BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Boosting Geographic Information System’s Performance using In-Memory Data Grid

Barkha Bahl', Vandana Sharma® and Navin Rajpal3
Submitted in April 2012; Accepted in July 2012

Abstract - A typical Geographic Information System(GIS) is
information system that integrates, stores, edits, analyzes,
shares and displays geographic information for effective
decision making. The focus here is to refine the storing and
retrieving capabilities of any GIS. GIS application have a
very high performance and scalability requirement, such as
query response time of less than 3 seconds, 120000 customer
sessions per hour and 100000 data addition/updates per day.
Also an ideal GIS application always deal with high
concurrent load, frequent database access for mostly read
only data, and non-linear growth of mostly read only data
over period of time. These all are the factors which lead to
performance impact in the application. This research
proceeds to understand how the In-Memory Data-Grid
solution is better than other solutions and how can it be
leveraged to implement a very high performing and highly
scalable GIS applications.

Index Terms - In-memory data grid, Cache memory,
Geographic Information system (GIS), Distributed cache

1. INTRODUCTION

Geographic Information system, commonly known as GIS is a
computer system capable of capturing, storing, analyzing, and
displaying geographically referenced information, that is, data
identified according to location. Practitioners also define a GIS
as including the procedures, operating personnel, and spatial
data that go into the system.

A GIS application[7] requires low response time, very high
throughput, predictable scalability, continuous availability and
information reliability which can be provided by In-Memory
Data Grid.

In-Memory Data Grid is a Data Grid that stores the information
in memory in order to achieve very high performance, and uses
redundancy - by keeping copies of that information
synchronized across multiple servers in order to ensure the
resiliency of the system and the availability of the data in the
event of server failure[5].

Over the last few years, In-Memory Data Grids have become
an increasingly popular way to solve many of the problems

'Research Scholar, GGSIP University, New Delhi
’Dy.Director General, NIC, New Delhi

’Professor and Dean, USIT, GGSIP University, New Delhi
E-mail: 'barkha69@rediffmail.com,
sharma.vandana@nic.com and *navin_rajpal@yahoo.com

Copy Right © BUJIT —2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 — 5658

related to performance and scalability, while improving
availability of the system at the same time. In-Memory Data
Grid allows eliminating single points of failure and single
points of bottleneck in the application by distributing the
application's objects and related processing across multiple
physical servers.

One of the easiest way to improve application’s performance is
to bring data closer to the application, and keep it in a format
that the application can consume more easily.

Most enterprise applications are written in one of the object-
oriented languages, such as Java or C#, while most data is
stored in relational databases, such as Oracle, MySql or SQL
Server. This means that in order to use the data, the application
needs to load it from the database and convert it into objects.
Because of the impedance mismatch between tabular data in
the database and objects in memory, this conversion process is
not always simple and introduces some overhead, even when
sophisticated O-R mapping tools, such as Hibernate or Eclipse
Link are used.

Caching objects in the application tier minimizes this
performance overhead by avoiding un-necessary trips to the
database and data conversion. This is why all production-
quality O-R mapping tools cache objects internally and short-
circuits object lookups by returning cached instances instead,
whenever possible.

2. PROBLEM STATEMENT

2.1 Introduction to the Problem

Customer expectations from GIS systems have evolved
significantly over a period of time [4]. Today customers are
expecting better and faster online experience.

Several architectures are proposed to retrieve necessary,
interested and effective information efficiently and at the same
time provide scalable platform for GIS application. However,
the results of these architectures generally become
unsatisfactory and prone to performance loss over the period of
time. As soon as the customer base increases, the performance
starts retarding.

3. PROPOSED SYSTEM

The proposed system is trying to inculcate the technology
called distributed cache in a GIS application. This technology
will not only boost performance of application but will also
provide many more features to it. The first step in our paper is a
strong research base of prevalent architectures and secondly an
in-depth study of distributed cache technology . After the
research we will try to prove our concept through a small proof
of concept.

