
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 329

A Framework for Hierarchical Clustering Based Indexing in Search Engines

Parul Gupta1 and A.K. Sharma2

Submitted in May 2010; Accepted in June 2011
Abstract - Granting efficient and fast accesses to the index is
a key issue for performances of Web Search Engines. In order
to enhance memory utilization and favor fast query resolution,
WSEs use Inverted File (IF) indexes that consist of an array
of the posting lists where each posting list is associated with
a term and contains the term as well as the identifiers of the
documents containing the term. Since the document
identifiers are stored in sorted order, they can be stored as the
difference between the successive documents so as to reduce
the size of the index. This paper describes
a clustering algorithm that aims at partitioning the set of
documents into ordered clusters so that the documents within
the same cluster are similar and are being assigned the closer
document identifiers. Thus the average value of the
differences between the successive documents will be
minimized and hence storage space would be saved. The paper
further presents the extension of this clustering algorithm
to be applied for the hierarchical clustering in which similar
clusters are clubbed to form a mega cluster and similar mega
clusters are then combined to form super cluster. Thus the
paper describes the different levels of clustering which
optimizes the search process by directing the search
to a specific path from higher levels of clustering to the lower
levels i.e. from super clusters to mega clusters, then to clusters
and finally to the individual documents so that the user gets
the best possible matching results in minimum possible time.

Index Terms - Inverted files, Index compression, Document
Identifiers Assignment, Hierarchical Clustering

1. INTRODUCTION
The indexing phase [1] of search engine can be viewed as a
Web Content Mining process. Starting from a collection of
unstructured documents, the indexer extracts a large amount of
information like the list of documents, which contain a given
term. It also keeps account of number of all the occurrences of
each term within every document. This information is
maintained in an index, which is usually represented using an
inverted file (IF). IF is the most widely adopted format for this
index due to its relatively small size occupancy and the
efficiency involved in resolution of the keywords based queries.
The index consists of an array of the posting lists where each
posting list is associated with a term and contains the term as
well as the identifiers of the documents containing the term.
Since the document identifiers are stored in sorted order, they
can be stored as the difference between the successive
1, 2 Department of Computer Engineering, Y.M.C.A. University
of Science and Technology, Faridabad
E-Mail: 1parulgupta_gem@yahoo.com and
2ashokkale@rediffmail.com

documents so as to reduce the size of the index. Storing the
differences require coding of small integer values [7] which can
be encoded with a small number of bits and also aids in
compressing the index. So if the similar documents [1] are
assigned the closer document identifiers, then in the posting
lists, the average value of the difference between the successive
documents will be minimized and hence storage space would be
saved. For example, consider the posting list ((job;5) 1, 4, 14,
20, 27) indicating that the term job appears in five documents
having the document identifiers 1,4,14,20,27 respectively. The
above posting list can be written as ((job; 5) 1, 3, 10, 6, 7)
where the items of the list represent the difference between the
successive document identifiers. The figure 1 shows the
example entries in the index file.

Figure 1: Example Entries in the Index File

Clustering is a widely adopted technique aimed at dividing a
collection of data into disjoint groups of homogenous elements.
Document clustering [3] has been widely investigated as a
technique to improve effectiveness and efficiency in
information retrieval. Clustering algorithms attempt to group
together the documents based on their similarities. Thus
documents relating to a certain topic will hopefully be placed in
a single cluster. So if the documents are clustered, comparisons
of the documents against the user’s query are only needed with
certain clusters and not with the whole collection of documents.
The fast information retrieval can be further achieved by
hierarchical clustering in which the similar clusters are merged
together to form higher levels of clustering. In this paper, the
proposed heuristic exploits a text clustering algorithm that
reorder the collection of documents on the basis of document
similarity. The reordering is then used to assign close document
identifiers to similar documents thus reducing differences
between the document identifiers and enhancing the
compressibility of the IF index representing the collection. The
proposed clustering algorithm aims at partitioning the set of
documents into k ordered clusters on the basis of similarity
measure so that the documents on the web are assigned the
identifiers in such a way that the similar documents are being
assigned the closer document identifiers. Further the extension
of this clustering algorithm has been presented to be applied for

