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Restricted Backtracked Algorithm for Hamiltonian Circuit in Undirected Graph 
Vinay Kumar  

Abstract - While determining whether a graph is Hamiltonian, 
it is enough to show existence of a Hamiltonian cycle in it. An 
algorithm based on restricted backtracking is presented in the 
paper that uses tie breaking rules to reduce the possible 
number of backtrackings. If x is any intermediate node in HC 
then once its neighbour y has been visited from x, x is no 
longer required so drop it and process is continued on the 
remaining subgraph. Each node is visited exactly once in a 
HC except the start node. Adjacency matrix is used to encode 
the graph. Prevention of backtracking is achieved up to next 
node from start node. From third node onward, wherever it is 
not possible to break tie uniquely, a provision for backtracking 
is kept only for tied nodes. Time complexity of algorithm is 
O(n4)*B(n) in the worst case where B(n) is a factor due to 
possible backtracking. It returns O(n2) in the best case and 
O(n3)*B(n) on the average.  
 
Index Terms - articulation point; complexity class; P; NP; 
Hamiltonian graph; connected graph; line sweeping; 
restricted backtracking 
 
1.  INTRODUCTION 
The Icosian game [4], introduced by Sir William Hamilton is 
known as Hamiltonian Circuit (HC) problem [7]. The objective 
of the game is to visit all nodes of the graph exactly once before 
returning to the initial node. In graph theoretic world, a 
Hamiltonian circuit is defined as a simple cycle that contains 
every vertex of graph exactly once except the first one which is 
visited again at the end to complete the cycle [8]. A graph is 
said to be Hamiltonian if it contains a HC else it is 
nonhamiltonian. Although many graphs can be trivially 
determined as Hamiltonian or nonhamiltonian even then the 
problem is very complex in general. The problem of finding a 
Hamiltonian cycle in an undirected graph is studied for over a 
hundred years [36]. The problem “Does a graph G have a 
Hamiltonian cycle?” can be defined in formal language as 

HAM_CYCLE = {<G>: G is a Hamiltonian graph} 
Showing existence of one Hamiltonian cycle in G is sufficient to 
conclude that the graph is Hamiltonian. However, it is expected 
to test all possible n! permutations of vertices before concluding 
that G is nonhamiltonian. Basic properties of graph [5, 16, 38] 
are used in the introduced algorithm to restrict backtracking to 
the maximum possible extent and to avoid it if it can be. It is, 
therefore, not always required to explore all possible n! 
arrangements of vertices before concluding that a graph is  
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nonhamiltonian. The following facts are taken into 
consideration while developing the algorithm.  
1. One edge is sufficient to cross over from one node to its 

adjacent node [11] 
2. Once a node is visited, it is no longer required (except the 

initial node), so drop it [1]. 
3. A node y to visit from x can be selected using some tie 

breaking rules in such a way that possibility of 
backtracking to explore other possible path from x. is 
drastically reduced [18, 19]. 

4. At any stage, if dropping of node x yields more that one 
dangle node [38], and if it is not avoidable (backtracking 
not possible), the graph can be concluded as 
nonhamiltonian.  

5. If at the end only initial node is left then graph is 
Hamiltonian otherwise it is nonhamiltonian [22].  

The core of the algorithm development process lies in the point 
3 above. The detailed steps are outlined in section 2 of this 
paper. Section 3 contains proof for the correctness of the 
algorithm followed by two illustrative examples in section 4.  
Section 5 deals with computational analysis of the algorithm. 
Before stepping into section 2 let us see a basic concept that if 
graph contains an articulation point then graph is 
nonhamiltonian [24].  
Let G = (V, E) be a connected undirected simple graph with |V| 
= n ≥ 3, and |E| = m where m ≥ n. A graph is simple if it 
contains neither loop nor multi edge [3, 26]. A graph is 
connected if there is a path between every pair of nodes in it 
[3]. To maintain flow of presentation, few terms like node and 
vertex, edge and arc are used synonymously.  In this paper, a 
graph implies a simple connected graph with no articulation 
point, unless otherwise stated. DFS (depth first traversal) 
algorithm is used to test connectivity and non-existence of 
articulation point in graph. DFS algorithm executes in 
polynomial time [2, 6, 27]. An articulation point in a graph G 
is a node x that, when removed from G, partitions set V into 
two (or more) non empty subsets U and W such that  
• U and W are disjoined, and 
• No node in U is adjacent to any node in W [28]. 

 
Theorem 1: A graph G = (V, E) with an articulation point has 
no Hamiltonian Circuit. 
Proof: Let v be the articulation point and U and W be the two 
non empty subsets of V such that 
• V= U ∪ W ∪ {v}, 
• v ∉ U, v ∉ W and 
• U  ∩ W ≠ φ   
Let us proof it by contradiction. Suppose G has a HC. Three 
possibilities about starting node x of HC in G are (a) x = v or 
(b) x ∈ U or (c) x ∈ W.  
Case (a) when x =v  
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Since G is connected, v has adjacent nodes in both U and 
W. Once a node in U is visited from v, there is no way to 
come to any node in W without visiting v.  Similar case is 
faced when a node in W is visited first. Therefore there is 
no HC in G [10].  