If we are able to incorporate distributed cache in an GIS
application the following feature would be achieved

468

Boosting Geographic Information System’s Performance Using In-Memory Data Grid

Low response time
High throughput
Eliminate bottlenecks
Predictable scalability
Continuous availability
Failover support
Information Reliability

Nk wd—

4. LITERATURE REVIEW

Simple database retrieval architecture is still the back bone for
most of the complex architectures in use today [8]. GIS
application generally contains a program running on server, and
is connected to a database. Numbers of users are connected to
this program to query, update, delete or add different items.
Initially, application was deployed on a server which originally
supports 5000(say) users at a time, which means that at a time
5000 users could connect to the server. No matter, how
powerful a server was, for sure it would have some limit on
number of users it could support, and therefore as an example
here we have assumed that server could support 5000 users at
a time.

There is further limit on number of users, whose requests
required access to database that could be processed
simultaneously. The reason behind this was that, connections
created to database were generally heavy, as many connections
to database at the same time were not feasible. To efficiently
use connections to access to database, developers generally
used connection pools, and set a limit on number of
connections that could be active at a time. Other then
performance issues the other issues regarding the architecture
were:

4.1. POF, which stands for single point of failures. In the
architecture there were three single points of failures:
application, database and server. In case either database
crashes or server crashes or application crashes, complete
application would be down and no one would be able to
access the application or use application.

4.2. Shared resources were always performance bottlenecks
and greater the number of connections/users a shared
resource would have more will be the affect on
performance. Whereas in the previous architecture,
database was a shared resource, which could not support
large amount of users at same time.

4.3. Another reason of low performance with the basic
architecture was the step required to convert data stored
in database to application object, when user queries for
data stored in database, and step required reading
application object to store data in database.

To take care of number of users supported by application, load
balancer was introduced [2]. Load balancer’s responsibility is
to distribute the load efficiently among different
servers/applications capable of process the request. In this
architecture load balancer application is run on one system and
GIS application is deployed and run on more than one server
which is further connects to single database. Load balancer
forwards the user requests to any of the server configured with

Copy Right © BUJIT —2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 — 5658

load balancer based on the load of the server. The use of load
balancer tremendously increased the number of users that could
simultaneously connect to application, as number of servers
running the application was increased. But there were still large
performance issues with the architecture [9].

Still, there is limit on number of users whose requests required
access to the database, the reason being limit on number of
connections that could be made simultaneously to the database.

SPOF still existed. Though server running the application was
no longer, single point of failure, as there were more servers
which were present, which would be able to keep application
running even if any server or application running on any server
crashes. This would remain transparent to users, as users were
no longer interacting with the server hosting the application,
but users were interacting with the load balancer. When load
balancer would get news of one of the server being down, it
would then exclude that server from its list of active servers
and stop delegating any of the user requests to that specific
server. But database was still single point of failure, as we were
using single database, and if that database would crash, the
application would fail.

Cris J. Holdorph[3] gave an approach to work with distributed
database instead of single database. In this scheme, it was
considered that each server which was connected to a load
balancer was having its own database.

Though, number of users which could be supported now
increased, compared to above discussed schemes, but this
scheme would require another extra process to replicate the
data stored in one database to other databases. This was
required to take care of scenario, when user requests were sent
to different database. The result sent back should be consistent
and independent of data stored on database.

Jim Handy[6] defined a scheme in which multiple servers
were connected to single cache, which are further connected to
the database.

The number of connections that could be made increased
(though this number depends on the server on which cache is
hosted). Also the read queries would be much faster, and
performance of write queries to the database would be
improved if the updates were done in cache synchronously, and
asynchronously saved in database by some other process.
But there were still some disadvantages related to this scheme
like cache and database were still single point of failure, if any
of it crashed, application would not be available. Data-intensive
queries would run on complete data in cache, which was not
very efficient.

In recent past there was a concept of In-Memory Data Grid and
related products which have become famous, which could be
used to improve performance of applications which are highly
affected by database operations and mostly read only
operations [8]. In GIS applications most of the requests are
related to read-only requests which require reading something
from database. Most of the users request sent to server are read-
only request and insert/update command is used only when new
point is located.

