
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 421

Rough Set Techniques for 24 Hour Knowledge Factory
Niti Verma1, Neha Verma2 and A. B. Patki3

Submitted in May 2011; Accepted in November 2011
Abstract - 24 Hour Knowledge Factory [1] is the work culture
that incorporates different people contributing together in
collaborated manner on various modules of the same project.
But as advancements occurred, it was found that the
approach is as difficult to realize as it is to imagine. The
smooth work flow amidst the personnel demands attention.
This paper discusses a software solution to easily implement
this idea by designing a workflow system between the
programmers who are working in the different places in 24-
Hour realm. The software presents the user interfaces to
enable an employee to grasp the work done until now easily.
The interface creates optimized tables generated using the
rough set theory. This theory gives us a fair view of the work
required by providing lower and upper approximation along
with various rules that could help us to find these optimum
sets. Software also facilitates the developer at the immediate
next shift to be sure of the code in which he is going to work.

Index Terms - 24 Hour Knowledge Factory; Workflow
Design, Rough set; Upper Approximation; Lower
Approximation; 24- Hour Development; Follow the Sun

1. INTRODUCTION
24 hour knowledge factory may be considered as a process of
working shifts at different places which are not only
geographically distant but also temporally far from each other
[1]. It involves collaboration of three or more centers in
different time zones handing over work to each other in shifts.
The centers are connected using internet or dedicated networks
which are used to pass knowledge from one work location to
other. Each center completes its work in its given time and then
the work is handed over to another center which has the day
time corresponding to this center's night period. This is
practiced until whole 24 hour cycle is completed.
The concept of 24 hour Knowledge factory is not new. The
work to improvise it is now for more than a decade old now.
The past work are summarized in [1,13,14] carrying different
perspective towards the problem. All have discussed the
problem of bringing it to life very effectively. The commercial
products based on “Follow the sun” alias 24 hour knowledge
Factory were also introduced by IBM and HP in market [15].
For the effective utilization of sequential workers distributed
1Indira Gandhi Institute of Technology, New Delhi, India
2Maharaja Surajmal Institute of Technology, New Delhi, India
3Ex-Senior Director and HOD, Department of Information
Technology, MCIT, New Delhi
E-Mail: 1nitiverma.cs@gmail.com, 2cs.nehaverma@gmail.com
and 3patki@nic.in

across time-zones, tasks must be broken down so that they
require no interaction with peers. In addition, effort required in
transitioning from one employee to the next should be minimal.
This paradigm requires new methodologies and tools that will
allow an individual to understand in 16 minutes, the work done
by others in the preceding 16 hours [7]. Also, this model
requires introduction of time and state as search parameters for
knowledge discovery in order to enable individuals to
understand the sequence of changes being made in a project.
These requirements of a 24 hour knowledge factory can be
solved with the introduction of a Composite Personae (CP).

Figure 1: Cycle in 24 Hour Knowledge Factory

[Adopted from Ref. 1]

A CP is a highly cohesive micro-team that posses simultaneous
properties of both an individual and a collection of individuals.
It is designed to act like a singular entity even though it
comprises of three or more individuals at multiple sites. In a
CP, only one site is active at a single point in time. Thus,
development can proceed in a manner similar to traditional one,
with the difference being that a component is owned by a CP
and not by an individual. It is actively involved in the process
of development and conflict resolution on a round-the-clock
basis [1].
The present day operating systems do not have adequate
support to facilitate this concept. Application of rough set
theory gives us an idea about the work that has to be done by
providing the lower and the upper approximation and various
rules that could help to find these optimum tables. The paper
consists of five sections ahead defining motivation for this

Rough Set Techniques for 24 Hour Knowledge Factory

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 422

software, revisiting rough set theory, implementation of rough
set to 24 hour knowledge factory, future work and conclusion.

2. MOTIVATION FOR SOFTWARE
In analogous to the code generation in shifts, consider three
people working on same wall building in temporal shift. The
specification for construction of wall indicates that each brick
is to be horizontally placed in the wall. Person A does his work
efficiently by placing brick horizontally and finishes one third
of the wall at the end of the shift. Now, another person B is
handed over the work in next shift who inefficiently places the
brick vertically and delivers the same work to person C at the
end of his shift, person C is unaware of the inefficient work
done by Person B and continuous to do his own work
efficiently by placing the bricks horizontally. At this stage, if
this work is handed over to person A in the next cycle, how can
he be sure if the work done until now has been efficiently
done?
Likewise, in the code building, each company has some norms
to use e.g. ‘if then else’, ‘else if’, ‘if then’ statements in code
building. Wrong practices of using these commands by the
developer in their code without following the protocols make
the code partially inefficient for the company’s norms. This
inefficiency can be checked by 24 hour knowledge factory and
the developer at the next shift can be sure of the code in which
he is going to invest time in. Possibly, also find out which
developer delivered the inefficient work through history log.
One may argue that Concurrent Versions System (CVS) [3]
and knowledge factory, both work on the basic idea of
maintaining the history of database of the same projects with
the temporal differences but there lies a considerable amount of
difference in the processing and maintaining the relevant
information in the database.
CVS just acts as a repository of information whether it’s a code
or it’s an author of the code, whereas the knowledge factory
maintains the ‘knowledge’ that is the relevant and useful
information only. Knowledge factory incorporates the software
maintaining this useful knowledge instead of acting as a
repository and saving all the information available.
Knowledge factory is capable of eliminating the redundant data
provided by the user and retrieving it at the time of the need
where as CVS just retrieves the data stored previously without
processing it. Knowledge factory can process the code written
and can differentiate its basic components like classes,
modules, basic elements etc. where as CVS is not capable of
this at all.

