
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 445

Genetic Algorithm Based Optimal Testing Effort Allocation
Problem for Modular Software

Anu G. Aggarwal1, P. K. Kapur2, Gurjeet Kaur3 and Ravi Kumar4

Submitted in April 2010; Accepted in September 2011

Abstract - Software reliability growth models (SRGM) are
used to assess modular software quantitatively and predict the
reliability of each of the modules during module testing
phase. In the last few decades various SRGM’s have been
proposed in literature. However, it is difficult to select the best
model from a plethora of models available. To reduce this
difficulty, unified modeling approaches have been proposed
by many researchers. In this paper we present a generalized
framework for software reliability growth modeling with
respect to testing effort expenditure and incorporate the faults
of different severity. We have used different standard
probability distribution functions for representing failure
observation and fault detection/ correction times. The faults
in the software are labeled as simple, hard and complex
faults. Developing reliable modular software is necessary.
But, at the same time the testing effort available during the
testing time is limited. Consequently, it is important for the
project manager to allocate these limited resources among the
modules optimally during the testing process. In this paper we
have formulated an optimization problem in which the total
number of faults removed from modular software is (which
include simple, hard and complex faults) maximized subject
to budgetary and reliability constraints. To solve the
optimization problem we have used genetic algorithm. One
numerical example has been discussed to illustrate the
solution of the formulated optimal effort allocation problem.

Index Terms - Non-homogenous Poisson process, software
reliability growth model, Probability Distribution Functions,
Fault Severity, Genetic Algorithm

1. INTRODUCTION
Nowadays large and complex software systems are developed
by integrating a number of small and independent modules.
Modules can be visualized as independent softwares
performing predefined tasks, mostly developed by separate
teams of programmers and sometimes at different geographical
locations. During the development of modular software, faults
can crop in the modules due to human imperfection. These

1,2,3,4 Department of Operational Research, University of Delhi,
Delhi-110007
E-Mail: 1anuagg17@gmail.com, 2pkkapur1@gmail.com,
3gurjeetkaur85@gmail.com and 4sianaravi@gmail.com

faults manifest themselves in terms of failures when the
modules are tested independently during the module testing
phase of software development life cycle. However, in today’s
computer invaded world these failures can lead to big losses in
terms of money, time and life. Thus it is very important to
evaluate software reliability of each module during modular
testing phase.
To assess modular software quantitatively and predict the
reliability of each of the modules during module testing,
software reliability growth models (SRGM) are used.
Numerous SRGM’s, which relate the number of failures (fault
identified) and the Execution time (CPU time/Calendar time)
have been discussed in the literature [19,5,3]. All these SRGMs
assume that the faults in the software are of the same type.
However, this assumption is not truly representative of reality.
The software includes different types of faults, and each fault
requires different strategies and different amounts of testing
effort for removal. Ohba [8] refined the Goel-Okumoto[1]
model by assuming that the fault detection/removal rate
increases with time and that there are two types of faults in the
software. SRGM proposed by Bittanti et al. [22] and Kapur and
Garg [13] has similar forms as that of Ohba [8] but they
developed under different set of assumptions. These models
can describe both exponential and S-shaped growth curves and
therefore are termed as flexible models [22, 8, 13]. Kapur et al.
[16] developed Flexible software reliability growth model with
testing effort dependent learning process in which two types of
software faults were taken. Further, they proposed an SRGM
with three types of faults [19]. The first type of fault was
modeled by an Exponential model of Goel and Okumoto [1].
The second type was modeled by Delayed S-shaped model of
Yamada et al. [21]. The third type was modeled by a three-
stage Erlang model proposed by Kapur et al. [19]. The total
removal phenomenon was modeled by the superposition of the
three SRGMs. Shatnawi and Kapur [11] later proposed a
generalized model based on classification of the faults in the
software system according to their removal complexity.
The above literature review reveals that in the last few decades
several SRGM’s have been proposed. This plethora of SRGM’s
makes the model selection a tedious task. To reduce this
difficulty, unified modeling approaches have been proposed by
many researchers. The work in this area started as early as in
1980s with Shantikumar [4] proposing a Generalized birth
process model. Gokhale and Trivedi [23] used Testing
coverage function to present a unified framework and showed
how NHPP based models can be represented by probability

