
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 468

Boosting Geographic Information System’s Performance using In-Memory Data Grid

Barkha Bahl1, Vandana Sharma2 and Navin Rajpal3
Submitted in April 2012; Accepted in July 2012

Abstract - A typical Geographic Information System(GIS) is
information system that integrates, stores, edits, analyzes,
shares and displays geographic information for effective
decision making. The focus here is to refine the storing and
retrieving capabilities of any GIS. GIS application have a
very high performance and scalability requirement, such as
query response time of less than 3 seconds, 120000 customer
sessions per hour and 100000 data addition/updates per day.
Also an ideal GIS application always deal with high
concurrent load, frequent database access for mostly read
only data, and non-linear growth of mostly read only data
over period of time. These all are the factors which lead to
performance impact in the application. This research
proceeds to understand how the In-Memory Data-Grid
solution is better than other solutions and how can it be
leveraged to implement a very high performing and highly
scalable GIS applications.

Index Terms - In-memory data grid, Cache memory,
Geographic Information system (GIS), Distributed cache

1. INTRODUCTION
Geographic Information system, commonly known as GIS is a
computer system capable of capturing, storing, analyzing, and
displaying geographically referenced information, that is, data
identified according to location. Practitioners also define a GIS
as including the procedures, operating personnel, and spatial
data that go into the system.
A GIS application[7] requires low response time, very high
throughput, predictable scalability, continuous availability and
information reliability which can be provided by In-Memory
Data Grid.
In-Memory Data Grid is a Data Grid that stores the information
in memory in order to achieve very high performance, and uses
redundancy - by keeping copies of that information
synchronized across multiple servers in order to ensure the
resiliency of the system and the availability of the data in the
event of server failure[5].
Over the last few years, In-Memory Data Grids have become
an increasingly popular way to solve many of the problems

1Research Scholar, GGSIP University, New Delhi
2Dy.Director General, NIC, New Delhi
3Professor and Dean, USIT, GGSIP University, New Delhi
E-mail: 1barkha69@rediffmail.com,
2sharma.vandana@nic.com and 3navin_rajpal@yahoo.com

related to performance and scalability, while improving
availability of the system at the same time. In-Memory Data
Grid allows eliminating single points of failure and single
points of bottleneck in the application by distributing the
application's objects and related processing across multiple
physical servers.
One of the easiest way to improve application’s performance is
to bring data closer to the application, and keep it in a format
that the application can consume more easily.
Most enterprise applications are written in one of the object-
oriented languages, such as Java or C#, while most data is
stored in relational databases, such as Oracle, MySql or SQL
Server. This means that in order to use the data, the application
needs to load it from the database and convert it into objects.
Because of the impedance mismatch between tabular data in
the database and objects in memory, this conversion process is
not always simple and introduces some overhead, even when
sophisticated O-R mapping tools, such as Hibernate or Eclipse
Link are used.
Caching objects in the application tier minimizes this
performance overhead by avoiding un-necessary trips to the
database and data conversion. This is why all production-
quality O-R mapping tools cache objects internally and short-
circuits object lookups by returning cached instances instead,
whenever possible.

2. PROBLEM STATEMENT
2.1 Introduction to the Problem
Customer expectations from GIS systems have evolved
significantly over a period of time [4]. Today customers are
expecting better and faster online experience.
Several architectures are proposed to retrieve necessary,
interested and effective information efficiently and at the same
time provide scalable platform for GIS application. However,
the results of these architectures generally become
unsatisfactory and prone to performance loss over the period of
time. As soon as the customer base increases, the performance
starts retarding.

3. PROPOSED SYSTEM
The proposed system is trying to inculcate the technology
called distributed cache in a GIS application. This technology
will not only boost performance of application but will also
provide many more features to it. The first step in our paper is a
strong research base of prevalent architectures and secondly an
in-depth study of distributed cache technology . After the
research we will try to prove our concept through a small proof
of concept.
If we are able to incorporate distributed cache in an GIS
application the following feature would be achieved

Boosting Geographic Information System’s Performance Using In-Memory Data Grid

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 469

1. Low response time
2. High throughput
3. Eliminate bottlenecks
4. Predictable scalability
5. Continuous availability
6. Failover support
7. Information Reliability