Paul Colmer[5] described the features provided by In-memory

469

BUIT - BVICAM’s International Journal of Information Technology

Data grid, which makes it a good choice for GIS application.
An In-Memory Data Grid achieves low response time for data
access by keeping the information in-memory and in the
application object form, and by sharing that information across
multiple servers. In other words, applications may be able to
access the information that they require without any data
transformation step .

Performance is further improved by coalesces multiple changes
to a single application object and batches multiple modified
application objects into a single database transaction, meaning
that a hundred different changes to each of a hundred different
application objects could be persisted to a database in a single,
large and thus highly efficient transaction[10].

Arindam Chakravorty[1] discussed various topologies in which
cache could be used to overcome the limitations of above
schemes. In-Memory Data Grid supports three types of caches.
These are Distributed, Near and Replicated cache topology.
Distributed cache is one in which each node in the server
contains a unique set of application data in the cache. To scale
the capacity of cache, increase the nodes in the cluster. Any
type of cache will involve serialization /de-serialization and
network transfers for application data read and write access in
the cache. Distributed cache is best when the applications
requires heavy volume of read and write application data.
Distributed Cache architecture is shown in Figure 1.

< b Cache Node

| \"}./’

\ Cache Node Cache Node

3 | " o
‘ /) Cache Node i _
‘ i‘* Cache Node Cache Node

&

A Cache Node

Figure 1: “Distributed Cache Architecture”

Near cache is each client node containing small amount of data
in the local cache and larger amount of data in the distributed
cache and these caches are synchronized with each other. There
is some overhead involved with synchronizing the caches.

In Replicated cache each node in the cluster will contain all the
application data in the cache. Replicated cache is best when
application requires less application data and highly read
access from cache.

Loadbalancer

Database

5. GRID CLUSTER ARCHITECTURE
5.1 Grid Cluster Architecture
In-Memory Data Grids[8] are built on a fully clustered

Copy Right © BIJIT — 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 — 5658

architecture. Grid is based on a peer-to-peer clustering
protocol, in which servers are capable of:

5.1.1.Speaking to Everyone: When a party enters the
conference room, it is able to speak to all other parties in
a conference room.

5.1.2 Listening: Each party present in the conference room
can hear messages that are intended for everyone, as well
as messages that are intended for that particular party.

5.1.3.Discovery: Parties can only communicate by speaking
and listening; there are no other senses. Using only these
means, the parties must determine exactly who is in the
conference room at any given time, and parties must
detect when new parties enter the conference room.

5.1.4Working Groups and Private Conversations:
Although a party can talk to everyone, once a party is
introduced to the other parties in the conference room
(i.e. once discovery has completed), the party can
communicate directly to any set of parties, or directly to
an individual party.

5.1.5.Death Detection: Parties in the conference room must
quickly detect when parties leave the conference room —
or die.

Using the conference room model provides the following
benefits:

1. There is no configuration required to add members to a
cluster. Any program running grid application when starts
will automatically join the cluster and be able to access the
caches and other services provided by the cluster. When a
program joins the cluster, it is called a cluster node, or
alternatively, a cluster member.

2. Since all cluster members are known, it is possible to
provide redundancy within the cluster, such that the death
of any one node does not cause any data to be lost.

3. Since the death or departure of a cluster member is
automatically and quickly detected, failover occurs very
rapidly, and more importantly, it occurs transparently,
which means that the application does not have to do any
extra work to handle failover.

4. Since all cluster members are known, it is possible to load
balance responsibilities across the cluster. Grid does this
automatically by distributing the load evenly across cluster.
Load balancing automatically occurs to respond to new
members joining the cluster, or existing members leaving
the cluster.

6. READ-THROUGH CACHING

When an application asks the cache for an entry, for example
the key X, and X is not already in the cache, data grid will
automatically delegate to the cache-store which is responsible
for loading data into cache, and this cache-store will now load
X from the underlying datasource.

If X exists in the datasource, the cache-store will load it, return
it to data grid, which is then placed in the cache for future use
and also data X is returned to the application code that
requested it. This is called Read-Through caching.

470

Boosting Geographic Information System’s Performance Using In-Memory Data Grid

7. WRITE-THROUGH CACHING

Coherence can handle updates to the datasource in two distinct
ways, the first being Write-Through[2].