Genetic Algorithm Based Optimal Testing Effort Allocation Problem for Modular Software

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 446

distribution functions of fault –detection times. Another
unification methodology is based on a systematic study of Fault
detection process (FDP) and Fault correction process (FCP)
where FCPs are described by detection process with time delay.
The idea of modeling FCP as a separate process following the
FDP was first used by Schneidewind [10]. More general
treatment of this concept is due to Xie et al [9] who suggested
modeling of Fault detection process as a NHPP based SRGM
followed by Fault correction process as a delayed detection
process with random time lag. The unification scheme due to
Kapur et al [17] is based on Cumulative Distribution Function
for the detection/correction times and incorporates the concept
of change point in Fault detection rate. These schemes have
proved to be fruitful in obtaining several existing SRGM by
following single methodology and thus present a perceptive
investigation for the study of general models without making
many assumptions. In this paper we made use of such unified
scheme for presenting a generalized framework for software
reliability growth modeling with respect to testing effort
expenditure and incorporate the faults of different severity. We
have used different standard probability distribution functions
for representing failure observation and fault correction times
Also , the total number of faults in the software are labeled as
simple, hard and complex faults .It is assumed that the testing
phase consists of three different processes, namely failure
observation, fault isolation and fault removal. The time delay
between the failure observation and subsequent removal is
assumed to represent the severity of the fault.
Developing reliable modular software is necessary. But, at the
same time the testing effort available during the testing time is
limited. These testing efforts include resources like human
power, CPU hours, and elapsed time, etc. Hence, to develop a
good reliable software system, a project manager must
determine in advance how to effectively allocate these
resources among the various modules. Such optimization
problems are called “Resource Allocation problems”. Many
authors have investigated the problem of resource allocation [2,
7]. Kapur et al [20, 15] studied various resource allocation
problems maximizing the number of faults removed form each
module under constraint on budget and management
aspirations on reliability for exponential and S-shaped SRGMs
[1,19,8].In this paper we have formulated an optimization
problem in which the total number of faults removed from
modular software is (which include simple, hard and complex
faults) maximized subject to budgetary and reliability
constraints.
To solve the effort allocation problem formulated in this
research paper we use Genetic Algorithm(GA). GA stands up a
powerful tool for solving search & optimization problems. The
complex non linear formulation of the optimal effort allocation
problem is the reason behind choosing genetic algorithm as the
solving tool. GA always considers a population of solutions.

There is no particular requirement on the problem before using
GA’s, as it can be applied to solve any kind of problem.
 The paper is organized as follows. Section 2 gives the
generalized framework for developing the software reliability
growth model for faults of different severity. In section 3
parameter estimation and model validation of the proposed
model is done through SPSS. The testing effort allocation
problem is formulated in section 4. In section 5 genetic
algorithm is presented for solving the discussed problem.
Section 6 illustrates the optimization problem solution through
a numerical example. Finally, conclusions are drawn and are
given in section 7.
2.1 Notations
W(t) : Cumulative testing effort in the interval (0.t].
w(t) : Current testing-effort expenditure rate at testing time t.

() ()d W t w t
dt

=

mj(Wt) : Expected number of faults removed of type j(j=simple,
Hard, Complex Faults).
m(Wt) : Expected number of total faults removed.
b : Constant fault detection rate.
β : rate of consumption of testing-effort

)(tWλ : Intensity function for Fault correction process (FCP)
or Fault correction rate per unit time.

() , () , ()t t tG W F W H W : Testing effort dependent
Probability Distribution Function for Failure observation, Fault
Detection and Fault Correction Times

() , () , ()t t tg W f W h W : Testing effort dependent Probability
Density Function for Failure observation, Fault Detection and
Fault Correction Times
* : Convolution.
⊗ : Steiltjes convolution.

