
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 251

A Secure Private Key Encryption Technique for Data Security in Modern
Cryptosystem

Dilbag Singh1 and Ajit Singh2

Abstract - The present paper provides a conceptual
framework on the proposed private key encryption
technique that can be used for data security in modern
cryptosystem. This encryption technique uses the concept
of arithmetic coding and can be used as an independent
system as well as can be clubbed with any of the
encryption system that works on floating point numbers. It
provides you with a 256 character key (length of the key
can be increased or decreased on the basic of the
character set required) that can be used as a one time
resident key or a key for every message depending on the
level of security required. The proposed technique
converts a word of text into a floating-point number that
lie in between 0 and 1. This floating point no. is obtained
on the basis of the probability of characters contained
within the word of text and the one time key which has
been provided .The security level can be further increased
by generating different floating point number every time
when a word repeat and increasing the length of the key.

Index Terms - Arithmetic Coding, Encryption,
Decryption, Floating point number, Resident and
Regular key.

1. INTRODUCTION
During this time when the Internet provides essential
communication between tens of millions of people and is
being increasingly used as a tool for commerce, security
becomes a tremendously important issue to deal with. To
provides the security cryptography come into the existence
[1].Cryptography is the science of writing in secret code and
is an ancient art; the first documented use of cryptography
in writing dates back to circa 1900 B.C. when an Egyptian
scribe used non-standard hieroglyphs in an inscription.
Some experts argue that cryptography appeared
spontaneously sometime after writing was invented, with
applications ranging from diplomatic missives to war-time
battle plans. It is no surprise, then, that new forms of
cryptography came soon after the widespread development
of computer communications. In data and
telecommunications, cryptography is necessary when
communicating over any untrusted medium, which includes
1Department of Computer Science & Engineering,
Choudhary Devi Lal University, Sirsa, Haryana (India)
2Department of Computer Science & Engineering, BPS
Mahila Vishwavidyalaya, Khanpur Kalan, Sonepat,
Haryana (India)
E-mail: 1dbs_beniwal@rediffmail.com and
2ghanghas_ajit@rediffmail.com

just about any network, particularly the Internet. Within the
context of any application-to-application communication, there are
some specific security requirements, including:
a) Authentication: The process of proving one's identity. (The

primary forms of host-to-host authentication on the Internet
today are name-based or address-based, both of which are
notoriously weak.)

b) Privacy/confidentiality: Ensuring that no one can read the
message except the intended receiver.

c) Integrity: Assuring the receiver that the received message has
not been altered in any way from the original.

d) Non-repudiation: A mechanism to prove that the sender
really sent this message.

Cryptography, then, not only protects data from theft or alteration,
but can also be used for user authentication. There are, in general,
two types of cryptographic schemes typically used to accomplish
these goals: secret key (or symmetric) cryptography, and public-
key (or asymmetric) cryptography, each of which is described
below. In all cases, the initial unencrypted data is referred to as
plaintext. It is encrypted into ciphertext, which will in turn
(usually) be decrypted into usable plaintext [2].

1.1 Symmetric Encryption [2]
Symmetric Encryption (also known as symmetric-key encryption,
single-key encryption, one-key encryption and private key
encryption) is a type of encryption where the same secret key is
used to encrypt and decrypt information or there is a simple
transform between the two keys as shown in fig.2.
A secret key can be a number, a word, or just a string of random
letters. Secret key is applied to the information to change the
content in a particular way. This might be as simple as shifting
each letter by a number of places in the alphabet. Symmetric
algorithms require that both the sender and the receiver know the
secret key, so they can encrypt and decrypt all information.
There are two types of symmetric algorithms: Stream algorithms
(Stream ciphers) and Block algorithms (Block ciphers).

Figure 1: Basic Operation of Cryptography

Original
Plaintext Ciphertext Plaintext

Encryption Decryption

A Secure Private Key Encryption Technique for Data Security in Modern Cryptosystem

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 252

1.1.1 Types of Symmetric algorithms
Symmetric algorithms (Symmetric-key algorithms) use the
same key for encryption and decryption. Symmetric-key
algorithms can be divided into Stream algorithms (Stream
ciphers) and Block algorithms (Block ciphers).
1.1.1.1StreamCiphers
Stream ciphers as shown in fig.3 encrypt the bits of
information one at a time - operate on 1 bit (or sometimes 1
byte) of data at a time (encrypt data bit-by-bit). Stream
ciphers are faster and smaller to implement than block
ciphers, however, they have an important security gap. If
the same key stream is used, certain types of attacks may
cause the information to be revealed.

