
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 365

Two Level Caching Techniques for Improving Result Ranking

Amarjeet Singh1, Mohd. Hussain2 and Rakesh Ranjan3

Submitted in November 2010, Accepted in July 2011
Abstract - Due to the rapid growth of the Web from a few
thousand pages in 2000 to its current size of several billion
pages, users increasingly depend on web search engines for
locating relevant information. One of the main challenges for
search engines is to provide a good ranking function that can
identify the most useful results from among the many
relevant pages, and a lot of research has focused on how to
improve ranking, We present an effective caching scheme
that reduces the computing and I/O requirements of a Web
search engine without altering its ranking characteristics.
The novelty is a two-level caching scheme that
simultaneously combines cached query results and cached
inverted lists on a real case search engine. A set of log
queries are used to measure and compare the performance
and the scalability of the search engine with no cache, with
the cache for query results, with the cache for inverted lists,
and with the two-level cache. Experimental results show that
the two-level cache is superior, and that it allows increasing
the maximum number of queries processed per second by a
factor of three, while preserving the response time.

Index Terms: Search Engines, Query Processing, Retrieval,
Ranking, Cache Design

1. INTRODUCTION
Large web search engines have to answer thousands of queries
per second with interactive response times. Due to the sizes of
the data sets involved, often in the range of multiple terabytes,
a single query may require the processing of hundreds of
megabytes or more of index data. To keep up with this
immense workload, large search engines employ clusters of
hundreds or thousands of machines, and a number of
techniques such as caching, index compression, and index and
query pruning are used to improve scalability. In particular,
two-level caching techniques cache results of repeated
identical queries at the frontend, while index data for
frequently used query terms are cached in each node at a lower
level. Popular search engines receive millions of queries daily,
a load never experienced before by any IR system.
Additionally, search engines have to deal with a growing
number of Web pages to discover, to index and to retrieve, and
must handle very large databases. To compound the problem,

E-Mail: 1amarjeetsingh_9@rediffmail.com,
2mohd.husain90@gmail.com and
3rakeshranjan.lko@gmail.com

search engine users want to experience small response times as
well as precise and relevant results for their queries. In this
scenario, the development of techniques to improve the
performance and the scalability of search engines without
degrading the quality of the results becomes a fundamental
topic of research in IR. One effective alternative for improving
performance and scalability of information systems is caching.
The effectiveness of caching strategies depends on some key
aspects, such as the presence of reference locality in the access
stream and the frequency at which the database being cached is
updated.
In this paper we describe and evaluate the implementation of
caching schemes that improve the scalability of search engines
without altering their ranking characteristics. The starting point
of the work is TodoBR, a state-of-the-art full scale operational
search engine that crawls the Brazilian Web. We enhanced the
current implementation of TodoBR by integrating three
caching schemes. The first one implements a cache of query
results, allowing the search engine to answer recently repeated
queries at a very low cost, since it is not necessary to process
those queries. The second one implement a cache of the
inverted lists of query terms, thus improving the query
processing time for the new queries that include at least one
term whose list is cached. The third caching scheme combines
the two previous approaches and will be called two-level
cache.
Each of the first two strategies presents advantages and
disadvantages. A hit in the cache of query results avoids query
processing, while a hit in the cache of inverted lists reduces the
amount of I/O associated with answering a query, but does not
avoid the query processing costs. On the other hand, the hit
ratio associated with inverted lists is usually higher than the hit
ratio for whole queries, which may pay o_ the query
processing cost. The motivation behind the third strategy is to
exploit the advantages of the first two strategies to improve
even further the overall performance and scalability of the
search engines.
Our experimental evaluation yields some key results. The two-
level cache is superior and allows increasing the maximum
throughput by a factor of three, relative to an implementation
with no cache. Furthermore, the throughput of the two-level
cache is up to 52% higher than the implementation using just
cache of inverted lists and up to 36% higher than the cache of
query results. Our work is distinct from previous ones because
it presents experimental results on the effectiveness of different
caching strategies implemented on a real case search engine.

Two Level Caching Techniques for Improving Result Ranking

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 366

Our main contribution is the two-level caching scheme we
proposed which yields superior performance. Our results can
be replicated to other Web search engines since there is high
similarity between workload characteristics present in the logs
of TodoBR search engine and in the logs of other large search
engines.