2.2 Basic Assumptions
The proposed model is based upon the following basic
assumptions:
1. Failure occurrence, fault detection, or fault removal

phenomenon follows NHPP.
2. Software is subject to failures during execution caused by

faults remaining in the software.
3. The faults existing in the software are of three types: simple,

hard and complex. They are distinguished by the amount of
testing effort needed to remove them

4. Fault removal process is prefect and failure observation/fault
isolation/ fault removal rate is constant.

5. Each time a failure occurs, an immediate effort takes place to
decide the cause of the failure in order to remove it. The time
delay between the failure observation and its subsequent
fault removal is assumed to represent the severity of the
faults. The more severe the fault, more the time delay.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 447

6. The fault isolation/removal rate with respect to testing effort
intensity is proportional to the number of observed failures.

2.3 Modeling Testing Effort
The proposed SRGM in this paper takes into account the time
dependent variation in testing effort. The testing effort
(resources) that govern the pace of testing for almost all the
software projects are Manpower and Computer time.
To describe the behavior of testing effort, Exponential,
Rayleigh, or Weibull function has been used.
The testing-effort described by a Weibull-type distribution is
given by:

0
() 1 exp(()

t
W t g dα τ τ = ⋅ − −  ∫ (1)

In equation (1), if g(t)=β.
Then, there is an exponential curve, and the cumulative testing-
effort in (0,t] is []() 1 exp()W t tα β= ⋅ − − ⋅ . (2)

Similarly in (1) if () .g t tβ= ⋅
Then, there is a Rayleigh curve and the cumulative testing-

effort is given by: 2() 1 exp .
2

W t tβα   = ⋅ − − ⋅    
 (3)

And if 1() . .g t t γγ β −= ⋅ in (1), then

()() 1 exp .W t tγα β = ⋅ − − ⋅  (4)

which is cumulative testing effort of Weibull curve.

2.4 Model Development
Let a1, a2 and a3 be the simple, hard and complex faults
respectively at the beginning of testing. Also ‘a’ is the total
fault content i.e. a= a1+ a2+ a3 .

2.4.1 Modeling Simple Faults
Simple faults are the faults which can be removed instantly as
soon as they are observed. The mean value function for the
simple faults of the software reliability growth model with
respect to testing effort expenditure can be written as [18]:

1 1() ()t tm W a F W= (5)

where,)WF(t is testing effort dependent distribution
function.
From Equation (5), the instantaneous failure intensity
function ()tWλ is given by:

()'
1()t tW a F Wλ = (6)

Or we can write

[] ()
()

'
1() ()

1
t

t t
t t

dm
F WdtW a m W

dW F W
dt

λ = = −
−

 (7)

2.4.2 Modeling Hard Faults
The hard faults consume more testing time for the removal.
This means that the testing team will have to spend more time
to analyze the cause of the failure and therefore requires greater
time to remove them. Hence the removal process for hard faults
is modeled as a two-stage process and is given by[18]:

() ()()2 2t tm W a F G W= ⊗ , and (8)

()()
()() []2

*
() ()

1
t

t t
t

f g W
W a m W

F G W
λ = −

− ⊗
 (9)

2.4.3 Modeling Complex Faults
These faults require more testing time for removal after
isolation as compared to hard fault removal. Hence they need
to be modeled with greater time lag between failure
observation and removal. Thus, the removal process for
complex faults is modeled as a three-stage process:

() ()()3 3t tm W a F G H W= ⊗ ⊗ (10)

And the instantaneous failure intensity function ()tWλ is:

()()
()() []3

* *
() ()

1
t

t t
t

f g h W
W a m W

F G H W
λ = −

− ⊗ ⊗
 (11)

2.4.4 Modeling Total Faults
The total fault removal phenomenon is the superimposition of
the simple, hard and complex faults, and is therefore given as:

1 2 3() () () ()t t t tm W m W m W m W= + + (12)