Case (b) when x ∈ U 
Starting from x visit all nodes in U first, in the best case. 
Then visit v then a node in W. Once in W, there is no way 
to return to x because v is removed. Therefore there is no 
HC in G  

Case (c) when x ∈ W  
It can be proved in the same way as in the case (b). ♦ 

 
Corollary 1: A graph G containing a node of degree ≤ 1 is 
nonhamiltonian. 
Proof: Any node y adjacent to the node x of degree one is an 
articulation point in G. A node of degree zero is unreachable. ♦  
Converse of the theorem that “a graph having no articulation 
point is Hamiltonian” is not true. Many graphs can be presented 
in the support [13, 21]. However this theorem helps in early 
conclusion on the nonhamiltonian graph. Presence of an 
articulation point indicates that as and when it is dropped from 
the graph while traversing to find HC, it ensures that at least 
two nodes are left in the current subgraph when algorithm 
terminates its execution. 
 
2.  ALGORITHM  
The step by step algorithm determines existence of one cycle 
out of possible n! to conclude that G is Hamiltonian. Current 
node x, other than initial node, is dropped when its neighbour y 
is visited. While dropping x it is ensured that no backtracking to 
the node x, in due course can yield otherwise result. It is 
achieved by applying tie breaking rule whenever ∃ more than 
one options from x. If it is not possible to break a tie, the 
possible options available at that point is stored in array 
BACKTRACK []. The array BACKTRACK [] is indexed on the 
nodes as visited in the graph. List of currently visited nodes is 
denoted by π. And nodes are referred as v1, v2, v3, …, vn in the 
sequence they are visited. Before applying the algorithm, line-
sweeping [37] algorithm is executed on the graph to merge all 
nodes in one linear component because all nodes in a line are 
visited one after other in a sequence as per this algorithm. For 
example if nodes from j to k are merged (visited) in sequence 
then merged (visited) nodes are referred as <vj, vj+1, … , vj + k>.  
List of articulation points is updated in the current subgraph 
when a node is dropped from graph. The list of current 
articulation point is referred as ARTPNT.  
When a node v2 or later visited node vk is dropped from current 
subgraph, start node v1 may become dangle. While counting 
number of dangle nodes at any stage in the algorithm, only 
intermediate nodes are taken into account but not node v1. 
Let G = (V, E) be a simple graph with |V| = n, |E| = m, m ≥ n. 
Initialize adjacency matrix M[n, n] as per adjacency in G. The 

degree spectrum [8, 9, 12] of G is stored in one dimensional 
array Degree[n]. 
 
Step 1:  Select a node v1 from G such that v1 is of minimum 

degree. Resolve a tie by taking node from earliest row 
(or column) of matrix M. For example if nodes in 
rows 5 and 10 have same minimum degree then select 
node from row 5. Initialize path π to v1 and 
Start_node to v1.  

Start_node ← v1; π: v1 
Step 2:  Find a node to be visited next from start node. 

Step 2.1 Create a set of all nodes adjacent to v1 and call it 
NGBR – set of neighbours of Start_node.   

Step 2.2  Select a node v2 from NGBR to visit next in the 
following way. Resolve any tie as in Step 1.  

Step 2.2.1  Pick up a node of degree two. If such node is 
found then go to step 2.3 else continue to next 
step 2.2.2  

Step 2.2.2 Find a node that does not yield any dangle node 
when dropped from graph G. If such node is 
found then go to step 2.3 else continue to next 
step 2.2.3. 

Step 2.2.3 Find a node that yields only one dangle node 
when dropped from G. If such node is found 
then go to step 2.3 else skip to step 5. 

Step 2.3  Initialize Current_node to v2 and extend path π 
up to v2. 
Current_node ← v2; π: v1 v2 
Update NGBR = NGBR – {v2} 
Update set ARTPNT treating Current_node as 
dropped. 

Step 3:  Select a node vj + 1 from adjacent nodes of 
Current_node vj to visit next in the following way. 
Resolve a tie by ignoring the node that is in 
ARTPNT. Even then if there is tie then resolve as in 
Step 1, keep list of other candidate nodes at 
BACKTRACK [vj] and set flag 
BACKTRAK_possible as true. 

Step 3.1  If number of adjacent node is one then return the 
node and go to step 3.6 else remove the 
Start_node from list of adjacent node, if it is in 
the list, and continue to step 3.2.  