2. SEARCH ENGINE ARCHITECTURE
Web search engines are IR systems that take a query as input
and produce as a result a set of links to relevant Web pages
related to the query. Search engines seek, collect and index
Web pages on a massive scale. To speed up query processing,
all queries are answered using the index and without accessing
the text directly.
Efficient query evaluation requires specialized index
techniques when the text collection is large. Our search engine
server implementation uses an inverted file as index structure,
a popular choice to implement large scale IR systems. An
inverted file is typically composed of a vocabulary, which
contains the set of all distinct terms in the collection, and an
inverted list for each term of the vocabulary. The inverted list
of a term t is a list of the identifiers of the documents
containing t with the respective frequency of occurrences of t
on each document.
The ranking method used for the experiments is based on the
vector space model. In the vector space model, the documents
and the queries are represented as vectors in a space with
dimensions given by the size of the vocabulary. The answers to
the queries are the documents with the highest similarity
values, where the similarity is computed by the cosine of the
angle between the query vector and each document vector. The
inverted file is used during query processing time to compute
the similarities of each document of the collection against the
query.
For large document databases, the cost of evaluating the cosine
measure may be potentially high, because it assigns a
similarity measure to every document containing any of the
query terms, requiring a read and some processing on the
whole inverted list of each term of the query. This task may be
expensive since some of the terms can occur in a high
proportion of the documents present in the database.
An effective technique to compute an approximation of the
cosine measure without significant changes in the final ranking
for each query is already proposed. We use it to process the
queries submitted to the search engine server. This query
evaluation technique uses early recognition of which
documents are likely to be highly ranked to reduce costs of
query processing. Queries are evaluated in 2% of the memory
of the standard cosine implementation without degradation in
retrieval effectiveness. Disk traffic and CPU time are also
reduced because the algorithm processes only portions of the
inverted lists which have information that can change the
ranking.

3. CACHE DESIGN
In this section, we describe in detail the strategies for
implementing the three caches in a search engine, that is,
caching of query results, caching of inverted lists, and a two-
level cache that combines both.
3.1 Cache of Query Results
Our strategy for caching query results is to keep in memory the
list of documents associated with a given query. For each
document we store its URL, its title, and a 250 character
abstract. The very first implementation issue of this caching
strategy is determining the number of document references that
should be cached for each query. It is remarkable that the
number of documents that match a given query is often huge.
However, the great majority of the users request at most the
first 30 references that match a query. In TodoBR we also
observe the same behavior, since most of the users (70%) do
not request more than 10 references, and 90% of the query
requests are for at most the first 50 references. Thus, we
limited our cache of query results to 50 references, resulting in
a storage requirement of 25 kilobytes per query result cached.
This implementation decision allows our cache to satisfy most
of the queries without wasting memory, and also exploits the
spatial locality among queries. Figure 1 (a) shows the
architecture of the search engine including the cache of query
results. Whenever a user submits a query to the search engine,
it checks whether the cache is storing the associated query
results and the reference rank is below the caching threshold,
in our case 50. If there is a cache hit, the query result is
immediately returned to the user, at a very low cost, since the
response only needs to be formatted and sent to the user, a cost
inherent to any query. Otherwise, the search engine processes
the query normally, occasionally caching it, whenever the
reference rank is below the threshold.
The second major issue is the replacement policy for the query
results, that is, how we determine which query results should
be evicted from the cache whenever a new set of results is to
be cached and the cache is full. In this first implementation we
adopted LRU (least recently used) as replacement policy, since
the TodoBR logs present a good temporal locality. Markatos
has proposed alternative cache replacement policies for
caching query results, such as SLRU (segmented LRU) and
FBR (frequency based replacement), but they did not improve
the cache hit ratio significantly. Furthermore, Markatos did not
exploit spatial locality in his work, in the sense that a query
result for the first ten documents is handled independently
from the result for the next ten documents of the same query.