Term No. of docs
in which
term appears

Doc ids of docs in
which term
appears

Doc ids stored with
difference coding
scheme

Job 50 12,34,45,49… 12,22,11,4…

Engineer 59 15,20,34,55… 15,5,14,21…

Fresher 15 3,6,9,12… 3,3,3,3…

Analyst 5 2,4,5,8,9 2,2,1,3,1

A Framework for Hierarchical Clustering Based Indexing in Search Engines

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 330

hierarchical clustering [5] in which similar clusters are clubbed
to form a mega cluster and similar mega clusters are then
combined to form super cluster. Thus the different levels of
clustering have been defined which aids in better indexing. As a
result of clustering, the size of the index gets compressed and
moreover, it also optimizes the search process by directing the
search to a specific path from higher levels of clustering to the
lower levels i.e. from super clusters to mega clusters, then to
clusters and finally to the individual documents so that the user
gets the best possible matching results in minimum possible
time.

2. RELATED WORK
In this paper, a review of previous work on document clustering
algorithms is given. In this field of clustering, many algorithms
have already been proposed but they seem to be less efficient in
clustering together the most similar documents thus making the
use of clustering less effective. K-means algorithm [4, 6] has
been proposed in this direction, which initially chooses k
documents as cluster representatives and then assigns the
remaining nk documents to one of these clusters on the basis of
similarity between the documents. New centroids for the k
clusters are recomputed and documents are reassigned
according to their similarity with the k new centroids. This
process repeats until the position of the centroids become stable.
Computing new centroids is expensive for large values of n and
the number of iterations required to converge may be large.
Another work proposed was the reordering algorithm [1] which
partitions the set of documents into k ordered clusters on the
basis of similarity measure. According to this algorithm, the
biggest document is selected as centroid of the first cluster and
n/k1 most similar documents are assigned to this cluster. Then
the biggest document is selected and the same process repeats.
The process keeps on repeating until all the k clusters are
formed and each cluster gets completed with n/k documents.
This algorithm is not effective in clustering the most similar
documents. The biggest document may not have similarity with
any of the documents but still it is taken as the representative of
the cluster.

 Another proposed work was the threshold based clustering
algorithm [8] in which the number of clusters is unknown.
However, two documents are classified to the same cluster if the
similarity between them is below a specified threshold. This
threshold is defined by the user before the algorithm starts. It is
easy to see that if the threshold is small, all the elements will get
assigned to different clusters. If the threshold is large, the
elements may get assigned to just one cluster. Thus the
algorithm is sensitive to specification of threshold.

Fuzzy Co-clustering of Web Documents is a technique to
simultaneously cluster data (or objects) and features. In case of
web, web documents are the data, and the words inside the
documents are the features. By performing simultaneous
clustering of documents and words, meaningful clusters of
highly coherent documents can be generated relative to the
highly relevant words, as opposed to clusters of documents with

respect to all the words as in the case of standard clustering
algorithm. FCCM algorithm proposed in this direction is aimed
at clustering data in which attributes can be categorical
(nominal) and the distance or similarity between two patterns is
not explicitly available. FCCM accomplishes this task by
maximizing the degree of ‘aggregation’ among the clusters. The
major drawback of FCCM is that it poses problems when the
no. of documents or words is large. Moreover this algorithm is
less effective when data has large number of overlapping
clusters.

 In this paper, the proposed algorithm has tried to remove the
shortcomings of the existing algorithms. It produces a better
ordering of the documents in the cluster. This algorithm picks
the first document as cluster representative, then selects the
most similar document to it and puts it in the cluster, it further
selects document which is most similar to the currently selected
document and repeats until the first cluster becomes full with
n/k documents. The same process is then repeated to form the
rest of the clusters. Thus the most similar documents are
accumulated in the same cluster and are assigned consecutive
document identifiers. Thus the algorithm is more efficient in
compression of the index.

3. PROPOSED ALGORITHM FOR CLUSTERING
BASED INDEXING

Let D ={D1, D2,. . ., DN} be a collection of N textual
documents to which consecutive integer document identifiers 1,
. . . ,N are initially assigned. Moreover, let T be the number of
distinct terms ti, i = 1, . .. , T present in the documents, and t the
average length of terms. The total size CSize (D) [27] of an IF
index for D can be written as:

where CSizelexicon (T. µt) is the number of bytes needed to code
the lexicon, while d_gaps (ti) is the d_gap [28] representation of
the posting list associated to term ti, and Encodem is a function
that returns the number of bytes required to code a list of d gaps
according to a given encoding method m.
The compression of index is achieved by applying clustering to
the web pages so that the similar web pages are in the same
cluster and hence assigned closer identifiers. A clustering
algorithm has been proposed, which converts the individual
documents into k ordered clusters, and hence documents are
reassigned new document identifiers so that the documents in
the same cluster get the consecutive document identifiers. The
clustering of the documents is done on the basis of similarity
between the documents, which is first of all calculated using
some similarity measure. The proposed architecture for the
clustering based indexing system is given in figure 2.