Step 3.2  If there are more than one adjacent node of 
degree two then go to step 5 else pick up the 
node of degree two. If such node is found then 
go to step 3.6 else continue to step 3.3.  

Step 3.3  Find a node that is neither in NGBR nor equal to 
Start_node and that does not yield any dangle 
node when dropped from graph G. In case of tie 
resolve it. If such node is found then go to step 
3.6 else continue to next step 3.4.  

Step 3.4  Find a node that is neither in NGBR nor equal to 
Start_node and that yields only one dangle node 
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when dropped from G. In case of tie resolve it. If 
such node is found then go to step 3.6 else 
continue to step 3.5.  

Step 3.5  Find a node from nodes not considered in step 
3.3, 3.4 as below:  

Step 3.5.1 Find a node that does not yield any dangle 
node when dropped from G. If such node is 
found then go to step 3.6 else go to step 3.5.2   

Step 3.5.2 Select a node that yields one dangle node 
when dropped. If such node is found then go 
to step 3.6 else continue to step 5. 

Step 3.6  Initialize  
Prev_Cuurent_node←Current_node 
Current_node← vj + 1 
Extend path π up to vj + 1. 
Drop Prev_Cuurent_node from graph and update 
the degree of all affected nodes accordingly in G  
Update set ARTPNT for the current subgraph 
treating current node as dropped 
Update NGBR, if required. 

Step 4:  Repeat Step 3 as long as visit to a neighbor is possible 
else go to step 5. 

Step 5:  If only Start_node is left at this stage, after successive 
removal of intermediate nodes, then G is Hamiltonian  
Else If back track is possible (i.e. 

BACKTRAK_possible is true) then 
Restore the matrix by adding nodes one by one 
from last visited node in π up to last index node 
vk in array BACKTRACK. Then pick up first 
node from list of options available in 
BACKTRACK [vk] and initialize  

Current_node← vk  
Update set ARTPNT, NGBR and BACKTRAK_possible 
flag as applicable for the latest subgraph and Repeat Step 
3 as long as visit to a neighbour is possible.  

Else Graph G is nonhamiltonian.  
 

The algorithm in steps 1 through 5 ensures two things: (1) it 
restricts backtracking by dropping the visited intermediate 
nodes, and (2) while dropping a node it ensures that no other 
path from that node shall yield different result in most of the 
circumstances by using tie breaking rules. While iterating in 
step 3, only remaining sub graph is taken. Algorithm terminates 
when no more visit is possible i.e. even backtracking is not 
feasible. A visit is not possible if there is no adjacent node to 
Current_node and BACKTRAK_possible falg is false. This case 
arises when there is only one node (i.e. Start_node) is left at the 
end or graph is detected as nonhamiltonian at an early stage. 
Two illustrations of the algorithm are given in the following 
section that deals with the situation (1) when no backtracking is 
required and (2) when it is really required.   
 
3.  ILLUSTRATIVE EXAMPLES 

A primitive idea about working of the algorithm is shown 
using a visually very simple graph in figure1.  This is the case 
when no backtracking is required. Represent the graph as 
adjacency matrix [15, 20]. Start from a node of minimum 
degree. All nodes in this graph are of equal degree 3. Without 
loss of generality, let A be in the earliest row (column) and 
select node A to start with. Here, 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Start_node ← A;  
π: A 

 
A has three adjacent nodes B, E and M and all are of degree 3.  
None of them yields any dangle node when dropped from G, 
thus using step 2.2.2, we may select node B using tie breaking 
rule to proceed further. Here, 

Current_node ← B; 
π: A B 
NGBR = {B, E, M} – {B} = {E, M} 
ARTPNT = {} 

 
Now node B has two adjacent nodes C and K. Using step 3.3 
select node C to proceed and following updating is done.  

Prev_Cuurent_node← B 
Current_node← C 
π: A B C. 

 
Drop node B from graph and update the degree of all affected 
nodes accordingly in G. The set ARTPNT = {} for the current 
subgraph. There is no need to update NGBR. The step by step 
execution of algorithm is outlined in the table 1 below. 
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Algorithm 
steps 

Node Selected Current Path π: Articulation Set 
ARTPNT 

BACKTRACK [iteration] 

1 A A  
2.2.2 B A B {}  
3.3 C AB C {} {K} 
3.3 D ABC D {} {I} 

3.3* G ABCD G {}  
3.3 F ABCDG F  
3.3 P ABCDGF P  
3.3 T ABCDGFP T {L}  
3.3 S ABCDGFPT S {L K, J}  

3.4* R ABCDGFPTS R {L, K, J}  
3.2 Q ABCDGFPTSR Q {L, K, J}  
3.1 … ABCDGFPTSR QHIJKL {}  
3.1 M ABCDGFPTSRQHIJKL M  
3.2 N ABCDGFPTSRQHIJKLM N {E}  
3.1 …A ABCDGFPTSRQHIJKLMN OEA  