Figure 1(a): Query Results

Clie

Cac
he
of

quer

Query
Proce

Index
Data

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 367

Figure 1(b): Inverted Lists

Figure 1(c): Two Levels

3.2 Cache of Inverted Lists
Our strategy for caching inverted lists is to keep in memory the
list of Web documents associated with a given query term. In
practice, our enhanced search engine caches the inverted lists
for each term as they are accessed, and uses these lists to
answer further queries that contain the same terms. In this case,
the integration with the search engine is straightforward, since
it acts as a specialized buffer for the index, which is usually
stored in secondary memory. The main motivation for caching
inverted lists is the good reference locality that is usually
observed among individual search terms. Since the term
locality is even greater than the query locality, and thus may
attain a higher cache hit ratio, caching inverted lists is a good
strategy for improving the scalability of search engines. The
implementation of caches of inverted lists has to face two
issues related to the high variance in the size of the inverted
lists: the size of the cached lists and the internal organization of
the cache.
These issues are discussed in the remaining of this section. The
size of the inverted lists is a function of both the term
popularity in the collection and the number of documents being
indexed. For large collections, these lists may also become
very large, making cache of inverted lists to fail in practice,
since they require considerable cache space to store the whole
list. To address this problem, we turn to an important
characteristic of the filtered vector model processing
technique. In this technique, the inverted lists are sorted by the
frequency of occurrence of the term in each document, and the
query processing exploits the frequency variance by using just
the documents in which the term is most frequent. As a
consequence, the lists are not fully traversed or are not
traversed at all, depending on the relevance of the term on the
collection and on the query it. In summary, the vector model

allows naturally handling the problem associated with large
inverted lists.
Since lists are almost always partially processed, we set out to
cache parts of lists. The frequency-sorted inverted lists can be
partitioned in different ways. The lists are naturally divided
into blocks of documents in which the term appears with the
same frequency, and these are the smallest units of algorithm
processing. These blocks present interesting properties
regarding their size and access pattern. The first blocks of each
list are small, consisting of few documents, and are much more
frequently accessed than the blocks at the end of the lists,
which contain the documents in which the term appears a few
times. In the model, given an inverted list of a term t, for some
integer v (usually 2 to 4), a fraction (v - 1)/v of the document
identifiers have frequency 1 (fd.t = 1); of the remainder a
fraction (v - 1)/v have fd.t = 2, and so on. If v is 2, for example,
half of the list will correspond to the block of documents in
which the term appears only once. Blocks could be the objects
to be cached, but their size distribution spans several orders of
magnitude, making caching much more complex. Since the
objects cached by a Web cache (html files, images, etc), also
present extremely high variable sizes.
Using blocks as cacheable objects presents some advantages,
but requires prefetching strategies and specific admission and
replacement policies. For example, the first blocks of the lists
tend to be very small and are generally accessed together. If no
prefetching is done when the first block of a list is requested by
the cache to the disk, there is a large number of disk seek
operations to retrieve several small objects.
Another issue arises when the cache requests the last block of
some large list. This is likely to be a large block, and its
admission into the cache could cause the eviction of several
other smaller but much more accessed blocks. These
mechanisms and policies are certainly worthy of further study,
but in this work we conjecture that much of the advantages of
caching blocks can be attained by using a simpler alternative
approach, namely to “page" the lists, i.e., to divide them into
equally sized pages. We should observe that, based on the
aforementioned distribution of sizes of blocks, the first pages
of an inverted list may contain several blocks, while the last
blocks of the list may span several pages. In this work we
employed a page of 4 kilobytes which is also the disk block
size. In our implementation, the cache only has knowledge of
pages, and this makes for much simpler cache design.
Furthermore, by varying the size of the pages, we can balance
the tradeoff between the number of seek operations and the
volume of bytes transferred from the disk. At one extreme, in
which each byte of the inverted list is considered to be a page,
there will be at least as many misses in the cache as the amount
of bytes needed to answer a given workload of queries. The
number of seek operations is maximal, while the volume of
bytes transferred is minimal.

