
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 377

Efficiency Metrics

Tamanna Siddiqui1, Munior Ahmad Wani2 and Najeeb Ahmad Khan3

Submitted in May 2011, Accepted in June 2011
Abstract - Software measurement is a challenging but
essential component of a healthy and highly capable software
engineering culture. It is an integral part of the state-of the-
practice in software engineering. More and more customers
are specifying software and/or quality metrics reporting as
part of their contractual requirements. Software Engineering
has always been a matter of concern for every individual
involved in software development starting from analysis phase
to delivery phase or even at the maintenance time. There have
been novel approaches for developing program complexity
metrics. In this regard we have proposed the Efficiency
Metrics, which can calculate the efficiency of a programmer
and can also calculate the exact time taken by the development
team to complete the software development under various
complexities. Over and above we have also developed a
relation between time and efficiency.

Index Terms - LOC, Mean, Standard Deviation, Low,
Medium, High, Errors, Delay Time, Committed Time

1. INTRODUCTION
There have been novel approaches for developing program
complexity metrics. The first which was developed by
Halstead[16], uses a series of software science equations to
measure the complexity of a program. McCabe[17], uses graph
theoretic measures to define a cyclomatic complexity metric.
Albretch[18], who hypothesized that the amount of function to
be provided by an application program can be estimated form an
itemization of the major components of data to be used or
provided by it. In this regard we have proposed the Efficiency
Metrics, which can calculate the efficiency of a programmer and
can also calculate the exact time taken by the development team
to complete the software development under various
complexities. Fear is often a software practitioner’s first
reaction to a new metrics program. People are afraid the data
will be used against them, that it will take too much time to
collect and analyze the data, or that the team will fixate on
getting the numbers right rather than on building good software
[20]. Creating a software measurement culture and overcoming
such resistance will take diligent, congruent steering by
managers who are committed to measurement and sensitive to
these concerns. Software metrics, presented in various
textbooks, e.g. [11],[12],[13],[14] and conferences and
1,2,3Department of Computer Sciences. Jamia Hamdard,
Hamdard University, New Delhi, India
E-mail: 1tsiddiqui@jamiahamdard.ac.in,
2muneer.wani@gmail.com and 3nakhan@jamiahamdard.ac.in

workshops [12], has a long tradition in theory, while
considerably shorter in terms of industrial applications.
Software metrics relies on the underlying theory, called
representational measurement theory, posing some requirements
on a correct definition, validation, and use of software metrics.
From practical point of view, there are several further questions
of importance, e.g. how to identify the right metrics to use, how
to introduce a metrics programme, and how to keep it alive.
Software process and product metrics are quantitative measures
that enable software people to gain insight into the efficacy of
software process and the projects that are conducted using the
process as a framework. Basic Quality and productivity data is
collected. This data is then analyzed, compared against the past
averages, and assessed to determine whether quality and
Productivity improvements have occurred or not [7]. Metrics
are also used to pinpoint problem areas so that remedies can be
developed and the software process can be improved [5].

A comparison of software metrics by Halstead, McCabe and
Albrecht, in terms of their ability to measure software
productivity has led to the conclusion that in the areas where it
is applicable, the function point metric is the best of the
three[14]. It should be noted that the values of Halsted’s metrics
becomes available only after the coding is done and therefore
can be of use only during the testing and maintenance phase.
The increasing demand of the software industry across the globe
is that it needs both the development of improved software
metrics and improved utilization of such metrics.[1] Software
metrics can be classified into product metrics & Process Metrics
or Objective Metrics & Subjective Metrics. On these bases
many Software Models and Software Metrics have been
proposed like Size Metrics by Boehm & Johns [8], Function
point Metrics by Albrecht, Bang Metrics by Demark,
Information Flow Metrics by Kafure & Henry etc.
Measurement is the process by which numbers or symbols are
assigned to attributes of entities in the real world in such a way
as to describe them according to clearly defined unambiguous
rules. A good measurement program is an investment in success
by facilitating early detection of problems, and by providing
quantitative clarification of critical development issues. Metrics
give you the ability to identify, resolve, and/or curtail risk issues
before they surface. Measurement must not be a goal in itself. It
must be integrated into the total software life cycle — not
independent of it [10]. Different type of measurement for
different parameters of software product is possible through
different types of metrics. Proposed research work is an effort to
present a Delay metrics, which will solve the problem of time
delay in software development.

