to add computational delay,
communication delay, link delay, etc and procedure link send
it changes the state of a process and removes it from the queue.
Simulate ()
This module does the simulation work and a file is opened to
write the instructions as executed by simulator. It starts on
processor zero. If the time_stamp of current processor is greater
than allotted time slice or if it is ready process queue then the
procedure processor_schedule is allowed else procedure
process_schedule is called.
The processor_scheduler finds the processor with minimum
clock as the new current processor. It follows a linear search
for the above purpose. The process_scheduler finds the process
on the current processor having urgent priority and places it in
ready_queue head of the current processor so as to execute it
next (details available with the authors). The simulator
continues till all instructions of all the processes are over.
Statistics ()
This procedure calculates all the statistical information and
stores them in a file. Time is estimated for the application to

run on a single processor, the overall efficiency. Maximum of
all processor clocks (details available with the author) is also
calculated.

Algorithm

Begin
initialize() // Initializes various parameters and variables.
read_input // Read input from the designated file.
simulate // Start the simulation.
statistics // Transfer the desired results to a
 predetermined file.
End

 6. DISCUSSION
In this model, the processor executes a computation step and
after finishing, they synchronize and perform data exchange in
a cycle. If during execution of an algorithm, all the processors
are performing computations in all cycles then the system
utilisation is 1. However, it is found that in some algorithm all
the processors may not participate in computation in all the
cycles, as some processor may be waiting for the results
generated by some other processors. The value for such
algorithms is less than one.
The level of details required in the validation of a simulator
should depend on how that simulator is to be used in decision
making. If the performance measure thus obtained has some
mean value (eg, CPU utilization, the average response time),
then the notion of significance level and confidence interval
should be applied to quantify the statistical significance of the
difference between measured and simulated effects. The
analysis of variance technique can also be used to test the
hypothesis.

7. CONCLUSION
The model discussed here determines the performance of a
static system. With some modifications, it can be made to
work in dynamic environment also. The model discussed has
got some limitations. Its advantage is that it helps smaller
processes to complete execution by providing them time
slices. In many cases the intermediate results provided by such
processes is used by the other processes to continue execution.
Since in most cases, parallel computers are used for similar
kind of jobs repeatedly, by monitoring the communication
pattern, the execution cycle can be varied to reduce the context
switching overhead.

REFERENCES
[1]. SJ Akl. ’The Design and Analysis of Parallel

Algorithms.’ Prentice Hall, Inc, New Jersy, 1989.
[2]. H Alt, T Hagerup , K Mehlhorn and F P Preparata. ‘

Deterministic Simulation of Idealized Parallel
Computers on More Realistic Ones.’ SIAM Journal on
Computing, vol 16,no 5, October 1987, p808.

[3]. A Basu, S Srinivas, K S Kumar, A Paulraj and LM
Pattnaik.’ Performance Analysis of algorithms on a

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 504

message Passing through Process.’ 5th International
IEEE Symposium on Parallel Processing,1991.

[4]. D Ferari. ’Computer System Performance Evaluation’.
Prentice Hall, 1978.

[5]. JE Hall, DK Hsiao and HN Kamel. ‘Performance
Evaluation of a Parallel Sealable and Expandable
Database Computer.’ Proceedings of the Twenty fourth
Annual Hawaii International IEEE Conference on
System Sciences,1991.

[6]. Harvendra Kumar, A. K. Verma, “Comparative Study of
Distributed Computing Paradigms”, BVICAM’s
International Journal of Information Technology, BIJIT,
issue 2, July-December 2009, Vol.1 No.2,

[7]. K Hwang and FA Briggs. ’Advanced computer
Architecture and Parallel Processing.’ McGraw Hill,
New York,1989.

[8]. LH Jamieson, DB Gannon, RJ Douglas, (eds). ‘The
Characteristics of Parallel Algorithms.’ The MIT Press
1989.

[9]. MJ Quinn. ‘Designing Efficient Algorithms for Parallel
Computers.’ McGraw Hill, New York, 1987.

[10]. H A Sholl , y Quin and RA Ammar . ‘Task Coalescence
and Performance Evaluation for Parallel Software
Structures on Distributed, Real-time System.’
Processings of the Twentyfourth Annual Hawaii
International IEEE Conference on System Sciences,
1991.

[11]. C R Snow.’ Concurrent Programming.’ Cambridge
University Press,1988.

[12]. B W Stuck and E Arthurs. ‘A Computer and
communication Network Performance Analysis Primer.
‘Prentice Hall, 1985.

[13]. L Svobodova. “Computer Performance Measurement
and Evaluation Method: Analysis and Application”,
Elsevier, New York.

[14]. CD Howe and B Moxon. ‘How to Program Parallel
Processors.’ Spectrum, vol 24, no 9, September 1987,
p36

[15]. K. Bhatia, A. K. Pal, Anu Chaudhary, “Performance
Analysis of High Speed Data Networks Using Priority
Discipline”, BVICAM’s International Journal of
Information Technology, BIJIT, issue 2, July-December
2009, Vol.1 No.2,