4. LITERATURE REVIEW
Simple database retrieval architecture is still the back bone for
most of the complex architectures in use today [8]. GIS
application generally contains a program running on server, and
is connected to a database. Numbers of users are connected to
this program to query, update, delete or add different items.
Initially, application was deployed on a server which originally
supports 5000(say) users at a time, which means that at a time
5000 users could connect to the server. No matter, how
powerful a server was, for sure it would have some limit on
number of users it could support, and therefore as an example
here we have assumed that server could support 5000 users at
a time.
There is further limit on number of users, whose requests
required access to database that could be processed
simultaneously. The reason behind this was that, connections
created to database were generally heavy, as many connections
to database at the same time were not feasible. To efficiently
use connections to access to database, developers generally
used connection pools, and set a limit on number of
connections that could be active at a time. Other then
performance issues the other issues regarding the architecture
were:
4.1. POF, which stands for single point of failures. In the

architecture there were three single points of failures:
application, database and server. In case either database
crashes or server crashes or application crashes, complete
application would be down and no one would be able to
access the application or use application.

4.2. Shared resources were always performance bottlenecks
and greater the number of connections/users a shared
resource would have more will be the affect on
performance. Whereas in the previous architecture,
database was a shared resource, which could not support
large amount of users at same time.

4.3. Another reason of low performance with the basic
architecture was the step required to convert data stored
in database to application object, when user queries for
data stored in database, and step required reading
application object to store data in database.

To take care of number of users supported by application, load
balancer was introduced [2]. Load balancer’s responsibility is
to distribute the load efficiently among different
servers/applications capable of process the request. In this
architecture load balancer application is run on one system and
GIS application is deployed and run on more than one server
which is further connects to single database. Load balancer
forwards the user requests to any of the server configured with

load balancer based on the load of the server. The use of load
balancer tremendously increased the number of users that could
simultaneously connect to application, as number of servers
running the application was increased. But there were still large
performance issues with the architecture [9].
Still, there is limit on number of users whose requests required
access to the database, the reason being limit on number of
connections that could be made simultaneously to the database.
 SPOF still existed. Though server running the application was
no longer, single point of failure, as there were more servers
which were present, which would be able to keep application
running even if any server or application running on any server
crashes. This would remain transparent to users, as users were
no longer interacting with the server hosting the application,
but users were interacting with the load balancer. When load
balancer would get news of one of the server being down, it
would then exclude that server from its list of active servers
and stop delegating any of the user requests to that specific
server. But database was still single point of failure, as we were
using single database, and if that database would crash, the
application would fail.
Cris J. Holdorph[3] gave an approach to work with distributed
database instead of single database. In this scheme, it was
considered that each server which was connected to a load
balancer was having its own database.
Though, number of users which could be supported now
increased, compared to above discussed schemes, but this
scheme would require another extra process to replicate the
data stored in one database to other databases. This was
required to take care of scenario, when user requests were sent
to different database. The result sent back should be consistent
and independent of data stored on database.
Jim Handy[6] defined a scheme in which multiple servers
were connected to single cache, which are further connected to
the database.
The number of connections that could be made increased
(though this number depends on the server on which cache is
hosted). Also the read queries would be much faster, and
performance of write queries to the database would be
improved if the updates were done in cache synchronously, and
asynchronously saved in database by some other process.
But there were still some disadvantages related to this scheme
like cache and database were still single point of failure, if any
of it crashed, application would not be available. Data-intensive
queries would run on complete data in cache, which was not
very efficient.
In recent past there was a concept of In-Memory Data Grid and
related products which have become famous, which could be
used to improve performance of applications which are highly
affected by database operations and mostly read only
operations [8]. In GIS applications most of the requests are
related to read-only requests which require reading something
from database. Most of the users request sent to server are read-
only request and insert/update command is used only when new
point is located.
Paul Colmer[5] described the features provided by In-memory

Cop

Dat
An
acce
app
mul
acce
tran
Perf
to a
app
that
app
larg
Arin
cach
sche
The
Dis
con
the
type
netw
the
requ
Dis

