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Nonlinear Circuit Modeling Using Volterra Series 
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Abstract - In this paper Volterra series has been used as a 
mathematical tool to look at the non linear behavior of 
various mechanical and electrical systems [4]. Volterra series 
has been introduced. Two methods for determination of 
volterra kernels are specified and harmonic input method is 
used for analysis. Simulations for different order harmonics 
are done which represent varying degrees of non linearity.  
 
Index Terms - Volterra series, Non-linear systems  
 
1.  INTRODUCTION 
Virtually all physical systems are non linear in nature. 
Sometimes it is possible to describe the operation of a physical 
system by a linear model, if the operation of the physical 
system does not deviate too much from the normal set of 
operating conditions. But in analyzing the behavior of any 
physical system, one often encounters situations where linear 
models are inadequate or inaccurate, that is the time when 
concepts like Volterra series prove useful. Volterra series takes 
into account the non linear behavior of a system.  
 
2.  REPRESENTATION 
Any time-invariant, nonlinear system can be modeled as an 
infinite sum of multidimensional convolution integrals of 
increasing order. This is represented symbolically by the series 
of integrals called Volterra kernels. [2] 
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This series is known as the Volterra series. Here y(t) represents 
the system response. Each of the convolution integrals contains 
a kernel, either linear (h1) or nonlinear (h2,..,hn), which 
represents the behavior of the system. 
Volterra kernels, both linear and nonlinear, are input 
dependent. The first order kernel, h1, represents the linear unit 
impulse response of the system. The second order kernel, h2, is 
a two-dimensional function of time. It represents the response 
of the system to two separate unit impulses applied at two 
varying points in time. Similarly the other higher order kernels 
represent the response of the system to a combination of 
different signals at varying points of time. 
 
3.  IDENTIFICATION OF HARMONICS 
Let the input to a system, with a first order kernel only, be   
x(t)= ejωt   
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The output y(t) will be calculated as follows:  
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where 1 ( )H jϖ ϖ = 1( ) jh e dϖττ τ−  
The complex number H1ω (jω) by which the output phasor is 
multiplied is called the transfer function or the first order 
harmonic. Similarly, higher order harmonics can be calculated. 
 
4.  DETERMINATION OF VOLTERRA KERNELS 
When we have an equation relating the input x(t) to the output 
y(t) then we can obtain the volterra kernels by two methods [1]: 
1. Harmonic input method: used for determination of kernels 

in frequency domain. 
2. Direct expansion method: used for determination of 

kernels in time domain 
 
4.1.  Harmonic Input Method 
[1]When the input is  

1 2( ) ... nj tj t tjx t e e e ϖϖ ϖ= + +                                [1] (4.1)     
where ω i = 2π fi , i =1,2,…,n and the ω i   are incommensurable, 
then  
Hnω  (jω1,…,ωn)={coefficient of [ 1 2 ... nj tj t tje e e ϖϖ ϖ+ + ]} 
The complexity of this method increases rapidly with n. [2]  
Hnω  (jω1,…,ωn) is the nth order harmonic.  
 
4.2.  Direct Expansion Method  
In this method, the system equations are manipulated until they 
are brought into the form of a Volterra series, and the hn are 
simply “read off” the representation. This method gives good 
results when the value of n is large [2]. 
 
5.  SIMULATIONS 
The steps followed in the simulation are: 
1. The system is represented in the form of differential 

equations. 
2. Its solution is expressed as a truncated Volterra series 

expansion as follows 
y(t) = H1[x(t)] + H3[x(t)] + H5[x(t)] 

3. Taking x(t) to be a sinusoidal input, we get  
y(t) =  A*Re{ H1ω   (jω) ejω t } 
+ 2(A/2)3 [Re{ H3ω (jω, jω,jω) ej3ω t }]  
+ 2(A/2)3 [ Re{3 H3ω (jω, jω,-jω) ejω t ]   
+2(A/2)5 [ Re{ H5ω (jω, jω,jω, jω,jω)    ej5ω t }] 
+2(A/2)5 [ Re{ 5H5ω (jω, jω,jω, jω,-jω) ej3ω t }] 
+2(A/2)5[ Re{ 10H5ω (jω, jω,jω, -jω,-jω) ejω t }]               (5)                   
where H1ω, H3ω  and H5ω for different arguments can be 
found out by harmonic input method for determination of 
kernels. 
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4. The values of these kernels are then substituted in the 
system equation to determine the linear and the non-linear 
part. 

 
5.1.  Volterra Analysis Of A Non-Linear Spring 
The equation of a nonlinear spring is given by  
y(t) = mx (t) - b[x (t)]3 + kx(t)                                      [1] (5.1)  
Applying the harmonic input method and taking x(t) as e j t , 
we get 
H1[x(t)] = A*Re((-mω2+k)ejω t) 
H3[x(t)] = 2(A/2)3*(Re((-2mω2+2k)e3jω t)   + Re(3(-2mω2+2k-
12bjω3)ejω t)) 
H3[x(t)] + H5[x(t)] = 2(A/2)3*(Re((-2m2+2k)e3jω t)                          
+ Re(3(-2mω2+2k-12bjω3)ejω t))  + 2(A/2)5* 
(Re(5(64bjω3)e3jω t)  +  Re(10(-3mω2+2k-54bjω3)ejω t)) 
 
[1] Using the steps described in the section 4, this problem was 
simulated for A=2, b=2, m=0.001kg, k=3 and =  and 
graphs were obtained as shown in the figure: 
 

 

 
 