 Csize (D) =CSizelexicon (T. µt) +∑Encodem (d_gaps (ti
))

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 331

Figure 2: Architecture of Clustering based indexing System

in Search Engines

A. Computing The Similarity Matrix
Let D={D1, D2,……Dn) be the collection of N textual
documents being crawled to which consecutive integers
document identifiers 1…n are assigned. Each document Di can
be represented by a corresponding set Si such that Si is a set of
all the terms contained in Di. Let us denote that set by D* such
that D*={S1,S2,……….. Sn}. The similarity of any two
documents Si and Sj can be computed using the similarity
measure [1]:
Similarity_measure (Si, Sj) = |Si Sj | / |Si U Sj |
INPUT – The set D*= {S1, S2, S3, S4…Sn} where Si is a set of
all the terms of document Di.

–The number k of clusters to create.
OUTPUT – k ordered clusters representing a reordering of D
The algorithm that calculates the similarity of each document
with every other document using the similarity_measure given
above is given in figure 3.

Figure 3: Algorithm for computing similarity matrix

The above algorithm constructs the document similarity matrix
[15]. The number of calculations performed leads to formation
of the upper triangular matrix. The rest of the values in the
similarity matrix are assigned automatically as we know
similarity_measure (i, j)= similarity_measure (j, i).

B. The Algorithm
The clustering algorithm which clusters together the similar
documents is given below:

Figure 4: Algorithm for Clustering (docum_clustering)

It may be noted that the algorithm starts with the first cluster
which is empty initially. The first document from the collection
is considered and put in the first cluster. Now, using the
similarity matrix, the most similar document to it is considered.
All the entries of the row and column associated with the first
document are made zero as this document cannot be added to
any other cluster. The most similar document picked is put in
the same cluster. Now the second document that was considered
takes the role of the first document and the most similar
document to it is considered and this procedure repeats for n/k
times when the first cluster gets full. Thus at the end, we get k
clusters each with n/k number of similar documents.

C. Example Illustrating Clusters Formation
Having discussed the algorithm, let us now have panoramic
view as to how the clustering of the documents takes place. For
e.g. if we have 10 documents – A, B, C, D, E, F, G, H, I, J &
value of k is 2 i.e. 2 clusters are to be made, then according to
the algorithm, the similarity among the documents is computed
using the similarity measure and hence the formed upper
triangular similarity matrix will be:

A B C D E F G H I J

Figure 5: Initial Similarity Matrix

Now from the computed values in the upper triangular matrix,

A 0 5 3 6 9 8 2 3 4 1
 B 0 5 4 6 2 3 5 7 8
 C 0 5 2 3 6 9 4 7
 D 0 2 3 6 5 4 9
 E 0 8 5 3 6 5
 F 0 8 9 5 2
 G 0 6 5 4
 H 0 3 6
 I 0 5
 J 0

Algorithm docum_similarity:

for i=1 to n
begin
 sim[i][i]=0;
 for j=i+1 to n
 begin
 sim[i][j]=similarity_measure(Si, Sj)
 sim[j][I]=sim[i][j]
 end for
end for

Algorithm docum_clustering
i=1
for f=1 to k // for number of clusters
begin
cf=0 //Initially cluster is empty with no document in it
for e=1 to n/k // for number of documents in one cluster
begin
for j=1 to n

Select max from sim[i][j]
cf=cf U Si
D*=D*- Si
for l= 1 to n
begin

sim[i][l]=0
sim[l][i]=0

end
i=j
end
end

A Framework for Hierarchical Clustering Based Indexing in Search Engines

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 332

the matrix can be completed as follows using the property that
similarity_measure(i,j) = similarity_measure(j,i). The full
similarity matrix is given in the figure 6. According to the
clustering algorithm,
• 1

st
cluster will have A, then E, then F, then H & lastly C

• 2
nd

cluster will have J, then D, then G, then I & lastly B

 A B C D E F G H I J
A 0 5 3 6 9 8 2 3 4 1
B 5 0 5 4 6 2 3 5 7 8
C 3 5 0 5 2 3 6 9 4 7
D 6 4 5 0 2 3 6 5 4 9
E 9 6 2 2 0 8 5 3 6 5
F 8 2 3 3 8 0 8 9 5 2
G 2 3 6 6 5 8 0 6 5 4
H 3 5 9 5 3 9 6 0 3 6
I 4 7 4 4 6 5 5 3 0 5
J 1 8 7 9 5 2 4 6 5 0