3. ROUGH SET THEORY
Rough set theory has been used in many applications varying
from fault diagnosis to economic predictions [2,4,6]. It
basically gives the crisp idea of selecting and deselecting the
component of the entity based on its lower and upper
approximation. Likewise, one can decide over the lower and
upper approximation of the given entity in the case of

vagueness and uncertainty. The classical Rough Set Theory
was introduced by Zdzisław I. Pawlak [5,10,11] in 1982.
3.1 Indiscernibility
Let A’= (U; A) be an information system, then with any B A
there is associated an equivalence relation INDA’(B):

INDA’(B)={(x,x’) U2 | a B a(x) = a(x’) }

where INDA(B) is called the B- Indiscernibility relation. If (x,
x’) INDA’(B), then objects x and x’ are indiscernible from
each other by attributes from B. The equivalence classes of the
B- Indiscernibility relation are denoted [x]B

3.2 Set Approximation
 If B A and X U. We can approximate X from the
information contained in B by constructing the B-lower and B-
upper approximations of X, denoted BX and BX respectively,
where

BX = {x | [x] B X}
BX = {x | [x]B ∩ X ≠ Ø}

The accuracy of the rough-set representation of the set X is
defined as:-

 µB(X) = |BX| / |BX|
The accuracy of the rough set representation of X, µB(X), 0≤
µB(X) ≤1, is the ratio of the number of objects which can be
placed in X to the number of objects that can possibly be
placed in X.

4. REDUCTS
From an information system, some attributes can be deleted
while keeping necessary attributes. The least minimal subset of
attributes which ensures the same quality of classification as
the set of all attributes is called a reduct in A’. Intersection of
all reducts is called the core. The core is a collection of the
most significant attributes for the classification in the system.

5. RULE GENERATION
Rules represent extracted knowledge, which can be used when
classifying new objects. Rules are created from the condition
attribute values of the object class. They are presented in the
form if “IF else” statement. A decision part comprises the
resulting part of the rule. Rules that have same conditions but
different decisions are called inconsistent rules.

6. ROUGH SET THEORY IN 24 HOUR KNOWLEDGE

FACTORY
24 hour knowledge factory require the better infrastructure and
workflow design for providing the interface to the programmer
joining in second shift. This knowledge-rich workflow
environments [16,17] uses rough set approach [8,9] which
provides the needed information in exact and intelligent way in
the compact form. It is implemented using the C# win forms
application. The part of class diagram can be seen in Appendix
I. We have made various assumptions regarding our project and
these are as stated below:

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 423

a. All the Hardware supports of different places are assumed
to be equal.

b. There should be a predefined format for the security
password and Login IDs. These can be programmer’s ID.

c. Current project Software requirement specifications are to
be provided for the assessment of various data fields. The
various upper and lower approximations of the SRS have
to be matched against those obtained when the work is
passed to the module developed, at the end of a particular
shift.

d. SRS must specify the number of objects, classes, functions
and number of modules in the project.

The User needs to login for accessing the knowledge factory.
This can be integrated with the corporate accounts login in later
times. User may be able to work on three different sides viz,
developer, and documenter and tester side.
The win forms for one side of application is the developer side.
By working on the developer side we maintain a form which
enable us to view three different tables [12] which are
necessary from the developer’s point of view that should be
provided to the other developer working at the another shift of
same project. Various tables that were designed are
information metric table, history log table and modular table.
Modular table tell us the name of module, approach
maintained, function name, date of start and completion as also
the language hardware and software used for designing the
particular module have been used. Later the rough set approach
is used to provide just useful information to the other developer
which is mandatory for him to know and proceed further for his
task. If we do not use rough set approach than it will result in
lot of waste of time in reading a part of work done by one
developer and deciding what next is to be done.

Figure 2: Design Hierarchy

Beside this, when our current approximations in rough sets are
compared with the required specified approximations (provided
by SRS), the developer ahead is more confident of work done
by previous developer.