()() ()()1 2 3()t t ta F W a F G W a F G H W= + ⊗ + ⊗ ⊗
A particular case of the proposed model is tabulated in Table
2.1

Faults F(tW) G(tW) H(tW) m(tW)

Simple

tW ~

1exp()b

- -
1

1

()

1 t

t

bW

m W

a e− = − 

Hard

tW ~

2exp()b

tW ~

2exp()b

- ()()
2

2

()

. 1 1 t

t

bW
t

m W

a bW e− = − + 

Complex ()tI W ()tI W tW ~

N(µ,σ2) ()
3

2
3

()

[, ,]
t

t

m W

a W µ σ= Φ

Genetic Algorithm Based Optimal Testing Effort Allocation Problem for Modular Software

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 448

 MVF of Total Fault

()()
()()

1 2

2
3

() 1 1 1

, ,

t tbW bW
t t

t

m W a e a bW e

a W µ σ

− −  = − + − +   
 + Φ 

Table 2.1: A Particular Case

2.5 Reliability Evaluation
Using the SRGM we can evaluate the reliability of the software
during the progress of testing and predict the reliability at the
release time. Reliability of software is defined as “given that
the testing has continued up to time t, the probability that a
software failure does not occur in time
interval (t, t t) (t 0)+ ∆ ∆ ≥ ”. Hence the reliability of software
is represented mathematically as

()m(t t) m(t)R(t) R(t t | t) exp− +∆ −≡ + ∆ = (13)
Another measure of software reliability at time t is defined as
“the ratio of the cumulative number of detected faults at time t
to the expected number of initial fault content of the software”
given by[4]:

m(t)R(t)
a

= (14)

To incorporate the effect of testing effort in the reliability
estimation of each module Equation (14) can be modified as:

t
t

m(W)R(W)
a

= (15)

3. PARAMETER ESTIMATION AND MODEL
VALIDATION

To measure the performance of the proposed model we have
carried out the parameter estimation on the data set cited in
M.Ohba [8](DS-I). The software was tested for 19 weeks
during which 47.65 computer hours were used and 328 faults
were removed. The estimation results for Exponential,
Rayleigh, and Weibull function are given in table 3.1

Testing
Effort
Function

Parameter Estimation for DS-I

α β γ R2

Exponential
function

19029.3

0.0001 -

0.992

Rayleigh
function

49.2961

0.0137

0.974

Weibull
function

782.603

0.0023

1.114

0.996

Table 3.1: Testing Effort Function Parameter Estimates

Weibull effort function is chosen to represent the testing effort
as it provided the best fit on the testing effort data (based on the
highest value of R2.) Based upon these estimated parameters,
parameters of proposed SRGM were estimated. The goodness
of fit measures used are Mean Square Error (MSE) and
Coefficient of multiple determination (R2). The results are
compared with SRGM proposed by Kapur et al. [19] with
three types of fault. The results are tabulated in table 3.2
(Letting b1=b2=b3=b)The goodness of fit curves for DS-I is
given in Figure: 3.1
Paramter
Estimates Proposed Model Kapur et al. Model [19]

a 353 378
b 0.05218 0.09722
µ 26.71107 -

 σ 6.530279 -

R2 0.996 0.992
MSE 38.79684 75.31579

Table 3.2: Parameter Estimates for DS-I

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19

m
(W

t)

Time

Goodness of Fit Curve

Actual
Values

Estimated
Values with
3 stage
Erlang
Estimated
Values of
proposed
Model

Figure3.1: Goodness of Fit Curve for DS-I
4. TESTING RESOURCE ALLOCATION PROBLEM
4.1 Notations:
 j : 1,2,3; Simple faults-1;Hard Faults-2, Complex Faults-3
 i : Module, 1,2..N
N : Total number of modules
mi(Wt) : Mean value function for ith module

 bji : Constant fault detection rate for jth fault type in ith
module
 aji : Constant, representing the number of jth fault type

lying dormant in ith module at the beginning of testing,
cji : Cost of removing jth fault from ith module