Clie
nts

Quer
y

Proc

Cac
he of
Inve
rted

Inde
x

D t

Clie
nts

Ca
ch
e
of
qu
ery
res

Quer
y

Proc

Cac
he
of

Inve
rted

Inde
x

Data

Two Level Caching Techniques for Improving Result Ranking

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 368

At the other extreme we consider a large page size, such that
each list requires at most one miss in the cache. In this case,
the number of seek operations is minimal, but the volume of
bytes transferred is much larger than what is needed to answer
the queries. Large pages have an amortizing effect on the disk
seek time, and implicitly exploit spatial locality among list
blocks, but may, on the other hand, cause the cache to store
irrelevant parts of lists. Depending on the combination of
factors, such as the costs associated with a disk seek operation
and with the transferring of a byte, one can find an optimal
page size. Other factors that should be taken into consideration
are the disk block size and some operating system cache in
effect. Figure 1 (b) illustrates the architecture of a search
engine that embeds the cache of inverted lists. The query is
processed as in the implementation with no cache up to a
request to read a block, which is mapped to a page, from the
inverted list, when the cache is checked. The disk is accessed
only in the case of a miss in the cache of inverted lists. Again,
we employed LRU as replacement policy. Although the cache
of inverted lists avoids disk accesses, every query submitted to
the system must still be processed, and gains in performance
depend on the computational platform where the search engine
runs.
3.3 Two-Level Cache
As discussed in the previous sections, each of the two cache
architectures presents advantages and disadvantages. The
cache of query results avoids processing queries which are
already in the cache, while a hit in the cache of inverted lists
only avoids disk accesses. On the other hand, the hit ratios
obtained for the query results are smaller than the hit ratios
obtained by the cache of inverted lists. These observations led
us propose and test a third cache option, which combines the
two caching strategies. We call this option two-level cache.
Figure 1 (c) shows the architecture of the search engine with a
two-level cache system. Each request for the search engine is
checked first in the cache of query results. If it is a hit, the
query is answered immediately, otherwise the query is
processed and the cache of inverted lists is used to reduce the
number of disk accesses.

a. The L1 cache receives addresses from the prefetch and
returns instructions either from the cache or from the next
level of the memory hierarchy. The cache also receives
addresses from the execution unit and reads or writes
operands, again from the cache or from the next level of the
hierarchy. The handling of writes varies with different write
algorithms. If separate Ll instruction and data caches are
present, they respond to the instruction fetch and instruction
execution units, respectively.

b. The L2 cache receives addresses from the Ll cache (or
caches) and reads or writes operands from its storage or
from the primary memory system. The handling of writes
varies with different write algorithms.

Basic Two-Level Simulation Model
1. The bus is a half-duplex data path connecting the caches to

the memory system. Devices on the bus must arbitrate for
bus ownership before commands or data can be sent.

2. The primary memory consists of a number of interleaved
memories. Simulation parameters include the interleaving
factor, access time, and cycle time of main memory.

4. WORKLOAD CHARACTERIZATION
In order to assess the behavior of the three cache
implementations we consider in this paper, we perform an
analysis of a partial log of queries submitted to TodoBR,
comprising 100,256 queries. There is a total of 37,450 unique
queries, and 23,751 unique terms in the log. We focus on
aspects relevant to both levels of caching we consider, namely
the characteristics of the stream of queries present in the log
relevant to the cache of query results and of the stream of page
references generated by the query processor - influencing the
behavior of the cache of inverted lists.
In the case of the cache of inverted lists, we study its behavior
under two different workloads, the first one with all the
queries, and the second one with only the unique queries. To
understand the reasons for this consideration, let us examine
what happens to the cache of inverted lists under different
configurations of the cache of query results. When used stand
alone, the cache of inverted lists receives from the query
processor a page workload originated from all of the queries
received by the search engine. This is precisely the workload
represented by the `All Queries' workload.
On the other hand, suppose a two-level implementation in
which the cache of query results is large enough not to have
any miss caused by eviction from the cache, i.e., it can store
the results of every query that it receives. In this situation, the
query processor, and thus the cache of inverted lists, will only
process the unique queries, for all the repetitions will be
handled by the cache of query results. The workload the cache
of inverted lists will be subject to is well represented by the

Instruction Fetch Unit Operand Fetch and
Store

Local Cache
(L1)

Second Level
Cache (L2)

Memory System

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 369

`Unique Queries' workload. There will be a smooth transition
from one workload to the other for varying sizes of the cache
of query results, meaning that we can have valuable insight of
the performance of the cache of inverted lists for a wide range
of situations. A very small cache of query results will generate
a workload at the cache of inverted lists similar to the `All
Queries' workload, while a large cache of query results will
generate a workload close to the `Unique Queries' workload.