Table 1: Indicates that a tie was resolved between nodes G and E using NGBR 
 
.At the end only one node A is left in the subgraph and hence G 
is Hamiltonian. Here numbering of node has no effect on the 
requirement of backtracking as long as tie is resolved as per the 
algorithm. The graph in figure 2 is Hamiltonian. Backtracking 

may be required in one case. Node A in this graph is of 
minimum degree 2. Select node A to start with. Here, 

Start_node ← A;  
π: A 

 
 
 
 
 
 
 
 
 
 
 
 
 
Node A has two adjacent nodes B and H and both are of degree 
3.  None of them yields any dangle node when dropped from G, 
thus using step 2.2.2, we may select node B using tie breaking 
rule to proceed further. Here, 

Current_node ← B; 
π: A B 
NGBR = {B, H} – {B} = {H} 
ARTPNT = {H} 

 

Now node B has two adjacent nodes C and G. Using step 3.3, 
node C is selected to proceed further with following updating.  

Prev_Cuurent_node← B 
Current_node← C 
π: A B C. 
ARTPNT = {H, F} 

Drop node B from graph and update the degree of all affected 
nodes accordingly in G. The set ARTPNT = {} for the current 
subgraph. There is no need to update NGBR. The step by step 
execution of algorithm is outlined in the table 2 below.

 
Algorithm 

steps 
Node Selected Current Path π: Articulation Set 

ARTPNT 
BACKTRACK [iteration] 

1 A A  
2.2.2 B A B {H}  
3.3 C AB C {H, F} {G} 
3.3 D ABC D {H, F, E, P}  
3.2 G ABCD G {H, F, E, P}  
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Algorithm 
steps 

Node Selected Current Path π: Articulation Set 
ARTPNT 

BACKTRACK [iteration] 

3.1 F* ABCDG F * * 
℘5 G AB G {H}  
3.3 F ABG F {H, C, D}  
3.3 E ABGF E {H, C, D, L}  
3.3 P ABGFE P {H, C, D, L}  
3.3 I ABGFEP I {H, C, D, L} {O} 
3.3 J ABGFEPI J {H, C, D, L}  
3.4 K ABGFEPIJ K {H, C, D, L, M, N} {M} 
3.2 O ABGFEPIJ K {H, C, D, L, M, N}  
3.1 …A ABGGFEPIJK ONMLDCHA  

Table 2 
* Dropping of the node F yields two dangle nodes E and H (other than start node).  
℘  By step 5 backtracking is initiated up to node C and replacing C by G (available option at that level). 
 
Examples demonstrate the working of the algorithm. At the end 
only one node A is left in the subgraph and hence G is 
Hamiltonian. The following graph in figure 3 is a 
nonhamiltonian. To show this there is no need to explore 
possibly all 9! permutations of 9 nodes. Just two runs are 
enough to say that the graph is nonhamiltonian.  
 
 
 
 
 
 
 
 
 

 
 
 
 
Algorithm correctness is proved in the following section. 
Related theorems, lemma, propositions and definitions are 
described as and when required. Obvious results are taken as 
axioms without any proof.   
 
4.  PROOF OF CORRECTNESS 
An adjacent node y is visited from x in such a way that a cycle 
of length less than |V| does not form in the graph. The algorithm 
takes a biconnected graph (connected graph without articulation 
point) [14, 17] G = (V, E) as input (precondition) and outputs 
(post condition) a Hamiltonian (or nonhamiltonian path) π and a 
subgraph H of G with following properties: 
If G is Hamiltonian  

then H = (VH, EH) with |VH | = 1 and |EH | = 0 
Else H = (VH, EH) with |VH | ≥ 2 and |EH | ≥ 0 
Here VH is set of nodes in H and EH is set of edges in H. The 
proof of correctness has two parts: 

(i) Partial correctness: If the algorithm will terminate then it 
will give the right result i.e. the result will satisfy the post 
condition. 

(ii) Termination: Proof that the algorithm terminates [24].  
To prove the correctness of the algorithm, it is required to 
prove the following postulates:  
(a) Algorithm always finds a correct start node, 
(b) It always finds a node adjacent to start node in correct 

way, if available, to initiate the process of finding HC in 
G, 

(c) In every iteration, next node from the current node is 
found, if a visit is possible otherwise program terminates, 

(d) Tie breaking rules restrict (in fact reduces number of 
possible) backtracking i.e. if G is found to be 
nonhamiltonian at kth node, then backtracking to any of 
the previously ignored node does not yield any otherwise 
result. 