Nea
in t
cach
is so
In R
app
app
acce

5.
5.1
In-M

py Right © BIJ

ta grid, which
In-Memory D
ess by keepin

plication object
ltiple servers.
ess the inform

nsformation ste
formance is fu
a single applic

plication object
t a hundred dif

plication object
ge and thus hig
ndam Chakrav
he could be u
emes. In-Mem
ese are Distribu
tributed cache

ntains a unique
capacity of c

e of cache wi
work transfers

cache. Distri
uires heavy vo
tributed Cache

Figure 1
ar cache is each
the local cache
he and these ca
ome overhead
Replicated cach
plication data i
plication requir
ess from cache

 GRID CLUS
 Grid Clust

Memory Data

JIT – 2012; Jul

makes it a go
Data Grid achie
ng the inform
t form, and by
In other word

mation that th
ep .
urther improved
cation object
ts into a single
fferent changes
ts could be per

ghly efficient tr
vorty[1] discus
used to overc

mory Data Grid
uted, Near and
e is one in w
 set of applica
ache, increase
ill involve ser
for applicatio

ibuted cache
lume of read a

e architecture i

: “Distributed
h client node c
e and larger am
aches are synch
involved with

he each node i
in the cache.
res less appli
e.

STER ARCHI
er Architectur

a Grids[8] are

ly - December,

ood choice for
eves low respo
mation in-mem

sharing that in
ds, applications
hey require w

d by coalesces
and batches m
e database tran
s to each of a
rsisted to a dat
ransaction[10].
sed various top

come the limi
d supports three

Replicated cac
which each no
ation data in th
e the nodes in
rialization /de-
n data read an
is best when

and write applic
is shown in Fig

d Cache Archi
containing sma
mount of data
hronized with
synchronizing

in the cluster w
Replicated cac
ication data a

ITECTURE
re
e built on a

, 2012; Vol. 4 N

GIS applicati
onse time for d
mory and in
nformation acr
s may be able

without any d

multiple chan
multiple modif
nsaction, mean
hundred differ

tabase in a sing

pologies in wh
itations of abo
e types of cach
che topology.

ode in the ser
he cache. To sc

the cluster. A
-serialization a

nd write access
the applicatio

cation data.
gure 1.

itecture”
all amount of d
in the distribu
each other. Th

g the caches.
will contain all
che is best wh

and highly re

a fully cluste

BIJIT - BVIC

No. 2; ISSN 09

ion.
data
the

ross
e to
data

ges
fied
ning
rent
gle,

hich
ove
hes.

rver
cale
Any
and
s in
ons

data
uted
here

the
hen
ead

red

architec
protoco
5.1.1.S

c
a

5.1.2.L
c
a

5.1.3.D
a
m
c
d

5.1.4.W
A
in
(
c
a

5.1.5.D
q
o

Using
benefits
1. Ther

clus
will
cach
prog
alter

2. Sinc
prov
of an

3. Sinc
auto
rapi
whic
extr

4. Sinc
bala
auto
Loa
mem
the c

6. RE
When a
the key
automat
for load
X from
If X exi
it to dat
and als
requeste

CAM’s Interna

973 – 5658

cture. Grid is
l, in which serv

Speaking to
conference room
a conference ro
Listening: Eac
can hear messa
as messages tha
Discovery: Par
and listening; th
means, the part
conference roo
detect when new
Working Gr
Although a par
ntroduced to t
i.e. once disc

communicate d
an individual pa
Death Detectio
quickly detect w
or die.
the conferenc

s:
re is no confi
ter. Any progr
automatically

hes and other s
gram joins the
rnatively, a clu
ce all cluster
vide redundanc
ny one node do
ce the death
omatically and
dly, and mor
ch means that
a work to hand
ce all cluster m
ance responsib
omatically by d
d balancing a

mbers joining
cluster.