Figure2

Figure3

4.1 Popularity
We start our workload characterization by analyzing the
popularity of both queries and pages of the cache of inverted
lists. We define popularity of an object as the number of
references to the object, and the popularity rank as a list of all
objects sorted by decreasing popularity, that is, the most
popular object is the first in the rank.
For a reference stream to order good opportunity for caching, it
ought to exhibit temporal locality among its references. In fact,
the authors conclude that popularity is the main source of
locality, specially in dealing with reasonably sized caches, and
that a reference stream whose objects popularity follow a Zipf-
like distribution exhibit a high degree of temporal locality.
Zipf's law relates the popularity rank p of an object, to the
probability P that it is requested, by P ~ 1/p, and has been
applied to several distinct contexts, such as words in natural
language and accesses to web pages. We call a Zipf-like

popularity distribution the one in which the relation between P
and p is given by P ~ 1/pα. This is a generalization of Zipf's law
and in a log-log plot of popularity versus rank appears as a
straight line with slope - α. The smaller α is, the less skewed
the distribution is, showing weaker temporal locality and worse
cache ability.
We verified that the references to queries follow a Zipf-like
distribution. In Figure 2 we plot the relative popularity, i.e., the
probability of accessing each query, versus the popularity rank
for the queries stream, together with a Zipf-like distribution
with an α parameter of 0:59, obtained by a least-squares fitting
of the data.
In Figure 3 we examine the popularity distribution for both
workloads of the cache of inverted lists. We can notice a pair
of similar curves, labeled `All Queries' and `Unique Queries'.
There are two regions in these two curves, one up to roughly
the rank 2,500, with large at segments, and one after this point,
which is approximately an straight line in the log-log plot with
inclination of -1. The flat region occurs due to the page access
pattern. The first pages of each list are accessed in group,
meaning that they should have approximately the same
probability of being accessed. This suggests, for caching
effects, that the pages making up at region should necessarily
be stored in the cache if it is to have a good level of efficiency.
The second region, which comprises more than 90% of the
pages, exhibit a Zipf-like behavior, and is well fit by one such
distribution with α = 1. This indicates that the distributions
much more skewed than that of the queries' popularities,
resulting in greater temporal locality.
The distribution does not vary much for both workloads,
meaning that there is opportunity for caching inverted lists
even if this caching is to be done after a fully efficient first
level cache of query results. In order to further investigate this
opportunity, we collected statistics of the number of distinct
queries in which each term appears. In the situation of a fully
effective cache of query results, resulting in the `Unique
Queries' workload to the cache of inverted lists, the terms that
appear in only one query shall not generate a hit, because their
pages will only be seen once by the cache of inverted lists. We
found out that approximately 40% of the terms appear in more
than one query, evidencing the extra locality that can be
exploited by the cache of inverted lists.
4.2 Cache Miss Ratios
To assess the behavior of a cache under a LRU replacement
policy, we generated the successive stack distances from the
log. The marginal distribution of stack distances can be used to
determine the miss ratio for a cache at different sizes. Let D be
the random variable corresponding to stack distance, and let
FD be the cumulative distribution function for D. The miss
ratio m(x) for a cache holding x objects is given by

P [D > x] = 1 - F α (x) = m(x)
The first observation from the graph is the minimum miss ratio
we can obtain under this query workload, which is around