Wi : Testing effort for ith module
 Ri : Reliability of each module
 B : Total cost of removing different types of faults

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 449

 W : Total testing effort expenditure

4.2 Mathematical Formulation
Consider software with ‘N’ modules where each module is
different in size, complexity, the functions they perform etc. In
each module there are three types of faults; simple, hard and
complex. The software has to be released in the market at a
predefined software release time with limited availability of
testing resources expenditure. Further the cost of removing the
fault from each module is dependent on its severity.
Therefore, the problem of maximizing the faults of each of N
independent modules such that reliability of each module is at
least R0 is formulated as:
Maximize

()() ()()
()()

1

1

1 2 2
1 1

2
3

1

() ()

1 1 (1)

, ,

i i i i

i i

N

i i i
i

N N
b W b W

i i i i
i i
N

i i i
i

m W m W

a e a b W e

a W µ σ

=

− −

= =

=

=

= − + − +

  + Φ    

∑

∑ ∑

∑

Subject to:

()1 1 2 2 3 3
1

() () () 1,2...
N

i i i i i i i i i
i

C m W C m W C m W B i N
=

+ + ≤ =∑

 (P1)

5. GENETIC ALGORITHM FOR TESTING RESOURCE

ALLOCATION
The above optimization problem is solved by a powerful
computerized heuristic search and optimization method, viz.
genetic algorithm (GA) that is based on the mechanics of
natural selection and natural genetics. In each iteration (called
generation), three basic genetic operations i.e., selection
/reproduction, crossover and mutation are executed.
For implementing the GA in solving the allocation problem, the
following basic elements are to be considered.

5.1 Chromosome Representation
Genetic Algorithm starts with the initial population of solutions
represented as chromosomes. A chromosome comprises genes
where each gene represents a specific attribute of the solution.
Here the solution of the testing-effort allocation problem in
modular software system includes the effort resources
consumed by individual modules. Therefore, a chromosome is
a set of modular testing effort consumed as part of the total
testing effort availability.
5.2 Initial Population

For a given total testing time W, GA generates the initial
population randomly. It initialize to random values within the
limits of each variable.

5.3 Fitness Of A Chromosome
The fitness is a measure of the quality of the solution it
represents in terms of various optimization parameters of the
solution. A fit chromosome suggests a better solution. In the
effort allocation problem, the fitness function is the objective of
testing effort optimization problem along with the penalties of
the constraints that are not met.

5.4 Selection
Selection is the process of choosing two parents from the
population for crossover. The higher the fitness function, the
more chance an individual has to be selected.
The selection pressure drives the GA to improve the population
fitness over the successive generations. Selection has to be
balanced with variation form crossover and mutation. Too
strong selection means sub optimal highly fit individuals, will
take over the population, reducing the diversity needed for
change and progress; too weak selection will result in too slow
evolution. We use “Tournament selection” here.

5.5 Crossover
Crossover is the process of taking two parent solutions and
producing two similar chromosomes by swapping sets of
genes, hoping that at least one child will have genes that
improve its fitness. In the testing resource allocation problem,
crossover diversifies the population by swapping modules with
distinct time consuming, particularly when the population size
is small.

5.6 Mutation
Mutation prevents the algorithm to be trapped in a local
minimum. Mutation plays the role of recovering the lost
genetic materials as well as for randomly disturbing genetic
information.
The important parameter in the mutation technique is the
mutation probability. The mutation probability decides how
often parts of chromosome will be mutated. If there is no
mutation, offspring are generated immediately after crossover
(or directly copied) without any change. In our problem of
testing resource allocation, we have used a mutation probability
of 10%.
With the basic modules of genetic algorithm described above,
the procedure for solving the optimal effort allocation problem
is as follows [6]:
Step 1: Start
Step 2: Generate random population of chromosomes
Step 3: Evaluate the fitness of each chromosome in the
population

1
1,2...