Figure 6: Full Similarity Matrix

The output after calculating similarity for first five documents
will be :

 A B C D E F G H I J
A 0 0 0 0 0 0 0 0 0 0
B 0 0 0 4 0 0 3 0 7 8
C 0 0 0 0 0 0 0 0 0 0
D 0 4 0 0 0 0 6 0 4 9
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 3 0 6 0 0 0 0 5 4
H 0 0 0 0 0 0 0 0 0 0
I 0 7 0 4 0 0 5 0 0 5
J 0 8 0 9 0 0 4 0 5 0
Figure 7: Matrix after formation of first cluster

4. PROPOSED HIERARCHICAL CLUSTERING
ALGORITHM
The lack of a central structure and freedom from a strict syntax
is responsible for making a vast amount of information
available on the web, but retrieving this information is not easy.
One possible solution is to create a static hierarchical
categorization of the entire web and using these categories to
organize the web pages. Organizing Web pages into a hierarchy
of topics and subtopics facilitates browsing the collection and
locating results of interest. In hierarchical clustering algorithm,
after the cluster of similar documents have been formed, the
similar clusters are merged together to form the mega clusters
using the same similarity measure as is used to cluster together
the documents. The framework for the hierarchical clustering is
shown in figure 8.

Figure 8: Hierarchical Clustering

A. Computation of Similarity Matrix of Clusters
The algorithm that computes the similarity matrix for the
similar clusters is given below. In this algorithm,
D={S1,S2….Sk} where Si is a set of terms in the cluster ci.

]

Figure 9: Algorithm for similarity matrix of clusters

B. Algorithm for Hierarchical Clustering
The hierarchical clustering [9] algorithm that aims at forming
the mega clusters out of the similar clusters is given in figure
10.
 In this algorithm, the first mega cluster is considered which is
initially empty. The first cluster from the collection is
considered and put in the first mega cluster. Now, using the
similarity matrix, the most similar cluster to it is considered. All
the entries of the row and column associated with the first
cluster are made zero as this cluster cannot be added to any
other mega cluster. The most similar cluster picked is put in the
same mega cluster. Now the second cluster that was considered
takes the role of the first cluster and the most similar cluster to it
is considered and this procedure repeats for k/m times when the
first mega cluster gets full. Now the second mega cluster is
considered and the same procedure repeats until all the mega
clusters get full. Thus at the end, we get m mega clusters each
with k/m number of clusters such that the clusters within the
same mega cluster are similar.

Algorithm cluster_similarity
for i = 1 to k
begin
 sim [i][i] = 0
 for j = i+1 to k
 begin
 sim [i][j] = similarity_measure (Si, Sj)
 sim[j][i] = sim[i][j]
 end
end

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 333

Figure 10: Algorithm for Mega Clustering

C. Example Illustrating Hierarchical Clustering
 For e.g. user has to fire a query “Jobs for Computer Engineers
having 5 to 10 years experience”. Now since the hierarchy of
clusters has been formed, so the search will proceed in the
manner as shown in the figure 12. The search will start from the
super cluster “Job”, will be directed to the mega cluster
“COMP. ENGG.”, then will reach the cluster “5 TO 10 YRS
EXPERIENCE” and finally will reach the individual relevant
documents. Thus the search follows a specific path from super
cluster to the individual document as shown in figure 11.

Figure 11: Search Path

5. IMPLEMENTATION OF PROPOSED WORK
For indexing the documents, firstly we have to parse the
documents. After that similarity matrix is created and then k
means algorithm is applied for creating the clusters. Clusters
will be created at first level .For creating clusters at second level
same procedure is applied again and then finally hierarchical
clustering is done for indexing.
 Finding document
 Parsing similarity

Figure 11: Work Flow of Implementation

A. Snapshots of Implemented Work

1. Given input & parsed data, the following snapshot represents
the parsed data which is the initial step for indexing the data.

Figure 12: Given and Parsed data

2. Clustered data
The data is now clustered according to the similarity of
words.The following figure shows the clusters created that are
created after matching the similarity of documents with each
other.