Efficiency Metrics

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 378

2. RELATED WORK
Many Researchers have been working on the exact time of
development and they have also succeeded to some extent.
Halstead and Raleigh has been able to find the development
time however the results would have been more accurate, had
the efficiency of the programmers also been taken into
consideration.[1][2] Goal-question-metric (GQM) is an
effective technique for reducing the average time and to close a
defect by 40 percent within three months. However it too lacks
the programmers efficiency in its calculations [4], because the
distribution of reasons for delay varied widely from one
department to another, it is recommended that every department
should gain an insight into its reasons for delay in order to be
able to take adequate actions for improvement [2]. The field of
software engineering especially in the field of software metrics
the success rate is not that good because most of the software
development companies avoid to follow the proposed metrics.
Project initiation is a good time to choose the appropriate
measures that will help developer to assess project performance
and product quality [6]. To plan measurement activities
carefully will take significant initial effort to implementation
and the payoff will come over time [3].

Yin and Winchesters Metrics [15], which depend on design
structure can be useful in identifying sections of a design that
may cause problems during coding, debugging, integration and
modification. This metrics is available from the design phase
onwards and hence can be used to predict values like the
number of errors in the system, time for system testing, time for
rectification of errors etc. Henry and Kafura’s Metrics[15] is an
appropriate and practical basis for measuring large scale
systems. The major elements in the information flow analysis
can be directly determined at design time, thereby allowing any
corrections in the system structure with the minimum cost. Also
by observing the patterns of communication among system
components, it is possible to define measurements for
complexity, module coupling, level interactions and stress
points in the design. These critical system qualities cannot be
derived from simple lexical measures. In a nutshell we can say
that this metric is to determine the complexity of a procedure
which depends on two factors: the complexity of the procedure
code and the complexity of the procedures connections to its
environment[15]. Once the errors are predicted by Yin and
Winchester Metrics and the complexity of the code calculated
by Henry and Kafura;s metrics, there is a need to develop a
metrics which will calculate the exact time of development
being the complexity of a procedure or program its important
parameter[19].

Background of the early depicted Software Models:

2.1 COCOMO Model
The most fundamental calculation in the COCOMO model is
the use of the Effort Equation to estimate the number of Person-

Months required to develop a project. Most of the other
COCOMO results, including the estimates for Requirements
and Maintenance, are derived from this quantity. The original
COCOMO 81 model was defined in terms of Delivered Source
Instructions, which are very similar to SLOC. The major
difference between DSI and SLOC is that a single Source Line
of Code may be several physical lines. For example, an "if-
then-else" statement would be counted as one SLOC, but might
be counted as several DSI. However the efficiency of the
programmer is not taken into consideration while performing
such calculations to meet the deadlines of the client.

2.2 Waterfall model
The waterfall model however is argued by many to be a bad
idea in practice, mainly because of their belief that it is
impossible to get one phase of a software product's lifecycle
"perfected" before moving on to the next phases and learning
from them. A typical problem is when requirements change
midway through, resulting in a lot of time and effort being
invalidated due to the "Big Design Up Front". Only a certain
number of team members will be qualified for each phase,
which can lead at times to some team members being inactive.
Had the programmers efficiency been checked before handing
them over this job, the project manager could have assigned
high efficiency programmers for coding.

2.3 Spiral model
In spiral model the software is developed in a series of
incremental releases with the early stages being either paper
models or prototypes. Later iterations become increasingly more
complete versions of the product. Major flaws identified in
spiral model is that Demands considerable risk-assessment
expertise and has not been employed as much proven models .

2.4 Java Execution model
Though this model can check the performance of the software
developed in Java but still lacks the time and efficiency
constraints.[21]
Any of these COCOMO, WaterFall or Spiral models have been
run in the software industry but when there are sharp deadlines
for the completion of the project by client, such models become
obsolete without housing the efficiency metrics.