In this case, when the application updates a piece of data in the
cache the operation will not complete (i.e. the put will not
return) until data is also persisted to the underlying datasource.
This does not improve write performance at all, since the user
is still dealing with the latency of the write to the
datasource[10].

8. REFRESH-AHEAD CACHING

In the Refresh-Ahead scenario, Coherence allows a developer
to configure the cache to automatically and asynchronously
reload (refresh) any recently accessed cache entry from the
cache loader prior to its expiration.

The result is that once a frequently accessed entry has entered
the cache, the application will not feel the impact of a read
against a potentially slow cache store when the entry is
reloaded due to expiration. The refresh-ahead time is
configured as a percentage of the entry's expiration time; for
instance, if specified as 0.75, an entry with a one minute
expiration time that is accessed within fifteen seconds of its
expiration will be scheduled for an asynchronous reload from
the cache store.

9. WRITE BEHIND CACHING

In the Write-Behind scenario, modified cache entries are

asynchronously written to the datasource after a configurable

delay, whether after 10 seconds, 20 minutes, a day or even a

week or longer.

For Write-Behind caching, grid generally maintains a write-

behind queue or any data structure which stores the data that

needs to be updated in the datasource. When the application
updates X in the cache, X is added to the write-behind queue (if
it isn't there already; otherwise, it is replaced), and after the
specified write-behind delay data grid service will update the

underlying datasource with the latest state of X.

Note that the write-behind delay is relative to the first of a

series of modifications — in other words, the data in the

datasource will never lag behind the cache by more than the
write-behind delay.

The result is a "read-once and write at a configurable interval"

(i.e. much less often) scenario. There are four main benefits to

this type of architecture:

1. The application improves in performance, because the user
does not have to wait for data to be written to the
underlying datasource.

2. The application experiences drastically reduced database
load: Since the amount of both read and write operations is
reduced, so is the database load. The reads are reduced by
caching, as with any other caching approach. The writes -
which are typically much more expensive operations - are
often reduced because multiple changes to the same object
within the write-behind interval are "coalesced" and only
written once to the underlying datasource ("write-

Copy Right © BUJIT —2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 — 5658

coalescing"). Additionally, writes to multiple cache entries
may be combined into a single database transaction.

3. The application is somewhat insulated from database
failures: the Write-Behind feature can be configured in
such a way that a write failure will result in the object
being re-queued for write. If the data that the application is
using is in the cache, the application can continue
operation without the database being up.

4. Linear Scalability: For an application to handle more
concurrent users you need only increase the number of
nodes in the cluster; the effect on the database in terms of
load can be tuned by increasing the write-behind interval.

10. STATISTICS FOR COMPARISON

10.1 Database and In-Memory Data Grid Performance

The comparison shows that when the data is stored
conventionally in databases the processing speed is more as
compared to when it is stored in cache. The results have been
shown in figure 2 and figure 3.

11. CONCLUSION

An effective caching mechanism is the foundation of any
distributed-computing architecture. The focus of this article
was to understand the importance of caching in designing
effective and efficient distributed architecture. In memory data
grid method was finally implemented for the same. It has been
observed that retrieval time of GIS application’s data saved
using in memory data grid method is much less as compared to
when the data is saved using the conventional database storage
method. Thus, the use of distributed cache technology for
spatial data storage will boost the performance of GIS
application.

FUTURE SCOPE
Object relational mapping is a way to bridge the impedance
mismatch between object-oriented programming (OOP) and
relational database management systems (RDBMS). Many
commercial and open-source ORM implementations are
becoming an integral part of the contemporary distributed
architecture. ORM technologies are becoming part of the
mainstream application design, adding a level of abstraction.
Implementing ORM-level cache will improve the performance
of a distributed system. Therefore, this method can be used to
improve the performance of the GIS application. In future, the
digitized data required for GIS application can be stored
using proposed Triangular Pyramid Framework for Enhanced
object relational vector data model[3] under the distributed
cache environment using in memory data grid for better
results.
REFERENCES
[1]. Arindam Chakravorty,"Guide to choose best caching
strategy for your application", http://www.csqldb.com,
pg. no. 2-11, October 2009.
[2]. Aleksandar Seovic, Mark Falco, Patric Peralta,
“Designing Coherence Caches”, Oracle Coherence 3.5
Book. Packt Publishing. April 2010.