7. IMPLEMENTATION
We have considered various classes which will have various
objects and functions which are to be considered during
attribute generation. Thus, we are considering two different
way of attribute generation-

a. Object of various classes may be considered to create
attribute table

b. Function in the various classes.
Therefore, we have considered two different tables in our
project. They will be filled in explicitly by the programmer for
the time being. Now, various rough set rules can be used to find
the optimum set attributes and then the upper approximation
and the lower approximation will be found with help of rough
set rules.

8. COMPARISON WITH THE SRS
It is essential to have software requirement specifications
which show the desired set of classes, functions and objects.
The Information given by the SRS will be used to find the
desired lower approximation and upper approximation of the
project.
Suppose the Lower Approximation and Upper Approximation
of the SRS is given by Ls and Us and their current code is
given by the Lc and Uc respectively. Then the calculation will
be

• Ls should be equal to Lc.
• Us should be equal to Uc

It may not be the exactly equal until the code is complete. Lc
and Uc will be some percent of Ls and Us. This will be given
by –

Current lower error= Lc / Ls x 100
Current upper error= Uc/ Us x 100

This error should lie between minimum given range. This value
can be used to keep the track of code being written in the
discrete time domains and it will still assure the programmer
writing the current code, that he is following the correct code
which was written by previous programmer.

9. PROJECT WINDOW FORMS
Three point of views in 24 hour knowledge factory are
considered as there are three main strata of people which are
involved in the software project generation i.e. Developer,
tester and documenter. We concentrated on code developer
view point in this paper.
The developer view includes three Information Metric table,
Module table and History Log to store the information about
the code developed. The Information Metric Table stores
general information about the module developed (figure3). The
Module Table stores the specific information about the module
developed (figure4). The History Log stores date and time
details of the module developed (figure5).
The data is collected by each developer at the end of his shift in
these three tables. This data is stored in the database which is
maintained at the backend. Now, depending upon the decision
attributes Lower Approximation (LA) and Upper
Approximation (UA) are found by using the algorithm for
approximation computation [8]. The sets which are
indiscernible can be reduced to single tuple and optimize the
subsets to a certain degree. The approximation is specifically

User

Developer Tester Documenter

Information
Metric table

Modular table

History log
table

Rough Set Techniques for 24 Hour Knowledge Factory

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 424

calculated to match the Lower and Upper approximation with
those stated in the SRS (Software Requirement Specification).

Figure 3: Information Table

Figure 4: Module Table

Similarly, reducts can be found by applying the reduct and core
computation algorithm [8]. It is a relative reduct that contain
same amount of information that is held with non reduced data
set. Hence, we can call it as extracted data. This is data which
will be shown to the developer working at the immediate next
shift to brief him about the status of the work done.

FUTURE WORK
The event of login can be connected to a database maintained
specifically for verification of user name and password.
Currently a predefined user name and password are being used
for verification of login.

The Software Requirement Specification is an essential input in
any project. In the case where SRS tends to change, due to the
market requirement changes, or any other reason, the whole of
the input changes which tends to disturb the output in an
unexpected way. And at worst could hamper the work progress
which is the main goal of this 24 hour knowledge factory. This
could be changed by making some amendments and predefined
norms at the time of SRS agreement. Or a system which is
ready to accept the changes made in SRS and is not that depend
on it.
Currently only the developer’s side of view has been
considered. The other two sides i.e. the tester’s and the
documenter’s also need to be implemented.

Figure 5: History Table

CONCLUSION
The goal of this paper is to generate interface for managing the
24 hour knowledge factory by implementing rough set theory.
The software is capable of handling work different places
which are not only geographically distant but also temporally
far from each other by easily grasping the idea as quickly as
possible by going through the optimised tables. Software also
facilitates the developer at the immediate next shift to be sure
of the code in which he is going to work.

ACKNOWLEDGMENTS
We thank engineering college authorities to encourage student
interns in participating in challenging projects at DIT. Authors
also thank the DIT student interns Tapasya Patki and Swati
Verma for their initial efforts in pursuing the research and
development work in rough set techniques.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 425

REFERENCES
[1]. A.Gupta, and S. Seshasai, 24 Hour Knowledge Factory:

Using Internet Technology to Leverage Spatial and
Temporal Separations, ACM Transactions on Internet
Technology, Vol. 7, Issue 3, August 2007.

[2]. Francis E. H. Tay and Lixiang Shen (2002), Economic
and Financial Prediction using Rough Sets Model,
European Journal of Operational Research 141, pp.643-
661.

[3]. Dick Grune, Concurrent Versions System, a method for
independent cooperation, IR 113, Vrije Universiteit,
Amsterdam, pp. 9, 1986.