1.1.12BlockCiphers
Block cipher (method for encrypting data in blocks as
shown in fig.4) is a symmetric cipher which encrypts
information by breaking it down into blocks and encrypting
data in each block. A block cipher encrypts data in fixed
sized blocks (commonly of 64 bits). The most used block
ciphers are Triple DES and AES.
Some examples of symmetric encryption algorithms:
AES/Rijndael
Blowfish
CAST5
DES
IDEA
RC2
RC4
RC6
Serpent
Triple DES

1.2 Asymmetric Encryption [8]
Asymmetric encryption (Also called Public Key Encryption) uses
different keys for encryption and decryption. The decryption key is
very hard to derive from the encryption key. The encryption key is
public so that anyone can encrypt a message. However, the
decryption key is private, so that only the receiver is able to
decrypt the message. It is common to set up "key-pairs" within a
network so that each user has a public and private key. The public
key is made available to everyone so that they can send messages,
but the private key is only made available to the person it belongs
to.
1.2.1 Working of Asymmetric Encryption System[8]:
The sender and the recipient must have the same software. The
recipient makes a pair of keys - public key and private key (both
keys can be unlocked with a single password). Public key can be
used by anyone with the same software to encrypt a message.
Public keys can be freely distributed without worrying since it is
only used to scramble (encrypt) the data. The sender does not need
the recipient's password to use his or her public key to encrypt
data. The recipient's other key is a private key that only he or she
can use when decrypting the message. Private key should never be
distributed since the private key assures that only the intended
recipient can unscramble (decrypt) data intended for him or her.
To understand asymmetric encryption better consider an example,
Jack makes public key A and private key A, and Jill makes public
key B and private key B. Jack and Jill exchange their public keys.
Once they have exchanged keys, Jack can send an encrypted
message to Jill by using Jill's public key B to scramble the
message. Jill uses her private key B to unscramble it. If Jill wants
to send an encrypted message to Jack, she uses Jack's public key A
to scramble her message, which Jack can then unscramble with his
private key A. Asymmetric cryptography is typically slower to
execute electronically than symmetric cryptography.
Some Asymmetric Algorithms (public key algorithms) such as
RSA allow the process to work in the opposite direction as well: a
message can be encrypted with a private key and decrypted with
the corresponding public key. If the recipient wants to decrypt a
message with Bob's public key he/she must know that the message
has come from Bob because no one else has sender's private key.

Figure 4: Block Cipher- Convert a group of plaintext
symbols as one block

Encryption

Plaintext

XN
OI
TP
YR
CN
ES

Ciphertext

Wdhuw…. Hi

Key (Optional)

ba
qc
kd
em

Figure 2: Symmetric Cryptosystem: KE= KD
(KE Encryption Key and KD: Decryption Key

Original
Plaintext Ciphertext Plaintext

Encryption Decryption

Key

Figure 3: Stream Cipher-Convert one
symbol of plaintext immediately into a

symbol of ciphertext

Encryption

Plaintext

ISSOPMI

Ciphertext

Wdhuw…. Y

Key (Optional)

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 253

Digital signatures work this way.

Some examples of popular asymmetric encryption
algorithms:
RSA
DSA
PGP
2. ARITHMETIC CODING
In arithmetic coding, a message is encoded as a real number
in an interval from one to zero. The idea behind arithmetic
coding is to have a probability line, 0-1, and assign to every
symbol a range in this line based on its probability [6], the
higher the probability, the higher range which assigns to it.
Once we have defined the ranges and the probability line,
start to encode symbols, every symbol defines where the
output floating point number lands.
 The coding algorithm is symbol wise recursive; i.e., it
operates upon and encodes (decodes) one data symbol per
iteration or recursion. On each recursion, the algorithm
successively partitions an interval of the number line
between 0 and 1, and retains one of the partitions as the new
interval. Thus, the algorithm successively deals with smaller
intervals, and the code string, viewed as a magnitude, lies in
each of the nested intervals. The data string is recovered by
using magnitude comparisons on the code string to recreate
how the encoder must have successively partitioned and
retained each nested subinterval. Arithmetic coding differs
considerably from the more familiar compression coding
techniques, such as prefix (Huffman) codes [4].
Arithmetic coding typically has a better compression ratio
than Huffman coding, as it produces a single symbol rather
than several separate codeword and can be use in
compression based encryption system [12]. There are a few
disadvantages of arithmetic coding. One is that the whole
codeword must be received to start decoding the symbols,
and if there is a corrupt bit in the codeword, the entire
message could become corrupt. Another is that there is a
limit to the precision of the number which can be encoded,
thus limiting the number of symbols to encode within a
codeword. [7]

3. SHANNON CHARACTERISTICS OF A GOOD

ENCRYPTION SYSTEM [5]
1. The amount of security needed should determine the

amount of labor appropriate for the encryption and
decryption.

2. The set of keys and enciphering algorithm should be free from
complexity.

3. The implementation of the process should be as simple as
possible.

4. Errors in ciphering should not propagate and cause corruption
of further information in the message.

5. The size of the enciphered text should be no larger than the
text of the original message.

4. PERPOSED PRIVATE KEY ENCRYPTION

TECHINQUE
The proposed technique is based on the concept of arithmetic
coding [9] in which a word of text is converted into a floating-
point number that lie in the range between 0 and 1. Private Key
encryption system based on this technique can be used as an
independent system as well as can be clubbed with any of the
encryption system that works on floating point numbers [7]. The
probability table can also be set according to the user requirement
and the combination of two keys working one over the other
makes it extremely difficult to break as the total no of exhaustive
cases shoot up tremendously.