(e) If only Start_node is left at the end then graph is 
hamiltonian else it is nonhamiltonian, and 

(f) Finally algorithm terminates. 
In general, if G is Hamiltonian then a HC may start from any 
node [35] and if G is nonhamiltonian then a cycle cannot be 
completed starting from any nodes in G. There is no loss of 
generality in selecting a start node based on some criteria. 
Thus the proposition,  
“In a Hamiltonian graph a HC begins from a node x of 
minimum degree” 
is true. And step 1 of algorithm selects a node of minimum 
degree from G to start with. Further, a start node has at least 
two adjacent nodes.  
Lemma 1:  ∀x deg(x) ≥ 2, where x is a node in the input graph 
G.  
Proof: Let y be any node in G. The graph G is biconnected so 
there are at least two node disjoint paths between x and y. It 
implies that ∃ distinct nodes u, v adjacent to x such that one 
path from x to y goes through u and another through v.   
∴deg(x) ≥ 2.♦  
Corollary: The start node v1 has m ≥ 2 adjacent nodes.  
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Let L(x) denote the set of all adjacent nodes of x then L(v1) = {y 
| y is adjacent to v1}. We refer L(v1) as NGBR. Among m (≥ 2) 
adjacent nodes to start node v1, the different possibilities are:  
(i) all are of degree two, or 
(ii) some are of degree two and other are of degree > 2, or 
(iii) all are of degree > 2. 
One node from NGBR is taken to leave the start node and one 
other will be required to complete HC if G is Hamiltonian. In 
the case of (i) and (ii), it is STEP 2.2.1 that picks up a node v2 
of degree 2 to start with. However in case of (iii), the algorithm 
looks one step further to make sure that once the node (to be 
selected) is removed from graph, it yields not more than one 
dangle node (excluding start node). The algorithm prefers in 
step 2.2.2 over 2.2.3, to select a node that does not yield any 
dangle node. Thus in order of precedence of steps 2.2.1, 2.2.2 
and 2.2.3 (from left to right) the algorithm finds a node next to 
start node yielding the post condition as below: 

π : v1v2  
H = G 
NGBR = L(v1)  –  {v2} 
ARTPNT = As determined. 

It is obvious that algorithm finds a node next to start node. It 
resolves a tie as per the criteria described in the algorithm as and 
when it arises. Backtracking is restricted at this stage. It is 
proved in the lemma 2 that no backtracking is required at this 
level. Correctness of this step is implied from the lemma 2 and 
theorem2.  
Lemma 2: If G is Hamiltonian then ∀x ∈ L(v1) pre Hamiltonian 
v1x leads to a Hamiltonian cycle.  Proof: Let us prove it using 
mathematical induction on the degree m of start node v1. It is to 
be noted that start node is of minimum degree in G. 

Basis Step: For m = 2, the result is obviously true.  
Inductive Step: Let the result be true for m = k i.e. ∀x ∈ L(v1) 
pre Hamiltonian v1x leads to a Hamiltonian cycle. Let one of 
the Hamiltonian cycle be  

v1x…z…y v1 

where x, y ∈ L(v1).  See the figure 4(a) for conceptual 
visualization of Hamiltonian cycle from graph shown in figure 
5(a). It is in no way to trivialize the general proof of the 
lemma.  
 

 
 
 
 
 
 
 

 
 
 
Let us add an edge from v1 to a node z in G in such a way that 
degree (v1) remains minimum in G and v1 remains the start 
node. Also ∀x ∈ L(v1) degree(x) > k otherwise v1 can no 
longer remain minimum degree node if an edge is added from 
v1 to any other node z ∉ L(v1) in G. Further, addition of an 
edge in graph may make a nonhamiltonian graph Hamiltonian 
but not the reverse.  
Let us now remove the edge between v1 and x. Even then v1 
remains one of the minimum degree node and hence the start 
node. For conceptual visualization see figure 5(b).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now again m = k and hence the result is true from the 
assumption. See figure 4(b) for Hamiltonian cycle from graph 
5(b). Presence of edge (v1, x) does not alter the result but only 
increases the number of possible Hamiltonian cycles in G.♦ 
Theorem 2: If G is found to be nonhamiltonian at kth node, 
then backtracking to any node x in NGBR = L(v1)  –  {v2} 
does not yield any otherwise result. 