N
i

i
W W i N

=
≤ =∑

0 1,2...iR R i N≥ =
0 1, 2...iW i N≥ =

Genetic Algorithm Based Optimal Testing Effort Allocation Problem for Modular Software

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 450

Step 4: Create a new population by repeating following steps
until the new population is complete:

[Selection] Select two parent chromosomes from a population
according to their fitness
[Crossover] With a crossover probability, cross over the
parents to form new offspring (children). If no crossover is
performed, offspring is the exact copy of parents.
[Mutation] With a mutation probability, mutate offspring at
each locus (position in chromosome)
[Accepting] Place new offspring in the new population
[Replace] Use new generated population for further sum of the
algorithm.
[Test] If the end condition is satisfied, stop and return the best
solution in the current population
[Loop] Go to step 3 for fitness evaluation

6. NUMERICAL EXAMPLE
The Effort Allocation Problem described in section 4 is
illustrated numerically in this section. Consider a software
system consisting of three modules, whose parameters have
already been estimated using software failure data. These
parameter estimates for each module is shown in Table 6.1.
The total testing resources available is assumed to be 5000
units. Total cost for removing the different types of faults is
10000 units. Also, it is desired that the reliability of each
module is at least 0.9.

odule a1 a2 a3 b c1 c2 c3 µ σ

1 313 107 81 0.00368 5 10 15 16.2925.586
2 332 97 76 0.00234 5 10 15 14.9874.123
3 298 64 32 0.0018 5 10 15 12.4567.654

Table 6.1: Parameter Estimates for effort allocation
problem

Based on the above information, the problem (P1) is solved
using genetic algorithm. The parameters used in GA evaluation
are given in table 6.2.

Parameter Value
Population Size 106
Number of Generations 26
Selection Method Tournament
Crossover Probability 0.9
Mutation Probability 0.1

Table 6.2: Parameter of the GA

The optimal testing time allocation to each type of fault in
module and hence total fault removed from each module and
their corresponding cost of removing is shown in table 6.3.

Module W m1 m2 m3 m Reliability
Cost of

removing
faults

1 1192.22 309 100 81 490 0.978 3758.87
2 1602.294 324 86 76 486 0.962 3622.524
3 2202.934 292 58 32 382 0.969 2521.486

Total 4997.448 1358 9902.88
Table 6.3: The optimal testing effort expenditure with the

corresponding cost of each module

7. CONCLUSION
In this paper we have discussed the problem for modular
software at the unit testing stage. We have made use of unified
scheme for presenting a generalized framework for Software
reliability growth modeling with respect to testing effort
expenditure and incorporated the faults of different severity.
The faults in each module are of three types-simple, hard and
complex. Further we have optimally allocated the testing effort
to each type of fault and the modules and have found out the
different types of faults removed in the modules with a fixed
budget and a prerequisite level of reliability. Genetic Algorithm
is developed to solve the problem of resource allocation.
Numerical example is discussed to illustrate the solving of the
discussed optimization problem through GA.

FUTURE SCOPE
The present study is done under the assumption of
independence of the failures of different modules. In future,
dependence of the failures from different modules as well as
the architecture styles and connectors reliability can also be
studied.

REFERENCES
[1]. A. L. Goel and K. Okumoto, “Time-dependent error-

detection rate model for software reliability and other
performance measures,” IEEE Transactions on
Reliability, Vol. 28, No. 3, pp 206–211, 1979.

[2]. H. Ohetera and S Yamada., “Optimal allocation and
control problems for software testing resources”, IEEE
Transactions on Reliability, Vol. 39, No. 2, p. 171-176,
1990.

[3]. H. Pham, System Software Reliability, Reliability
Engineering Series, Springer, 2006.

[4]. J. G. Shanthikumar, , “A General Software Reliability
Model For Performance Prediction, Microelectronics
Reliability”, Vol. 21, pp. 671–682, 1981.

[5]. J.D. Musa, A. Iannino and K. Okumoto, Software
Reliability: Measurement, Prediction, Applications,
McGraw Hill, 1987.