471

[3].

[4].

BUIT - BVICAM’s International Journal of Information Technology

B. Bahl, N. Rajpal, V. Sharma,”Triangular Pyramid
Framework for Enhanced Object relational Dynamic
Data model for GIS. IJCSI”, International Journal of
Computer Science Issues, vol. 8, issue 1, January
2011,ISSN (online):1694-0814,pg. 320-328,2011

Ed Upchurch & John Murphy , “Why Worry about
Performance in E-Commerce Systems”, Proc. Of 16"
UK IEE Teletraffic Symposium, May 2000.

d

- - - G .
 Qutput =
1V | CacheNode (jun) * = | GISAppicationAdministrator (run) * x

run:

Z011-08-13 22:05:21.121/0.452 Orzcle Coherence 3.5.3/465 <Infor (threzd=main, member=n/sz): Loade
2011-08-13 22:05:21.121/0.452 Qracle Coherence 3.5.3/4€5 <Info> (thread=main, member=n/a): Loade |
2011-08-13 22:05:21.121/0.452 Oracle Coherence 3.5.3/465 <D5» (thread=main, member=n/z): Optionz
Z011-08-13 22:05:21.137/0.468 Oracle Coherence 3.5.3/465 <D5» (thread=main, member=n/z): Optionz

Cracle Coherence Version 3.5.3/45
Grid Edition: Development mode

Copyright (c)

2011-08-13 22:05:21.527/0.858 Oracle Coherence GE 3.5.3/4€5 |=Ir1fn> (thread=main, member=n/a): Lo
2011-08-13 22:05:22.198/1.529 QOracle Coherence GE 3.5.3/465 <Warning» (thread=main, member=n/a):
2011-08-13 22:05:22.557/1.888 Oracle Coherence GE 3.5.3/465 <D5» (thread=Cluster, member=n/a): §
Z011-08-13 22:05:22.775/2.106 Orzcle Coherence GE 3.5.3/465 <Info» (threzd=Cluster, member=n/z):
2011-08-13 22:05:22.791/2.122 Cracle Coherence GE 3.3.3/445 <D5> (thread=Cluster, member=n/z): Y
2011-08-13 22:05:22.791/2.127 Orzcle Coherence GE 3.5.3/465 <D5» (thread=Cluster, member=n/z): i
2011-08-13 22:05:22.731/2.12Z Oracle Coherence GE 3.5.3/465 <D5» (thread=Cluster, member=n/z): i
Z011-08-13 22:05:22.791/2.127 Oracle Coherence GE 3.5.3/465 <D5» (thread=Clustcer, member=n/z): i
2011-08-13 22:05:22.781/2.122 Oracle Coherence GE 3.5.3/465 <D5» (thread=Cluster, member=n/z): i
2011-08-13 22:05:22.863/2.200 Oracle Ccherence GE 3.5.3/465 <D5» (thread=Invocation:Managemens,

Z011-08-13 22:05:23.274/2.805 Oracle Coherence GE 3.5.3/465 <D5» (thread=DistribucedCache, membe
2011-08-13 22:05:23.321/2.%52 Oracle Coherence GE 3.5.3/465 <D5» (thresd=DistributedCache, membe
2011-08-13 22:05:23.352/2.%83 Orzcle Coherence GE 3.5.3/465 <Dd> (thread=DistribucedCache, membe
2011-08-13 22:05:24.351/3.682 Oracle Coherence GE 3.5.3/465 <D5» (thread=TcpRinglistener, member
Z011-08-13 22:05:25.505/4.83¢ Oracle Coherence GE 3.5.3/465 <Dd> (thresd=DistribucedCache, membe

Saving data in GIS zpplication connected to database.

Totel time taken to save new item in GIS application: Z234ms

I | +

2000, 2010, Oracle andfor its affilistes. Rl rights reserved.