Figure 13: Clustered data

B. Results

A- Graph Representing the Created Clusters at First Level

Algorithm mega_clustering
i=1
for f=1 to m
begin
 cf = 0
 for e = 1 to k/m
 begin
 for j = 1 to k
 select max from sim [i][j]
 cf = cf U si
 D= D-si
 for l=1 to k
 begin
 sim [l][i] = 0
 sim [i][l] = 0
 end
 i=j
 end
end

 Documents Parsed data
 Matrix
created

After applying
algorithm for
hierarchical

Clusters
created

A Framework for Hierarchical Clustering Based Indexing in Search Engines

Copy Right © BIJIT – 2011; July – December, 2011; Vol. 3 No. 2; ISSN 0973 – 5658 334

At first level, less no of clusters are created. As at first level the
similarity between two documents is less.

a, 5

a, 7
b, 6c, 6

c, 7

c, 9

f, 5

g, 7 g, 7

h, 9

0
1

2
3

4
5

6
7

8
9

10

a b c d e f g h i j

10 documents

nu
m

be
r

of
 c

lu
st

er
s

a
b
c
d
e
f
g
h
i
j

Figure 14: Clusters created at first level

B-Graph Representing the Created Clusters at Second Level

Figure 15: Clusters created at second level
At second level, more no of clusters are created in comparison
to first level. As the similarity between two documents is more.

6. CONCLUSIONS
In this paper, an efficient algorithm for computing a reordering
of a collection of textual documents has been presented that
effectively enhances the compressibility of the IF index built
over the reordered collection. Further, the proposed hierarchical
clustering algorithm aims at optimizing the search process by
forming different levels of hierarchy. The proposed algorithm is
superior to the other algorithms as a summarizing and browsing
tool. A critical look at the literature indicates that in contrast to
the earlier proposed algorithms, the proposed work produces a
better ordering of the following advantages:
1. Compression of Index Size: The size index of the index is
compressed as similar documents are assigned closer document
identifiers.
2. Reduction in Search Time: The search time gets reduced as
the search gets directed to a specific path from super cluster to
mega clusters, then to clusters and finally to the individual
documents.
3. Fast retrieval of relevant documents: Since the similar
documents get clustered together in the same cluster, the
specific query relevant documents can be rapidly picked from

that cluster.

REFERENCES
[1]. Fabrizio Silvestri, Raffaele Perego and Salvatore Orlando.

“Assigning Document Identifiers to Enhance
Compressibility of Web Search Engines Indexes” In the
proceedings of SAC, 2004.

[2]. Van Rijsbergen C.J. “Information Retrieval”
Butterworth 1979

[3]. Oren Zamir and Oren Etzioni. “Web Document Clustering:
A feasibility demonstration” In the proceedings of SIGIR,
1998.

[4]. Jain and R. Dubes. “Algorithms for Clustering Data.”
Prentice Hall, 1988

[5]. Sanjiv K. Bhatia. “Adaptive KMeans Clustering” American
Association for Artificial Intelligence, 2004.

[6]. Bhatia, S.K. and Deougan , J.S. 1998. “Conceptual
Clustering in Information Retrieval” IEEE Transactions on
Systems, Man and Cybernetics.

[7]. Dan Bladford and Guy Blelloch. “Index compression
through document reordering” In IEEE, editor, Proc. Of
DCC’02. IEEE, 2002.

[8]. Chris Staff: Bookmark Category Web Page Classification
Using Four Indexing and Clustering Approaches. AH
2008:345-348

[9]. Khaled M. Hammouda, Mohamed S. Kamel: Efficient
Phrase-Based Document Indexing for Web Document
Clustering. IEEE Trans. Knowl. Data Eng. (TKDE)
16(10):1279-1296 (2004).

a, 52 a, 54

a, 76 a, 76

c, 55

c, 65

c, 87

c, 33

c, 76

d, 54

d, 76

d, 34

e, 63

e, 32

e, 69

e, 54

e, 87

f , 69

f , 89

f , 67 f , 65

g, 34

g, 21

g, 76

g, 98

g, 65

h, 43

h, 62

h, 87

h, 31

h, 45

i , 61

i , 43

i , 76

i , 98

i , 47

0

20

40

60

80

100

120

a b c d e f g h i j

10 document s

a

b

c

d

e

f

g

h

i

j