Proof: Let deg(v1) = m ( ≥ 2 ). When m = 2, v1 has two 
adjacent nodes i.e. |L(v1)| = 2 and any of the three cases 
outlined above may be applicable.  
When m > 2, only case (iii) is applicable. Algorithmic step 
2.2.2 or 2.2.3 finds a node v2 because step 2.2.1 is not relevant.   
Case 1: When m = 2. Let the two adjacent nodes be x and y 
and rest of the graph be H. If both x and y are of degree two 
then any one can be used to leave the start node and other is 
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used to arrive at. No backtracking to y (in case x is selected) or 
to x (if y is selected) can yield otherwise result. 
Suppose, without loss of generality, that deg(x) = 2 and deg(y) 
> 2. Instead of selecting x, refer figure 6, let node y be selected 
to start with and at the kth stage it is found that x is an adjacent 
node of vk then it leaves no alternative but to backtrack to the 
earliest available option from vk – 1 otherwise the visit  to x 
shall form a cycle of length < n.  On the other hand if x is 
selected then y can always be ignored as it is in NGBR and 
alternative node to move ahead is available. Dotted lines in the 
figure 4 indicate the adjacency to y from kth node (current 
subgraph H).  
When deg(x) > 2 and deg(y) > 2 and both yield no dangle node 
when dropped then any one can be selected to leave the start 
node and other to arrive at. Same is true when both yield single 
dangle node when dropped from G. When one yields no dangle 
and other yields one dangle node then the first is selected to 
keep wider option available at the next step and hence reducing 
the number of possible backtracking later on to nodes v3 or any 
node visited thereafter. It is in no way contradictory to 
previous one when a node with degree 2 is preferred over other 
one.   
Case 2: when m > 2. Because v1 is of minimum degree 
therefore ∀x ∈ L(v1), deg(x) > 2 and algorithmic step 2.2.2 is 
applicable to select a node v2. Obviously at this stage no node x 
can yield any dangle node.  Tie is broken as per the coding of 
adjacency matrix M for G. Correctness follows from lemma 
2.♦  
 
 
 
 
 
 
 
 
 
 
After proving the correctness of step 2, it is turn to show the 
correctness of step 3 and 4 of algorithm.  Let vk be the current 
node visited at the Kth iteration. It is essential to establish that in 
a Hamiltonian graph ∃ no valid current node vk such that it is 
adjacent to more than one node of degree 2, and, backtracking 
from it is not possible. This excludes the start node. A current 
node is taken in context of the present subgraph H of G after 
successive removal of the visited nodes. A current node is said 
to be valid if and only if it either leads to a Hamiltonian cycle 
(possibly with backtracking) or helps in concluding that graph 
is nonhamiltonian at that stage itself. The hypothesis is proved 
in Lemma 3 and the hypothesis that a valid current node has at 
least one adjacent node in a Hamiltonian graph is proved in 
Lemma 4. 
Lemma 3: In a Hamiltonian graph a valid current node cannot 
be adjacent to n > 1 nodes of degree 2, excluding start node.    

Proof: Let the current node be vk and y and z be two adjacent 
nodes of vk such that both are of degree 2 none is equal to v1. 
Node vk is dropped once its neighbour is visited. It causes the 
degree of y and z reduced to one. While arriving at v1 in order 
to complete the HC either y or z is left out. This is 
contradiction to the assumption that graph is Hamiltonian.♦ 
Lemma 4: A valid current node has at least one adjacent node 
in the current sub graph in a Hamiltonian graph.  
Proof:  Let vk be the current node in the current subgraph H of 
G.  Lemma 1 and lemma 3 imply that every node is of 
minimum degree two. Let y and z be two such adjacent nodes 
to vk. If vk is visited before visiting both y and z, or vk is 
visited after y but before z or vice versa then the result is 
obvious. In the case when vk is visited possibly after visiting y 
and z both, then in order to complete HC in G, there must be 
another arc as exit route from vk and hence an adjacent node.♦ 
Let L(vk) = {y | y is adjacent to current node vk}. A node y = 
vk+1 ∈ L(vk) is taken to visit next using step 3 and step 4 of the 
algorithm. Step 3.1 does not leave any option whereas step 3.2 
is preferred because of reason proved in case 1 of theorem 2. 
Backtracking at 3.2 is restricted because selection of any node  

x ∈ L(vk) – {y | y ∈ L(vk) and degree(y) = 2} 
would make y dangle. Correctness of the step 3.1 and 3.2 is 
implied from lemma 3. Again from second part of case 1 of 
theorem 2, step 3.3 is preferred over 3.4. Since current node 
may not satisfy the condition of minimum degree node of 
original graph G, a provision of possible backtracking is kept 
wherever tie breaking is not possible. Precedence and 
correctness of the steps is implied from lemma 2 and 3.  
Step 3.5 finds node from NGBR which are possibly available 
and not considered in step 3.3 and 3.4 in order to ensure that a 
cycle of length < n is not formed prematurely. This step is 
executed if it is not possible to find a node in 3.3 or 3.4.  
Correctness of precedence of steps in order of 3.1, 3.2, 3.3, 3.4, 
3.5.1 and 3.5.2 is derived from Lemma 2, 3 and theorem 2. 
After selection of a node in step 3, the post condition is:  