Two Level Caching Techniques for Improving Result Ranking

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 370

40%. This is the miss ratio that an infinite cache would exhibit,
and is due to the first occurrence of each query. The most
important fact the graph shows is how fast the miss ratio
decreases as we increase the capacity of the cache, relative to
the TodoBR log we considered. We can observe a 'knee' in the
curve close to 10 megabytes, indicating that a relatively small
fraction of the queries accounts for a significant portion of the
accesses.
This is a good indicator of the cache size that offers a good
compromise between space and hit ratio. After this point, small
decreases in the miss ratio come at the expense of large
increases in cache size. It is with these considerations that we
choose, for the following experiments, a cache size of 20
megabytes for query results. We point out that the fact that a
cache of this size
holds most of the working set of the workload is much more
important than the size itself, which should be determined in a
case by case basis, by analyzing the miss ratio curve for the
workload.
We can see similar miss ratio versus cache size curves for the
cache of inverted lists under the two workloads considered.
One can notice that the cache size at which there is a
significant decrease in the miss ratio is much larger than in the
case of the cache of query results, suggesting that the working
set of the pages requires more cache space.
However the asymptotic miss ratio observed is much lower in
the case of the cache of inverted lists, even for the `Unique
Queries' workload. This shows the greater temporal locality
present in the reference to pages, as was inferred from the
popularity distributions. The miss ratio of the `All Queries'
workload is considerably lower than the one of the `Unique
Queries' workload, because in the latter only the repetition of
terms across different queries do cause hits at the cache. Still, a
250 megabytes cache of inverted lists subject to the `Unique
Queries' workload, i.e., the worst case workload for the second
level cache, can achieve hit ratios of 80% on top of the misses
at the first level.
We have a final word on the scalability of the characteristics
presented herein. As we increase the length of the request
stream submitted to the cache, the popularity distribution of
queries and thus the marginal distribution of stack distances
tend not to change much, meaning that a relatively small cache
size should still be effective. Furthermore, the miss ratio tends
to decrease as we increase the length of the request stream.

5. EXPERIMENTAL RESULTS
We present in this section experimental results that show the
practical impact of the three caching schemes discussed on the
scalability and on the average response time of the search
engine as a whole.The experimental environment comprises
two machines running Linux operating system version 2.2.16.

The search engine runs on a Pentium III 550 MHz machine
with 512 megabytes of main memory, and a 36 gigabytes SCSI
disk. The client runs on a AMD K6 450 MHz machine with
256 megabytes of main memory. The two machines are
connected directly by an 100-megabit fast Ethernet.
We employ the software Httperf to read a log of 100,256
queries submitted to TodoBR and to generate workload to the
various server implementations at controlled rates. It measures
the performance of the server from a client perspective,
reporting, among other information, the average response time
for the client to receive an answer, the throughput of the server,
and occasional error rates.
The overall amount of server main memory used for the
various cache implementations was set to 270 megabytes,
based on the results presented in Section 5. In the two-level
cache the memory was divided into two partitions: 20
megabytes for caching query results and 250 megabytes for
caching inverted lists. A cache of 270 megabytes shows to be
enough to achieve good performance in all cache schemes
studied in this work and accounts for only 6.5% of the overall
index size of TodoBR.

Implementations Processed
Queries

Fetched Pages

No Cache 100,365 5,509,684
Cache of Inverted List 110,296 446,269

Cache of Query
Results

39,098 1,892,377

Two-Level Cache 49,128 456,275
Table1

Table 1 shows the counts for submitted queries and inverted
list pages retrieved from disk, as an indication of CPU and disk
demands for the four implementations. We can observe that
caching query results reduces significantly (up to 62%) the
number of queries that need to be processed.
On the other hand, caching inverted lists reduces the number of
page reads by an order of magnitude. The two-level cache
shows to be a good compromise in terms of performance, since
it gets close to the best results, that is, the number of queries
processed increases by only 21%, and the number of pages
retrieved increases by only 3%.
At low request rates, the best performance was achieved by the
cache of query results, which presents the lowest processing
costs, closely followed by the two-level implementation, while
the cache of inverted lists gives response times close to the
implementation with no cache. This result is explained by the
overhead associated with handling inverted lists and the gains
inherent to the file system cache provided by the Linux
operating system, which reduces the time to read a disk page.
At higher request rates the disk throughput saturates and the
cache of inverted lists effectively improves the engine
performance when compared to the implementation with no
cache. The differences in the amount of disk operations also

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 371

explain the better scalability of the two-level cache. As shown
in Table 1, the two-level cache presented a miss ratio in terms
of query results close to the miss ratio of the cache of query
results. On the other hand, the total number of disk reads in the
two-level cache was only 20% of the total number of reads
performed when caching only query results.
An immediate consequence of the better performance provided
by the two-level cache is a better overall throughput. The
maximum throughput obtained by the two-level cache is 64
queries per second, while the maximum for the system with no
cache was 22 queries per second. For the cache of inverted
lists, the maximum throughput was 42 queries per second. For
the cache of query results, the maximum throughput was 47
queries per second.