Copy Right © BIJIT — 2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 — 5658

Figure 2: “Saving Item in Databases”

[5].

[7].

[9].

[10].

Paul Colmer, ”In-Memory Data Grid for improving
performance “, .
http://highscalability.com/blog/2011/12/21/in-memory-
data-grid-technologies.html, August 2010.

Jim Handy, “Maintaining Coherency in Caches
Systems”, The Cache Memory Book. Academic Press,
Elsevier Store, Pg. no. 138-141, March 1998.

Hanan Samet, “ Issues, developments, and challenges in
spatial ~ databases and geographic information
systems(GIS)”, GIS’01 proceedings of the ACM
International Symposium on Advances in geographic
information systems . pg. 1-1, ACM, ISBN -1-58113-
443-6., 2001. John Murphy, “Assuring performance in
ecommerce system”, July 2004.

Jonathan Purdy, ”Data Grids & SOA”, An Oracle white
paper, Oracle Corporation , pg.-1-12, May 2007
Rajendaram Sundaram , “Oracle Coherence Cache for a
high performance ecommerce application”, HCL, 2010.
Harvendra Kumar, A.K.Verma, "Comparative Study of
distributed computing paradigms", BVICAM’s
International Journal of Information Technology, BIJIT,
issue 2, vol. 1 No. 2, July-Dec., 2009.

0 =
 Qutput %
1V | cacheNode (run) * x | GlSApplicationAdministrator (run) * x ‘
run: -
@ 2011-08-13 22:09:57.101/0.436 (recle Coherence 3.5.3/4€5 <Infor (thread=mein, member=n/a): Loade
an | 2011-08-13 22:09:57.101/0.436 Oracle Coherence 3.5.3/4685 <Infor (thread=main, merber=n/z): Loade
% 2011-08-13 22:09:57.101/0.436 Oracle Coherence 3.5.3/465 <D5» (threzd=mzin, member=n/z): Optiona
2011-08-13 22:09:57.133/0.468 (racle Coherence 3.5.3/465 <D5» (thresd=main, member=n/z): Optiocna
Orzcle Coherence Version 3.5.3/46%
Grid Edition: Development mode
Copyright () 2000, 2010, Oracle and/or its affiliates. A1l rights reserved.
2011-08-13 22:0%:57.538/0.873 Oracle Coherence GE 3.5.3/465 <Info> (threzd=main, member=n/z): Lo
2011-08-13 22:09:58.209/1.544 (racle Coherence GE 3.5.3/465 <Warning (thresd=main, member=n/z):
2011-08-13 Z2:03:58.588/1.903 Oracle Coherence GE 3.5.3/465 <D&» (thresd=Cluster, member=n/z): §
2011-08-13 .973/2.308 Oracle Coherence CE 3.5.3/485 <Info> (threzd=Cluster, member=n/a):
2011-08-13 .005/2.340 (racle Ccherence GE 3.5.3/4€5 <D5» (thresd=Cluster, member=n/a): ¥
2011-08-13 22 .005/2.340 Oracle Coherence GE 3.5.3/485 <D3¥ (thresd=Cluster, member=n/z): M
2011-08-13 22 .008/2.340 Oracle Ccherence GE 3.5.3/465 <D5» (thread=Cluster, member=n/fa): ¥
2011-08-13 .005/2.340 (racle Ccherence GE 3.5.3/4€5 <D5» (thresd=Cluster, member=n/a): ¥
2011-08-13 ©59.005/%.340 Orecle Coherence GE 3.5.3/485 <D5» (thresd=Cluster, member=n/fa): ¥ |||
2011-08-13 22:09:59.083/2.418 Oracle tnherence GE 3.5.3/485 <D5> (thread=Invocation:Management, :
2011-08-13 22:09:59.223/7.558 Oracle Coherence GE 3.5.3/485 <D5» (threazd=Cluster, member=4): Tcp
2011-08-13 22:09:59.582/2.917 (recle Coherence GE 3.5.3/465 <D5» (thread=DistributedCache, membe
2011-08-13 22:09:53.613/2.948 Oracle Coherence GE 3.5.3/485 <D5» (thread=DistributedCache, membe
2011-08-13 22:0%:55.707/3.042 Orzcle Coherence GE 3.5.3/465 <D4> (threzd=DistributedCache, membe
Seving data in BIS application connected to cache.
Total time taken to szve new item in GIS application: lms
P —T—)
\—
Figure 3: “Saving item in cache”
472

Boosting Geographic Information System’s Performance Using In-Memory Data Grid

[1].