π : v1v2 v3 ... vk+1   
H = H – {vk}  
NGBR = L(v1)  –  {vk+1} 
ARTPNT = As determined. 
BACKTRACK [vk+1] = {x | x ∈ L(vk) and x satisfies 

criteria of 3.3 or 3.4 based on 
which vk+1 has been selected to 
move on.}   

A node y selected in step 3.5 is from NGBR only.  It implies 
that current node vk has more than one adjacent nodes and 
degree(y) > 2 otherwise it would have been selected in either 
step 3.1 or step 3.2. It further implies that there is no non 
NGBR node adjacent to vk that satisfies 3.3 and 3.4. If there 
exists more than one nodes satisfying 3.5.1 or 3.5.2 then a 
node is selected without noting the tied node for backtracking 
later on. It is implied from lemma 2 that backtracking to any 
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node latter on does not yield any otherwise result. This 
provides the proof for postulate (d). The proof of the next 
postulate (e) is given in theorem 3.  
Theorem 3: A graph G is Hamiltonian, if and only if only start 
node is left at the end of the execution of the algorithm. 
Proof: If only start node v1 is left at the end of the execution of 
the algorithm then G is Hamiltonian: 
If the algorithm terminates with one node v1 left subgraph H, it 
ensures that all intermediate nodes have been visited and 
subsequently removed. It proves that all nodes starting from 
the start node have been visited exactly once before finally 
arriving at start node, therefore forming a HC. 
If G is Hamiltonian then only start node is left at the end of the 
execution of the algorithm:  
From lemmas 3 and 4, it is always possible to find an adjacent 
node to currently visited node in a Hamiltonian graph using the 
algorithm. Thus at the end only start node v1 is left when 
algorithm successfully terminates.♦   
Corollary: If more than one node is left when algorithm 
terminates then G is nonhamiltonian. 
Proof: This can be proved by method of contra positive. The 
‘only if’ part of theorem 3 may be stated contra positively as “If 
not ‘only start node is left at the end of the execution of 
algorithm’ then graph is not Hamiltonian’”. It can be further 
stated in simplified language as “if more than one node is left 
when algorithm terminates then G is nonhamiltonian". Proof is 
obvious from second part of theorem 3.♦ 
The important thing for any algorithm is not only to find a 
correct solution when it exists but to terminate after a finite 
number of steps in every case. The loop due to step 4 
terminates when either or both of the following conditions are 
met. 
i) Number of nodes in the leftover current sub graph is 

reduced to 1, or/and 
ii) No suitable node is found to visit next.     
In case (ii) the loop due to step 4 is possibly restarted subject to 
availability of a node to backtrack. Now it remains to prove that 
the algorithm terminates in all cases. It is implied from lemma 
3 and 4 that the algorithm always returns a node to visit next 
from the current node if a graph is Hamiltonian. Whenever a 
valid node is returned to visit next, the number of nodes in the 
graph is reduced by 1. At the end, the subgraph contains start 
node only. The step 4 terminates and algorithm goes to step 5. 
‘If’ part of this step ensures the termination. 
On the other hand, if a graph is nonhamiltonian then the 
algorithm goes to step 5 either from 2.2.3 or from 3.5.2. In case 
of step 2.2.3 there is no possibility of backtracking and hence 
number of nodes left at that time is > 2. Whereas if control is 
transferred to step 5 from 3.5.2 then either backtracking is 
possible to step 3 or it is not possible. In former case, the loop 
at step 3 and 4 is restarted from a node stored at step 3.3 or 3.4. 
The node considered once is not considered again for 
backtracking and therefore ultimately ensures termination of 
algorithm. This is ensured by step 5.  In the latter case the 
algorithm terminates there. 

5.  ANALYSIS OF THE ALGORITHM  
Determining time complexity of an algorithm requires 
derivation of an expression that finds number of steps needed 
to complete the task as a function of the problem size n and is 
to be considered modulo a multiplicative constant [25, 29]. 
Objective of this section is to compute time complexity of the 
algorithm in best, worst and average cases [32, 33, 34]. The 
computation takes into consideration possibility of 
backtracking in case of tie breaking rules become insufficient.  
The algorithm consists of the following major components.  
(i) Step 1 and Step 2 are executed once and in sequence. 
(ii) Step 3 and step 4 are repeated (n – 2) times. 
(iii) Step 5 may force back tracking.  
Time complexity of algorithm depends upon number of nodes 
n and edges e in G [30, 31]. Step 1 finds start node and it 
executes in O(n2) times. Step 2 is executed once and in 
sequence with step 1. Let time complexity of the step 2 be f(n) 
to be computed later. Next step 3 and 4 are repeated n times. 
Let its time complexity be h(n) to be computed later. Hence, 
the time complexity H(n), of the algorithm is 