Figure 5.1: Simulation graphs for a Nonlinear Spring 
(Clockwise from top left) a) Linear part b) Third harmonic 

c) Third and fifth harmonic 
 
 
5.2. Volterra Analysis of a Simple Pendulum 
The equation of motion of a simple pendulum with linear 
damping is given by 
y(t) =  x (t) + ax (t) + bsinx(t)                                   [3]  (5.2)                   
Normally for any non linear system we consider sinx(t)  x(t) 
for small x(t). Here we consider Volterra systems to take into 
account the non-linearity caused by sine[1] 

Using the steps described in the section 4, this problem was 
simulated for A=1, b=0.2, a=2, k=3, m=0.001 and = /2 and 
graphs were obtained as shown in the figure: 

 

 

 
 

Figure 5.2: Simulation graphs for a simple pendulum  
(Clockwise from top left) a) Linear part b) Third harmonic 

c) Third and fifth harmonic 
 
5.3. Volterra Analysis of a Lr Network 
The differential equation for a LR network can be expressed as  
V(t) = Lq (t) + Rq (t)                                                      (5.3.1) 
Where 
V(t) is the voltage supplied   
L is the inductor 
R is the resistor 
q(t) is the charge 
 
Using the force voltage analogy we get the following equation 
for a LR network 
y(t) =  mx (t) + b[x (t)]3                                                  (5.3.2) 
 
Using the steps described in the section 4, this problem was 
simulated for A=2, b=2, m=0.001kg, k=3 and =  and 
graphs were obtained as shown in the figure: 
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Figure 5.3: Simulation graphs for a LR network (Clockwise 

from top left) a) Linear part b) Third harmonic c) Third 
and fifth harmonic 

 
5.4. Volterra Analysis of a Rc Network 
The differential equation for a RC network can be expressed as  
V(t) = Rq (t) + q(t)/C                                                       (5.4.1) 
Using the force voltage analogy we get the following equation 
for a RC network 
y(t) = cx (t) + kx(t) - b[x (t)]3                                                                 (5.4.2) 
Using the steps described in section 4, this problem was 
simulated for A=2, b=2, k=3, c=2*105 and =  and graphs 
were obtained as shown in the figure: 
 

 

 
Figure 5.4: Simulation graphs for a RC network (Clockwise 

from top left) a) Linear part b) Third harmonic c) Third 
and fifth harmonic. 

 
5.5. Volterra Analysis of A Rlc Network 
The differential equation for a RLC network can be expressed 
as  
V(t) = Lq (t) + Rq (t) + q(t)/C                                         (5.5.1) 
RLC network can be realized by adding an external damper 
with the damping constant ‘c’ to the non linear spring system 
described above. This damper acts as the resistor. 
The differential equation thus can be expressed as  

y(t) = mx (t) - b[x (t)]3 + c x (t) + kx(t)                         (5.5.2) 
Applying the harmonic input method and taking x(t) as e j t , 
we get 
H1[x(t)] = A*Re((cjω+k-mω2)e3jω t) 
H3[x(t)] = 2(A/2)3*(Re((27bjω3)e3jω t) + Re(3(2k-
12bjω3+2cjω)ejω t)) 
H3[x(t)] + H5[x(t)] =  2(A/2)3*(Re((27bjω3)e3jω t) 
+ Re(3(2k-12bjω3+2cjω)ejω t))  +2(A/2)5*(Re(5(64bjω3)e3jω t)                   
+ Re(10(-3mω2+3k-54bjω3+3cjω)ejω t)) 
Using the steps described in section 4, this problem was 
simulated for A=2, b=2, m=0.001kg, k=3, =  and c=2*105 
and graphs were obtained as shown in the figure: 
 

 

 
 

Figure 5.5: Simulation graphs for a RLC network 
(Clockwise from top left) a) Linear part b) Third harmonic 

c) Third and fifth harmonic. 
 
6. APPLICATIONS OF VOLTERRA SERIES 
The Volterra series finds application in a variety of fields 
ranging from medicine to system identification. It is widely 
used in biomedical engineering and neuroscience. It is used in 
electrical engineering to model intermodulation distortion in 
many devices including power amplifiers and frequency 
mixers. Its ability to provide closed form expressions for 
distortion components in terms of circuit parameters in analog 
circuits makes it an efficient method for analysis of distortion 
in such circuits [5]. 
General non-linear filters based on Volterra series are used for 
estimating signals corrupted by additive non Gaussian noise 
[6]. The series also finds use in nonparametric black-box 
modeling particularly for pharmacodynamics systems. These 
systems exploit the generality of higher order Volterra 
representations which can be used to describe and predict the 
response of an arbitrary pharmacokinetics or 
pharmacodynamics system without any prior knowledge on the 
structure of the system [7]. 
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6. CONCLUSION 
The paper discusses the application of Volterra series to non-
linear mechanical as well as electrical circuits. The first, third 
and fifth harmonics of these non-linear systems have been 
simulated. The results of simulation of the differential 
equations of these systems show that the even order harmonics 
are zero while the odd order harmonics address the non 
linearity of the system. The results for higher order harmonics 
give a more accurate picture of the behavior of the system. 
These results show that incorporating the non-linearity of the 
system adds to the accuracy of system behavior representation. 
 
FUTURE SCOPE 
In an image-processing environment, it is known that linear 
filters are not able to remove the noise, in particular the 
impulsive one superimposed on a picture, without blurring the 
edges. Moreover, it is often necessary to take into account the 
intrinsic nonlinear behavior of the human visual system or of 
the optical imaging systems, resulting from the quadratic 
relation between the optical intensity and the optical field. For 
all these reasons, recently much attention has been drawn to the 
problem of nonlinear system modeling with a Volterra series 
expansion. Quadratic Volterra filters are used for such a 
purpose. Some other successful applications of volterra filters 
have been developed in system identification, signal 
processing, image processing, channel equalization, echo 
cancellation and telecommunication areas. 
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