EAD-THROUG
an application
y X, and X is
tically delegat
ding data into c
the underlying

ists in the data
ta grid, which
so data X is
ed it. This is ca

ational Journal

s based on
vers are capab
Everyone: W

m, it is able to
oom.
ch party prese
ages that are int
at are intended
rties can only
here are no oth
ties must deter

om at any giv
w parties enter
roups and
rty can talk to
the other parti
covery has c

directly to any
arty.
on: Parties in
when parties le

ce room mode

figuration requ
ram running g
join the cluste

services provid
e cluster, it is
uster member.

members are
cy within the
oes not cause a
or departure

d quickly dete
re importantly
the applicatio

dle failover.
members are kn
bilities across
distributing the
automatically
the cluster, or

GH CACHIN
asks the cache
not already in

e to the cache
cache, and this
g datasource.
asource, the cac

is then placed
returned to

alled Read-Th

 of Information

a peer-to-pee
le of:

When a party
speak to all ot

ent in the conf
tended for ever

d for that particu
communicate

her senses. Usi
rmine exactly
ven time, and
r the conferenc

Private Co
o everyone, on
ies in the conf
completed), th
set of parties,

the conferenc
eave the confe

el provides th

uired to add m
grid application
er and be able
ded by the clu
s called a clus

e known, it is
cluster, such t

any data to be l
of a cluster

ected, failover
y, it occurs t
on does not ha

nown, it is po
the cluster. G

e load evenly a
occurs to resp
r existing mem

NG
e for an entry,
n the cache, d

e-store which i
s cache-store w

che-store will l
d in the cache f

the applicatio
hrough caching

n Technology

 470

er clustering

y enters the
ther parties in

ference room
ryone, as well
ular party.
 by speaking

ing only these
who is in the
parties must

ce room.
onversations:
nce a party is
ference room

he party can
or directly to

ce room must
erence room –

he following

members to a
n when starts
to access the

uster. When a
ster node, or

s possible to
that the death
lost.
r member is

occurs very
transparently,

ave to do any

ssible to load
Grid does this
across cluster.
pond to new

mbers leaving

, for example
data grid will
is responsible
will now load

load it, return
for future use
on code that
g.

Boosting Geographic Information System’s Performance Using In-Memory Data Grid

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 471

7. WRITE-THROUGH CACHING
Coherence can handle updates to the datasource in two distinct
ways, the first being Write-Through[2].
In this case, when the application updates a piece of data in the
cache the operation will not complete (i.e. the put will not
return) until data is also persisted to the underlying datasource.
This does not improve write performance at all, since the user
is still dealing with the latency of the write to the
datasource[10].

8. REFRESH-AHEAD CACHING
In the Refresh-Ahead scenario, Coherence allows a developer
to configure the cache to automatically and asynchronously
reload (refresh) any recently accessed cache entry from the
cache loader prior to its expiration.
The result is that once a frequently accessed entry has entered
the cache, the application will not feel the impact of a read
against a potentially slow cache store when the entry is
reloaded due to expiration. The refresh-ahead time is
configured as a percentage of the entry's expiration time; for
instance, if specified as 0.75, an entry with a one minute
expiration time that is accessed within fifteen seconds of its
expiration will be scheduled for an asynchronous reload from
the cache store.

9. WRITE BEHIND CACHING
In the Write-Behind scenario, modified cache entries are
asynchronously written to the datasource after a configurable
delay, whether after 10 seconds, 20 minutes, a day or even a
week or longer.
For Write-Behind caching, grid generally maintains a write-
behind queue or any data structure which stores the data that
needs to be updated in the datasource. When the application
updates X in the cache, X is added to the write-behind queue (if
it isn't there already; otherwise, it is replaced), and after the
specified write-behind delay data grid service will update the
underlying datasource with the latest state of X.
Note that the write-behind delay is relative to the first of a
series of modifications – in other words, the data in the
datasource will never lag behind the cache by more than the
write-behind delay.
The result is a "read-once and write at a configurable interval"
(i.e. much less often) scenario. There are four main benefits to
this type of architecture:
1. The application improves in performance, because the user

does not have to wait for data to be written to the
underlying datasource.

2. The application experiences drastically reduced database
load: Since the amount of both read and write operations is
reduced, so is the database load. The reads are reduced by
caching, as with any other caching approach. The writes -
which are typically much more expensive operations - are
often reduced because multiple changes to the same object
within the write-behind interval are "coalesced" and only
written once to the underlying datasource ("write-

coalescing"). Additionally, writes to multiple cache entries
may be combined into a single database transaction.

3. The application is somewhat insulated from database
failures: the Write-Behind feature can be configured in
such a way that a write failure will result in the object
being re-queued for write. If the data that the application is
using is in the cache, the application can continue
operation without the database being up.