)1.....(..........).........(*))((()()()( 2 nBnhnOnfnOnH ∗++=  
Here B(n) is a time complexity function due to possible 
backtrack. There are three sub steps within step 2. Step 2.1 
computes set NGBR. The set union operation is of O(1) as it 
simply appends a node adjacent to  Start node to set NGBR. 
Append operations may be executed at the most (n – 1) times 
when all other nodes are adjacent to start node i.e. when graph 
is complete. Matrix encoding of the graph ensures that no 
checking of prior presence of a node is required before putting 
the node in NGBR. Thus step 2.1 if of O(n).  
Within step 2.2, 2.2.1 is of O(n). Step 2.2.2 and 2.2.3 can be put 
within a loop that executes in O(n2) time complexity. Thus step 
2.2 is of O(n2).  In step 2.3, set difference operation  

NGBR = NGBR – {Current_node} 
is performed in O(n) times. Existence of an articulation point in 
a graph is determined by applying depth first traversal (DFS) 
algorithm, which of order of number of edges in the graph i.e. 
O(n2) in the worst case.  Therefore,   

)2.....(..................................................).........2n(

)2()2()()(

O

nOnOnOnf

=

++=
 

Turning to step 3, it is repeated n, in fact (n – 1) times due to 
step 4. It contains six sub steps. In order to initiate the task a list 
of adjacent nodes is constructed which is of O(n).  Then from 
3.1 to 3.6 steps are executed in sequence. Step 3.1 and 3.2 are 
of O(1) and O(n) respectively. Step 3.3 and 3.4 are of O(n3). 
Tie, if any, is broken in O(n) and BACKTRACK list is updated 
in O(1) and that too in sequence, therefore step 3.3 and 3.4 
remains of O(n3).  
Next Step 3.5 is of O(n) average case as number of such node 
shall be minimum. However in worst case it may be of O(n2). 
Step 3.6 performs all tasks that step 2.3 performs. In addition to 
that step 3.6 drops the node just previously visited. The task is 
performed in O(n) time. Thus, step 3.6 is of O(n2).  Time 
complexity h(n) of step 3 and 4 therefore can be written as  
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Substituting values (2) and (3) in equation (1), the complexity 
H(n) is O(n4 *B(n)). The B(n) factor is applicable when 
backtracking is unavoidable from third node onward. Though 
backtracking is required to a few (one or two) nodes in a few 
graphs, statistically, even then it can not be overlooked in the 
worst case.  
In the best case, if every node is adjacent to a few nodes e.g. 
two or three, then f(n) and h(n) are of order n and hence H(n) is 
of O(n2). In general, number of adjacent nodes decreases as the 
algorithm progresses. This happens because of removal of 
intermediate nodes. In a complete graph, it will be (n – 1), then 
(n – 2), then (n – 3) and so on. And towards the end, it will be 
4, 3, 2 and finally left with one. Therefore while computing f(n) 
and h(n), steps 3.3 and 3.4 are considered for (n – 1)(n – 2) then 
for  (n – 2)(n – 3) and so on up to 3*2, 2*1 times. The average 
number of time then steps 3.3 and 3.4 are executed is  

)(1
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Considering call to set membership function, h(n) shall return a 
complexity of O(n3) and f(n) of O(n2).  If gradual removal of 
nodes are taken into consideration then algorithm may not enter 
into nested loop like construct of 3.3 and 3.4 all the times. In 
this case h(n) and f(n) shall return complexity of O(n) for some 
node. If about 50% call enter into nested loop and remaining 
return without entering into it then amortized analysis yields 
time complexity of O(n2) for h(n). It means H(n), the 
complexity of the algorithm, is of O(n3*B(n)) from equation (1) 
in average case. 
 
6. CONCLUSION 
The algorithm presented in the paper has been tested on large 
number of graphs varying from simple to very complex up to 
the tune of 300 nodes. The algorithm is programmed in C 
language and adjacency matrix is used as data structure to store 
graph. A graph is pre-processed using line-sweeping [37] 
algorithm, to merge all nodes in a linear component. It is found 
that the algorithm executes in polynomial time in most of the 
time. Number of backtracking required is almost negligible. 
But unless the algorithm is improved to completely prevent the 
backtracking from third node onward, it can not be claimed of 
the polynomial time. 
The gist of algorithm is to visit next node, prune the graph by 
dropping the visited intermediate node as and when its 
neighbour is visited. While selecting the neighbour to visit 
next, it is ensured that no backtracking to the current node will 
be needed in many cases to confirm the result. Wherever there 
is absolutely no way to break the tie, provision to keep the 
option open for backtracking is made. Number of nodes to be 

explored, next, is reduced at every step due to pruning. This 
reduces the complexity of the algorithm from n! to polynomial 
of degree 3. In worst case, when backtracking is required, the 
complexity calculation is generalized to non polynomial. 
The presented algorithm may be further improved to evolve tie 
breaking rule(s) to prevent backtracking in steps 3.3 and 3.4. If 
it so happens, it might be a breakthrough in the field of graph 
algorithm and theory of algorithmic complexity. The algorithm 
presented may find its application in many areas. The author of 
this paper is using it in steganographic technique using graph 
theoretic approach. 
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