6. CONCLUSIONS
In this paper, we have proposed and evaluate experimentally a
new multi-level caching architecture and scheme for web
search engines that can improve query throughput and improve
search engine scalability without modifying the ranking of
query results. We have implemented and evaluated three
different caching schemes on the search engine TodoBR, and
compared the performance of these implementations to the
original engine with no cache. The experiments show that the
two-level cache provides the maximum throughput among all
implementations, and that it is superior to the implementation
with no cache by a factor of three. Furthermore, the throughput
of the two-level cache is up to 52% higher than the
implementation using just inverted lists and up to 36% higher
than the cache of query results. The analysis of the TodoBR
logs indicates that the miss ratios of both caches tend to
decrease as we consider larger request streams. We are also
interested in studying the impact of caching in search engines
which are based on other ranking algorithms, such as ranking
based on link analysis. The changes in the ranking algorithm
can affect the cache system because the access pattern for the
inverted lists may change and extra information may have to
be retrieved from other index structures apart from the inverted
lists. To our knowledge there is no published work on how to
apply pruning to such types of ranking functions, which are not
based on a simple combination of the scores for different
terms.

REFERENCES
[1]. J. Zhang, X. Long, and T. Suel. Performance of

Compressed Inverted List Caching in Search Engines. In
WWW, 2008.

[2]. R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The Impact of Caching
on Search Engines. In SIGIR, 2007.

[3]. A. Ntoulas and J. Cho. Pruning Policies for Two-Tiered
Inverted Index with Correctness Guarantee. In SIGIR,
2007.

[4]. Y. Tsegay, A. Turpin, and J. Zobel. Dynamic Index
Pruning for Effective Caching. In CIKM, 2007.

[5]. N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta
algorithms for hierarchical web caches. In IEEE
International Performance Computing and
Communications Conference (IEEE IPCCC), Phoenix,
Arizona, April 2004.

[6]. K. Risvik, Y. Aasheim, and M. Lidal. Multi-tier
architecture for web search engines. In First Latin
American Web Congress, pages 132–143, 2003.

[7]. T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M.
Kharrazi, X. Long, and K. Shanmugasundaram.
ODISSEA: A peer-to-peer architecture for scalable web
search and information retrieval. In International
Workshop on the Web and Databases (WebDB), June
2003.

[8]. K. Risvik and R. Michelsen. Search engines and web
dynamics. Computer Networks, 39:289–302, 2002.

[9]. Y. Xie and D. O’Hallaron. Locality in search engine
queries and its implications for caching. In IEEE
Infocom 2002, pages 1238–1247, 2002.

[10]. K. Risvik and R. Michelsen. Search engines and web
dynamics. Compute Networks, 39:289–302, 2002.

[11]. C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N.
Ziviani. Distributed query processing using partitioned
inverted files. In Proc. of the 9th String Processing and
Information Retrieval Symposium (SPIRE), Sept. 2002.

[12]. P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R.
Fonseca, and B. Ribeiro-Neto. Rank-preserving two-
level caching for scalable search engines. In Proc. of the
24th Annual SIGIR Conf. on Research and
Development in Information Retrieval, pages 51–58,
Sept. 2001.

[13]. G. Navarro, E. S. Moura, M. Neubert, N. Ziviani, and R.
Baeza-Yates. Adding compression to block addressing
inverted indexes. Information Retrieval, 3(1):49-77,
2000.

[14]. Z. Lu and K. S. McKinley. Partial collection replication
versus caching for information retrieval systems. In
Proc. of the 23rd Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages 248-
255, 2000.

[15]. I. Silva, B. Ribeiro-Neto, P. Calado, E. S. Moura, and N.
Ziviani. Link-based and content based evidential
information in a belief network model. In Proc. 23rd Int.
ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 96-103, July 2000.

[16]. E. P. Markatos. On caching search engine results. In
Proc. of the 5th Int. Web Caching and Content Delivery
Workshop, May 2000.

[17]. N. Ziviani, E. S. Moura, G. Navarro, and R. Baeza-
Yates. Compression: A key for next generation text
retrieval systems. IEEE Computer, 33(11):37-44, 2000.