4.1 Requirements
A. Two Keys
The system is implemented using two keys: -
1. Resident key: - It’s a one-time key provided by the user when

the software is installed or initiated.
2. Regular key: -This key is subjected to change as and when the

user thinks that the previous keys have been disclosed. Length
varies with security requirements.

Note: Regular key used when the system work in independent
mode.

B. A Table
A table containing all symbols along with probability of
occurrence [3,9].

Symbol

Probability
of
Occurrence

 Symbol

Probability
of
Occurrence

^ 0.0001 N 0.0380
A 0.0500 O 0.0320
B 0.0500 P 0.0300
C 0.0450 Q 0.0380
D 0.0455 R 0.0400
E 0.0380 S 0.0400
F 0.0360 T 0.0320
G 0.0400 U 0.0300
H 0.0360 V 0.0350
I 0.0380 W 0.0300
J 0.0320 X 0.0300
K 0.0400 Y 0.0250
L 0.0360 Z 0.0779
M 0.0360

Figure 5: Asymmetric Cryptosystem: KE≠KD
(KE Encryption Key and KD: Decryption Key)

Original
PlaintextCiphertext Plaintext

Encryption Decryption

Encryption Key Ke Decryption Key Kd

A Secure Private Key Encryption Technique for Data Security in Modern Cryptosystem

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 254

4.2 Implementation
In the Add on to the Existing Encryption System mode of
implementation the technique converts a word of text into a
floating-point number. This floating point no. is obtained on
the basis of the probability of characters contained within
the word of text and the one time key which has been
provided[10, 11].
Explanation
Encryption: - Each character in the 256-character key is
associated with its corresponding probability of occurrence
using the table. The sequence of these characters along with
their probabilities acts as the basis for Algorithm [9] of the
technique to work.
Algorithm
In order to implement the algorithm array data structure can
be use for the resident key, priority table and message. To
encrypt the message, algorithm includes the following steps:
Step 1:- On the basis of the resident key and priority table
derive another table (Range table)

a)Initialize range_from=0, range_to=probability [first
element of the key], counter=1

b) Repeat steps for all the characters in the one time key
range_from [counter] =range_to[counter-1]
range_to[count]=range_from[count]+
probability[count]

 Count=count + 1;
Step2:- Read the word to be encrypted.
Step3:-Initialize Low_value=0, High_value=1,

difference=1, count=1
Step4:- Repeat for every character of the word
 Temp=Low_value[count-1]

Low_value[count]=low_value[count–1]+
difference[count-1] * range_from[symbol]

 High value[count]=temp + difference[count –1]*
range_to[symbol]

 Difference[count]=high_value[count]- low_value[count]
 Count=count+1
 Step5:- float_code=low_value
 Step6:- Repeat process for every word in the file
 Output: Output is a floating point no. that is

corresponding to the inputted word. It can be
provided further to any other encryption
algorithm that works on floating point numbers

 Decryption: - Getting the floating points its time now that
we convert it into original text.

Algorithm
To deecrypt the message, algorithm include the following
steps:
Step 1:- while flote_code ! = 0.0 repeat step 3 to 5
Step 2:- initialize count=1
Step3:- find range[symbol] where float_code lies and set
count accordingly.
Step4:-float_code
 =(float_code - range_from[count])/prob[count]
Step5:- store symbol in a character string

Srep6:- count=count+1
Step7:- repeat process for every word in the file
Output: Output is the original text.
Example:
Encryption:
The resident key used is
a b c d e f g h i j k l m n o p q r s t u v w x y z
Enter the word to be encrypted
anil
Symbol Low_value High_value Difference
 a 0.0001 0.0501 0.05
 n 0.026205 0.028105 0.0019
 i 0.026851 0.026923 7.22e-05
 l 0.026884 0.026886 2.5992e-06
Equivalent floating point number is 0.026884
Decryption:
Symbol Range_From Range_To Prob. Flot_Code
 a 0.0001 0.0501 0.05 0.535674
 n 0.5221 0.5601 0.038 0.357204
 i 0.3401 0.3781 0.038 0.4501
 l 0.4501 0.4861 0.36 6.53798e-13
The word is anil

5. KEY FEATURES
1. It’s a Private Key Encryption system.
2. Make the system that can operates in different modes

2.1 Add on to the existing encryption system
2.2 Independent system

3. Flexibility: - The system is extremely flexible as allows the
length of both the keys to be changed, the length of the
resident key depends on the character set required. The
probability table can also be set according to the user
requirement.

4. Extremely difficult to break the code by brute force attack: -
The combination of two keys working one over the other
makes it extremely difficult to break as the total no of
exhaustive cases shoot up tremendously.

6. EFFICIENCY
The proposed technique satisfies all the Shannon Characteristics of
a Good Encryption System as shown in the table given below. It
makes the system faster, portable and requires memory space of
less than 15kb and also provides an efficient data security during
communications.

Sr.
No.

Shannon Characteristics of a
Good Encryption System

Proposed
Technique

1 The amount of security needed
should determine the amount of
labor appropriate for the
encryption and decryption.

√

2 The set of keys and enciphering
algorithm should be free from
complexity.

√

Continued on page no. 270