[4]. Israel E. Chen-Jimenez, Andrew Kornecki, Janusz
Zalewski, Software Safety Analysis Using Rough Sets.

[5]. Komorowski, Lech Polkowski, Andrzej Showron-
Rough Sets: A Tutorial.

[6]. Lixiang Shen, Francis E. H. Tay, Liangsheng Qu and
Yudi Shen (2000), Fault Diagnosis using Rough Sets
Theory , Computers in Industry, vol. 43, Issue 1, 1
August 2000, pp.61-72.

[7]. Mitra, A. and Gupta, A. 2006. Agile Systems with
reusable patterns of Business Knowledge a Component
Based Approach. Artech House Press, M.A.

[8]. Patki A. B. and Verma S., Implementing Data Mining
Software Modules Using Rough Set Techniques,
National Conference on Recent Developments in
Computing and its Applications, NCRDCA.09

[9]. Patki T., Kapoor A., Khurana S., Analytical
Methodologies in Soft computing: Rough Sets

Techniques, Training Report No. DIT/ SD(ABP)/
MSIT/05, July 2005

[10]. Pawlak Z., Rough Classifications, International Journal
of Man Machine Studies, No. 20, 1984.

[11]. Pawlak. Z. Rough Sets. Int. J.Computer and Information
Science 11:341-356,1982

[12]. Robert Susmaga, Reduct and Constructs in attribute
reduction, Fundamenta Informaticae Volume 61, Issue 2
(November 2003) International Conference on Soft
Computing and Distributed Processing (SCDP'2002)
Pages: 159 - 181. Year of Publication: 2003.

[13]. Erran Carmel, Yael Dubinsky, Alberto Espinosa. Follow
The Sun Software Development: New Perspectives,
Conceptual Foundation, and Exploratory Field Study.
Proceedings of the 42nd Hawaii International
Conference on System Sciences – 2009.

[14]. Sooraj. P. and Mohapatra, P.K.J. Modeling the 24-hour
software development process, Strategic Outsourcing:
An International Journal, 1, 2, (2008), 122 – 141.

[15]. J. J. Treinen, S. L. Miller-Frost. Following the sun: Case
studies in global software development. IBM Systems
Journal. Volume 45, Issue 4, Page 773, October 2006.

[16]. Jihie Kim, Yolanda Gil, and Marc Spraragen. Principles
for Interactive Acquisition and Validation of
Workflows. The Journal of Experimental and
Theoretical Artificial Intelligence, 2009.

[17]. Yolanda Gil. From Data to Knowledge to Discoveries:
Scientific Workflows and Artificial Intelligence.
Scientific Programming, Volume 16, Number 4, 2008.

Appendix-I

Form3
class
form
 Fields
button1
button2
button3
label1
label2
label3
label4
label5
label6
label7
label8
label9
textbox1
textbox2
textbox3
textbox4
textbox5
textbox6

textbox7
Methods(Form3)
button1_click
button2_click
button3_click
dispose
form3
form3_load
initializecomponent
label5_click
textbox1_textc
textbox1_validate

Form 6
class
form
 Fields
button1
components
label1
radiobutton1
radiobutton2
radiobutton3

Methods (Form 6)
button1_click
dispose
form6
initializecomponent
radiobutton1_click

Form11
class
form
 Fields

a
d_attr
datagridveiw1
hashtable2
hashtable3
hashtable4
hashtable5
hahstable6
la
no_array
str
ua

Methods (Form11)
Calculate
Calculate_accuracy
Calculate_la_ua
Make_target
Class(+1 overload)

Form2
class
form

Rough Set Techniques for 24 Hour Knowledge Factory

Copy Right © BIJIT – 2012; January - June, 2012; Vol. 4 No. 1; ISSN 0973 – 5658 426

 Fields
button1
button2
components
label1
label2
label3
textbox1
textbox2

Methods (Form2)
button1_click
button2_click
dispose
form2
initializecomponent
label1_click

Class1
class
 Fields
_items
button1
button2
button3
button4
combobox1
components
d_attr
data_grid_veiw
label1
label2
label3
label4
label5
textbox1
textbox2
textbox3
Methods
button1_click
button2_click
button3_click
combobox1_set
dispose
form11(+1
overload)
init1
initilizecomponent
listbox1_select
Form1

class
form
 Fields
button1
components
label1
label2
Methods
button1_click
dispose
form1
initializecomponent
label1_click
Program
Static class

Methods
Main

Form5
class
form
 Fields
button1
button2
button3
components
label1
label2
label3
label4
label5
label6
label7
label8
label9
label10
textbox1
textbox2
textbox3
textbox4
textbox5
textbox6
textbox7
textbox8
textbox9
Methods

button1_click
button2_click
button3_click
dispose
form5
initializecomponent
label4_click
textbox_textc