4. Linear Scalability: For an application to handle more
concurrent users you need only increase the number of
nodes in the cluster; the effect on the database in terms of
load can be tuned by increasing the write-behind interval.

10. STATISTICS FOR COMPARISON
10.1 Database and In-Memory Data Grid Performance
The comparison shows that when the data is stored
conventionally in databases the processing speed is more as
compared to when it is stored in cache. The results have been
shown in figure 2 and figure 3.

11. CONCLUSION
An effective caching mechanism is the foundation of any
distributed-computing architecture. The focus of this article
was to understand the importance of caching in designing
effective and efficient distributed architecture. In memory data
grid method was finally implemented for the same. It has been
observed that retrieval time of GIS application’s data saved
using in memory data grid method is much less as compared to
when the data is saved using the conventional database storage
method. Thus, the use of distributed cache technology for
spatial data storage will boost the performance of GIS
application.

FUTURE SCOPE
Object relational mapping is a way to bridge the impedance
mismatch between object-oriented programming (OOP) and
relational database management systems (RDBMS). Many
commercial and open-source ORM implementations are
becoming an integral part of the contemporary distributed
architecture. ORM technologies are becoming part of the
mainstream application design, adding a level of abstraction.
Implementing ORM-level cache will improve the performance
of a distributed system. Therefore, this method can be used to
improve the performance of the GIS application. In future, the
digitized data required for GIS application can be stored
using proposed Triangular Pyramid Framework for Enhanced
object relational vector data model[3] under the distributed
cache environment using in memory data grid for better
results.
REFERENCES
[1]. Arindam Chakravorty,"Guide to choose best caching

strategy for your application", http://www.csqldb.com,
pg. no. 2-11, October 2009.

[2]. Aleksandar Seovic, Mark Falco, Patric Peralta,
“Designing Coherence Caches”, Oracle Coherence 3.5
Book. Packt Publishing. April 2010.

Cop

[3].

[4].

py Right © BIJ

 B. Bahl, N
Framework
Data mode
Computer
2011,ISSN

 Ed Upchur
Performanc
UK IEE Te

Figur

JIT – 2012; Jul

N. Rajpal, V
k for Enhance
el for GIS. IJ

Science Issu
N (online):1694

rch & John M
ce in E-Comm
eletraffic Symp

re 2: “Saving I

ly - December,

. Sharma,”Tri
ed Object rel
JCSI”, Internat
ues, vol. 8, i
-0814,pg. 320-
Murphy , “W
merce Systems
posium, May 2

Item in Datab

, 2012; Vol. 4 N

iangular Pyram
lational Dynam
tional Journal
issue 1, Janu
-328,2011

Why Worry ab
s”, Proc. Of 1
2000.

ases”

BIJIT - BVIC

No. 2; ISSN 09

mid
mic

of
uary

bout
16th

[5]. P
p
h
d

[6]. J
S
E

[7]. H
s
s
I
in
4
e

[8]. J
p

[9]. R
h

[10]. H
d
I
i

CAM’s Interna

973 – 5658

Paul Colmer,
performance
http://highscala
data-grid-techn
Jim Handy,
Systems”, The
Elsevier Store,
Hanan Samet, “
spatial datab
systems(GIS)”,
International
nformation sy

443-6., 2001. J
ecommerce sys
Jonathan Purdy
paper, Oracle C
Rajendaram Su
high performan
Harvendra Kum
distributed c
International Jo
ssue 2, vol. 1 N

Figure

ational Journal

”In-Memory

ability.com/blo
nologies.html, A

“Maintaining
Cache Memo

 Pg. no. 138-1
“ Issues, devel
bases and
, GIS’01 pr
Symposium o

ystems . pg. 1-
John Murphy,
stem”, July 200
y, ”Data Grids
Corporation , p
undaram , “Ora
nce ecommerce
mar, A.K.Verm
computing p
ournal of Infor
No. 2, July-Dec

3: “Saving ite

 of Information

Data Grid fo
“,

og/2011/12/21/
August 2010.
 Coherency

ory Book. Aca
41, March 199
lopments, and

geographic
roceedings of
on Advances i
-1, ACM, ISB
“Assuring pe

04.
& SOA”, An

g.-1-12, May 2
acle Coherence
e application”,
ma, "Comparat
paradigms",
rmation Techn
c., 2009.