[6]. K. Sastry ,‘Single and Multiobjective Genetic Algorithm
Toolbox for Matlab in C++’ (IlliGAL Report No.
2007017) Urbana, IL: University of Illinois at Urbana-
Champaign, 2007

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 451

[7]. Lo. Huang and Lyu Kuo, “Optimal allocation of testing
resources considering cost, reliability, and testing –
effort”, Proceedings of the 10th IEEE Pacific
International Symposium on dependable Computing,
2004

[8]. M. Ohba, “Software reliability analysis models,” IBM
Journal of Research and Development, vol. 28, no. 4, pp.
428–443, 1984.

[9]. M. Xie, and B. Yang, “Optimal Testing time Allocation
for Modular Systems”, International Journal of Quality
and Reliability Management, Vol. 18, No. 4, 854-
863,2001.

[10]. N.F. Schneidewind, , Analysis Of Error Processes In
Computer Software, Sigplan Notices, Vol. 10, pp. 337–
346, 1975.

[11]. O. Shatnawi, P.K. Kapur, “A Generalized Software
Fault Classification Model”, WSEAS Transactions on
Computers, Vol. 2, No. 9, pp. 1375-1384, 2008

[12]. P. K Kapur., S.Younes, and S. Agarwala, “Generalised
Erlang model with n types of faults,” ASOR Bulletin,
Vol. 14, No.1, pp. 5–11, 1995.

[13]. P. K. Kapur and. R. B. Garg, “Software reliability
growth model for an error-removal phenomenon,”
Software Engineering Journal, Vol. 7, No. 4, pp. 291–
294, 1992.

[14]. P. K., Kapur. V. B. Singh, and B Yang., “Software
reliability growth model for determining fault types,” in
Proceedings of the 3rd International Conference on
Reliability and Safety Engineering (INCRESE '07),pp.
334–349, 2007.

[15]. P.K Kapur., P.C. Jha, A.K. Bardhan, , “Dynamic
programming approach to testing resource allocation
problem for modular software”, in Ratio Mathematica,
Journal of Applied Mathematics, Vol. 14, pp. 27-40,
2003.

[16]. P.K. Kapur, D. N .Goswami, A. Bardhan, O. Singh,
“Flexible software reliability growth model with testing
effort dependent learning process”, Applied
Mathematical Modelling, Vol. 32, No. 7, pp. 1298–
1307,2008

[17]. P.K. Kapur, J. Kumar and R. Kumar, “A Unified
Modeling Framework Incorporating Change Point For
Measuring Reliability Growth During Software
Testing”. To appear in OPSEARCH.

[18]. P.K. Kapur, O. Shtnawi, A Aggarwal., R. Kumar,
“Unified Framework for Developing Testing Effort
Dependent Software Relaibility Growth Models”,
WSEAS Transactions on Systems, Vol. 8 No. 4,pp 521-
531,2009

[19]. P.K. Kapur, R. B. Garg and S. Kumar, Contributions to
Hardware and Software Reliability, Singapore, World
Scientific Publishing Co. Ltd., 1999.

[20]. P.K.Kapur, P.C. Jha, A.K. Bardhan, “Optimal allocation
of testing resource for a modular software”, Asia Pacific
Journal of Operational Research, Vol. 2, No. 3, pp. 333-
354, 2004.

[21]. S. Yamada, M. Ohba, and S. Osaki, “S-shaped software
reliability growth models and their applications,” IEEE
Transactions on Reliability, vol. 33, No. 4, pp. 289–292,
1984.

[22]. S. Bittanti, P.Bolzern, E.Pedrotti, and R. Scattolini, “A
flexible modeling approach for software reliability
growth,” in Software Reliability Modelling and
Identification, G. Goos and J. Harmanis, Eds., Springer,
Berlin, Germany, pp 101–140, 1998.

[23]. S.S Gokhale., T. Philip, P.N. Marinos and K.S. Trivedi,
“Unification of Finite Failure Non-Homogeneous
Poisson Process Models through Test Coverage”, In
Proc. Intl. Symposium on Software Reliability
Engineering (ISSRE 96), pp 289-299, October 1996.