2.5 Relation with Defect Removal Efficiency
Defect Removal Efficiency (DRE) is a measure of the efficacy
of your SQA activities.. For eg. If the DRE is low during
analysis and design, it means you should spend time improving
the way you conduct formal technical reviews.
DRE = E / (E + D)

Where E = No. of Errors found before delivery of the software
and D = No. of Errors found after delivery of the software. [22]

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 379

 Remedy: If DRE is low during analysis and design, we could
find the efficiency of programmers and put the best ones for
coding purposes to meet the deadlines of client in time bound
and result oriented fashion.\

2.6 Feature Performance Metrics
Firstly, relative value is measured by the impact that each
feature has on customer acquisition and retention. Secondly,
feature value is compared to feature cost and specifically
development investment to determine feature profitability.
Thirdly, feature sensitivity is measured. Feature sensitivity is
defined as the effect a fixed amount of development investment
has on value in a given time. Fourthly, features are segmented
according to their location relative to the value to cost trend line
into: most valuable features, outperforming, underperforming
and fledglings. Finally, results are analyzed to determine future
action.[23]

3. PROPOSED WORK
If there are twenty programmers hired by the company, though
there language skills, technical knowledge and aptitude is
checked by the recruitment team, however it is not necessary
that all of them would be having same expertise in a particular
programming language or their level of aptitude and typing
skills. So it is necessary to check their efficiency before
assigning them the projects. Based on the efficiency, the work
force management team of the organization shall assign the
programmer a particular module of development where he/she
can give their best with less assistance. If we don’t measure our
current performance and use the data to improve our future
work estimates, those estimates will just be guesses. Because
today’s current data becomes tomorrow’s historical data.

We have tried this efficiency metrics at the initial phase of the
software, after analysis. The team leader (project in charge)
took up the manpower for his assigned project, based on this
efficiency metric. He picked up the people whose efficiency
rated (7-9) for very complex modules, (4-6) for normal modules
and (3-4) for easy modules, be it designing or coding.
 In this paper we propose efficiency metric in which we are
using three constants:

Programmers Status
1 Fresher
2 Intermediate
3 Experienced

Function complexity
1 Low
2 Medium
3 High

Efficiency Constant 100 % calculator

The proposed efficiency metric is defined as:

 E(Prog) = F(c)xLOC(d)xe
 P(s) x T(c)

Where,

E(Prog) is the efficiency of a programmer in a project.
F(c) is the function complexity
LOC(d) is the lines of code developed for assigned function.
P(S) is the programmer’s status.
T(c) is the total time consumed (in minutes) for developing the
Lines of code.
e is an efficiency constant and its value is 100.

4. EXPERIMENT
In Table 1, value of fifth column is the value of efficiency of
programmer, which is obtained by the proposed metric.

Programmer
Status F(c) LOC (d) T(c) E (prog)

1 1 5 3 3
2 1 5 2 4
3 1 5 1 8
1 2 7 7 2
2 2 7 6 3
3 2 6 3 6
1 3 9 13 2
2 3 8 11 3
3 3 8 8 4

Table 1: A Table (Sample Data) Calculating the Efficiency

of a Programmer for a Software Development Project

Figure1: Efficiency Graph

Figure 1 shows the efficiency of different programmers at
development of functions of different complexities.
By having a look at the chart 1 above, it is clear that the
efficiency of programmers do not vary much when we need to

Efficiency Metrics

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 380

develop programs of simple complexity however there is much
difference once we go on higher complexity levels. Higher
complexity level projects demand more experienced
programmers for the completion within the stipulated time
period.

Meeting the committed
deadlines before testing

the manpower with
efficiency metrics.

Meeting the committed
deadlines after testing the
manpower with efficiency

metrics.

Committed
deadline after
analysis

75
days

Committed deadline
after analysis

75
days

Deviation from
committed time

22
days

Deviation from
committed time

6
days

A relation between time taken and efficiency:
We have analyzed the data of Oriole InfoTech (A software
company of repute) as depicted in Table 2, where programmers
of any status are given the suite to develop, and we have found
that as time taken for development of code is more, the
efficiency of the programmer is less. (Table -2) is an extraction
of the two parameters Time and Efficiency from Table -1

T(
c)

E
(prog)

3 3
2 4
1 8
7 2
6 3
3 6
13 2
11 3
8 4

Table 2

Figure 2: Time and Efficiency Graph

From the above Table-2, we have depicted the following bar
graph which clearly states that the efficiency of a programmer is
inversely proportional to time.

 E ∞ 1
 T
Where,
T(c) is the time consumed in development and
E(Prog) is the efficiency of the programmer.