[2].

[3].

[4].

[5].
[6].

[7].

8].

[9].

[10].

[11].

[12].

[13].

[14].

Copy Right © BUJIT —2012; July - December, 2012; Vol. 4 No. 2; ISSN 0973 — 5658

Continued from page no. 467

Internet World Stats (2010, June 31). Internet Usage
Statistics: The Internet Big Picture (World Internet
Users and Population Stats). Retrieved December 21,
2010, from
http://www.internetworldstats.com/stats.htm.

The Economist (2010, July 1). War in the Fifth Domain:
Are the Mouse and Keyboard the New Weapons of
Conflict? Retrieved June 23, 2012, from
http://www.economist.com/node/16478792.

Techopedia (2012, June 6). Whaling: Phishers look to
land a big catch. Retrieved June 23, 2012, from
http://www.techopedia.com/2/28617/security/whaling-
phishers-look-to-land-a-big-catch .

MessageLabs Intelligence Report (2010, September 20).
MessageLabs Intelligence September 2010. Retrieved
December 21, 2010, from
http://www.messagelabs.com/mlireport/MLI 2010 09
September FINAL EN.PDF.

Webopedia. Phishing. Retrieved June 23, 2012, from
http://www.webopedia.com/TERM/P/phishing.html .
Trinity College, University of Cambridge. Phishing.
Retrieved June 23, 2012, from
http://www.trin.cam.ac.uk/index.php?pageid=560.
Citizens State Bank (2012, March 1). Fraud Busters: How
to identify and protect yourself from Internet Fraud.
Retrieved June 23, 2012, from www.csbnow.com/fraud-
busters.pdf.

McAfee (2010, March 9). McAfee Inc. Unveils New
Consumer Threat Alert Program: A Warning for
Consumers about the Most Dangerous Online Threats.
Retrieved June 22, 2012, from
http://www.mcafee.com/us/about/news/2010/q1/201003
09-01.aspx.

Cabinet Office, U.K. Government (2011, February 17).
The Cost of Cyber Crime. Retrieved June 23, 2012, from
http://www.cabinetoffice.gov.uk/sites/default/files/resour
ces/the-cost-of-cyber-crime-full-report.pdf.

The Ethical Hack3r (2010, July 3). [Interview] The Jester.
Retrieved June 23, 2012, from
http://www.ethicalhack3r.co.uk/security/interview-the-
jester/.

University of Calgary (2009, October 26). Scareware:
Don’t get spooked!. Retrieved June 23, 2012, from
http://www.ucalgary.ca/it/files/it/scareware_posterl oct
web_1.pdf.

The Cooperative Association for Internet Data Analysis.
AS Rank: Information for a single AS: AS Relationship
Table (AS 43513). Retrieved December 21, 2010, from
http://bit.ly/as-43513-ranking-by-CAIDA.

Centix. Threats. Retrieved June 23, 2012, from
http://www.centix.be/content.aspx?Pageld=135.

Kusam, Pawanesh Abrol, & Devanand, ‘“Digital
Tampering Detection Techniques: A Review”,
BVICAM’s International Journal of Information

[15].

[16].

Technology, BIJIT, issue 2, July-December 2009, Vol. 1
No. 2.

VirSCAN.org (2010, September 27).
Retrieved June 23, 2012,
http://virscan.org/report/5eee80002e0{85f3aec137b
9cd30eeda.html.

B. B. Jayasingh & B. S. Swathi, “A Novel Metric for
Detection of Jellyfish Reorder Attack on Adhoc
Network” BVICAM’s International Journal of
Information Technology, BIJIT, issue 3, January-June,
2010 Vol. 2, No. 1.

EBIH.EXE.
from

473