em in cache”

n Technology

 472

or improving
.

in-memory-

in Caches
ademic Press,
98.
challenges in

information
f the ACM
n geographic

BN -1-58113-
erformance in

Oracle white
2007
e Cache for a
HCL, 2010.
tive Study of

BVICAM’s
ology, BIJIT,

Boosting Geographic Information System’s Performance Using In-Memory Data Grid

Copy Right © BIJIT – 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 – 5658 473

Continued from page no. 467

[1]. Internet World Stats (2010, June 31). Internet Usage
Statistics: The Internet Big Picture (World Internet
Users and Population Stats). Retrieved December 21,
2010, from
http://www.internetworldstats.com/stats.htm.

[2]. The Economist (2010, July 1). War in the Fifth Domain:
Are the Mouse and Keyboard the New Weapons of
Conflict? Retrieved June 23, 2012, from
 http://www.economist.com/node/16478792.

[3]. Techopedia (2012, June 6). Whaling: Phishers look to
land a big catch. Retrieved June 23, 2012, from
http://www.techopedia.com/2/28617/security/whaling-
 phishers-look-to-land-a-big-catch .

[4]. MessageLabs Intelligence Report (2010, September 20).
MessageLabs Intelligence September 2010. Retrieved
December 21, 2010, from
http://www.messagelabs.com/mlireport/MLI_2010_09_
September_FINAL_EN.PDF.

[5]. Webopedia. Phishing. Retrieved June 23, 2012, from
http://www.webopedia.com/TERM/P/phishing.html .

[6]. Trinity College, University of Cambridge. Phishing.
Retrieved June 23, 2012, from
http://www.trin.cam.ac.uk/index.php?pageid=560.

[7]. Citizens State Bank (2012, March 1). Fraud Busters: How
to identify and protect yourself from Internet Fraud.
Retrieved June 23, 2012, from www.csbnow.com/fraud-
busters.pdf.

[8]. McAfee (2010, March 9). McAfee Inc. Unveils New
Consumer Threat Alert Program: A Warning for
Consumers about the Most Dangerous Online Threats.
Retrieved June 22, 2012, from
http://www.mcafee.com/us/about/news/2010/q1/201003
09-01.aspx.

[9]. Cabinet Office, U.K. Government (2011, February 17).
The Cost of Cyber Crime. Retrieved June 23, 2012, from
http://www.cabinetoffice.gov.uk/sites/default/files/resour
ces/the-cost-of-cyber-crime-full-report.pdf.

[10]. The Ethical Hack3r (2010, July 3). [Interview] The Jester.
Retrieved June 23, 2012, from
http://www.ethicalhack3r.co.uk/security/interview-the-
 jester/.

[11]. University of Calgary (2009, October 26). Scareware:
Don’t get spooked!. Retrieved June 23, 2012, from
http://www.ucalgary.ca/it/files/it/scareware_poster1_oct_
web_1.pdf.

[12]. The Cooperative Association for Internet Data Analysis.
AS Rank: Information for a single AS: AS Relationship
Table (AS 43513). Retrieved December 21, 2010, from
http://bit.ly/as-43513-ranking-by-CAIDA.

[13]. Centix. Threats. Retrieved June 23, 2012, from
http://www.centix.be/content.aspx?PageId=135.

[14]. Kusam, Pawanesh Abrol, & Devanand, “Digital
Tampering Detection Techniques: A Review”,
BVICAM’s International Journal of Information

Technology, BIJIT, issue 2, July-December 2009, Vol. 1
No. 2.

[15]. VirSCAN.org (2010, September 27). EBIH.EXE.
Retrieved June 23, 2012, from
http://virscan.org/report/5eee80002e0f85f3aec137b
9cd30eeda.html.

[16]. B. B. Jayasingh & B. S. Swathi, “A Novel Metric for
Detection of Jellyfish Reorder Attack on Adhoc
Network” BVICAM’s International Journal of
Information Technology, BIJIT, issue 3, January-June,
2010 Vol. 2, No. 1.