5. CONCLUSION
Though the changes in the analysis, design and code are certain,
we can still calculate the efficiency of the manpower
(Programmers) before we involve them in a project of
development. We shall be able to reap better results by
assessing the past development data from knowledge bases of
various companies and learn by the development hurdles which
they have faced. The programmer’s efficiency table shall be
able to calculate the efficiency of the programmer to an
appropriate level based on his a+ptitude, typing and
programming skills. This efficiency shall allow us to forecast
the manpower required for development of a project under
certain level of complexity, to be very close to the deadline of
the client.

FUTURE SCOPE
Since Yin and Winchester metrics plays a vital role in the
design phase of software development, Henry and Kafura’s
metrics serves as a base for our efficiency metrics as it helps us
to access the complexity of a procedure. Both these metrics are
helpful till the design phase however become obsolete when we
enter the coding domain of software development. So our
efficiency metrics will help us to a great extent in the coding
part of the software development process. However the
proposed software metrics is rarely followed by the companies
of repute because of the reasons best known to them [6]. So it
would be better if all the software companies of repute tie up
with good academic institutions so that the researchers get the
exact past development data to come up with an appropriate
knowledge base which will help us to make future software
metrics to maintain and manage domestic and global deadlines.

REFERENCES
[1]. SEI Curriculum Module SEI-CM-12-1.December 1988

Everald E. Mills Seattle University
[2]. IEEE Transactions on Software Engineering, Volume 17

, Issue 6 (June 1991), Pages: 582 - 590 Year of
Publication: 1991 ISSN:0098-5589 Author Michiel van
Genuchten

[3]. C12625211.fm Page 153 Monday, July 9, 2007
[4]. Daskalantonakis 1992; Basili and Rombach 1988
[5]. D. Radoiu, A. Vajda, Department of Mathematics and

Computer Science Petru Maior University,Tirgu Mures

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 381

Romania. STUDIA UNIV. BABES BOLYAI,
INFORMATICA, Volume XLIX, No. 2, 2004

[6]. Cem Kaner, Senior Member, IEEE, and Walter P. Bond,
10TH INTERNATIONAL SOFTWARE METRICS
SYMPOSIUM, METRICS 2004 KANER / BOND - 1

[7]. R. S. Pressman, Software Engineering: A Practitioners
Approach (McGraw Hill, NY, 2005).

[8]. B. Boehm, Software Engineering Economics. (Prentice-
Hall, Englewood Cliffs, NJ, 1981).

[9]. 12 Steps to Useful Software Metrics, Linda Westfall The
Westfall Team westfall@idt.net PMB 101, 3000 Custer
Road, Suite 270 Plano, TX 75075

[10]. Book: Software Estimation, Measurement & Metrics
GSAM Version 3.0 Fenton, N. Whitty, R., Iizuka, Y.,
Software Quality Assurance and easurement. A
Worldwid Perspective. International Thomson Computer
Press, 1995.

[11]. Fenton N: Software Metrics for SPI, Workshop on
Process Improvement, Eurex, London, January 1999

[12]. Humphrey W: A Discipline for Software Engineering,
Addison-Wesley Publishing Company 1997.

[13]. Paulk, M.C. et al, The Capability Maturity Model
Guidelines for Improving the Software Process, Addison-
Wesley, 1995.

[14]. A survey of system complexity metrics, J.K Navlakha,
Department of mathematical Sciences, Florida
International University, Miami, Florida 31399,U.S.A.

[15]. M.H. Halstead, Elements of software science, Elsevier,
Amsterdam (1977).

[16]. T.J. McCabe, A complexity measure IEEE, Transactions
on software engineering, SE-2 (4), 308 – 320.

[17]. A.J. Albrecht and J.E. Gaffney, Jr, Software function
source lines of code, and development effort prediction: a
software science validation, IEEE Transactions on
software engineering SE-9 (6), 639 – 648 (1983).

[18]. The computer Journal, Volume 30, No 3, 1987.
[19]. A software metrics, C12625211.fm Page 153 Monday,

July 9, 2007
[20]. Important aspects in Load & Performance Testing – 3 –

Steps and things to test in a component for performance
(2010)

[21]. Software Quality Metrics, Parent Category: Software
Testing Major Editors: R K akshaya bhatia stevetuf
 (2010)

[22]. Feature Performance Metrics for Software as a Service
Offering: The Case of HubSpot Avi Latner MIT, System
Design and Management Cambridge, MA, USA Ricardo
Valerdi MIT, Lean Advancement Initiative Cambridge,
MA, USA (2011)

