
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 229

Restricted Backtracked Algorithm for Hamiltonian Circuit in Undirected Graph
Vinay Kumar

Abstract - While determining whether a graph is Hamiltonian,
it is enough to show existence of a Hamiltonian cycle in it. An
algorithm based on restricted backtracking is presented in the
paper that uses tie breaking rules to reduce the possible
number of backtrackings. If x is any intermediate node in HC
then once its neighbour y has been visited from x, x is no
longer required so drop it and process is continued on the
remaining subgraph. Each node is visited exactly once in a
HC except the start node. Adjacency matrix is used to encode
the graph. Prevention of backtracking is achieved up to next
node from start node. From third node onward, wherever it is
not possible to break tie uniquely, a provision for backtracking
is kept only for tied nodes. Time complexity of algorithm is
O(n4)*B(n) in the worst case where B(n) is a factor due to
possible backtracking. It returns O(n2) in the best case and
O(n3)*B(n) on the average.

Index Terms - articulation point; complexity class; P; NP;
Hamiltonian graph; connected graph; line sweeping;
restricted backtracking

1. INTRODUCTION
The Icosian game [4], introduced by Sir William Hamilton is
known as Hamiltonian Circuit (HC) problem [7]. The objective
of the game is to visit all nodes of the graph exactly once before
returning to the initial node. In graph theoretic world, a
Hamiltonian circuit is defined as a simple cycle that contains
every vertex of graph exactly once except the first one which is
visited again at the end to complete the cycle [8]. A graph is
said to be Hamiltonian if it contains a HC else it is
nonhamiltonian. Although many graphs can be trivially
determined as Hamiltonian or nonhamiltonian even then the
problem is very complex in general. The problem of finding a
Hamiltonian cycle in an undirected graph is studied for over a
hundred years [36]. The problem “Does a graph G have a
Hamiltonian cycle?” can be defined in formal language as

HAM_CYCLE = {<G>: G is a Hamiltonian graph}
Showing existence of one Hamiltonian cycle in G is sufficient to
conclude that the graph is Hamiltonian. However, it is expected
to test all possible n! permutations of vertices before concluding
that G is nonhamiltonian. Basic properties of graph [5, 16, 38]
are used in the introduced algorithm to restrict backtracking to
the maximum possible extent and to avoid it if it can be. It is,
therefore, not always required to explore all possible n!
arrangements of vertices before concluding that a graph is

Scientist ‘D’, NIC, Block A, C.G.O Complex, Lodhi
Road New Delhi 110 003, India
E-mail: vinay.kumar@nic.in and vinay5861@gmail.com

nonhamiltonian. The following facts are taken into
consideration while developing the algorithm.
1. One edge is sufficient to cross over from one node to its

adjacent node [11]
2. Once a node is visited, it is no longer required (except the

initial node), so drop it [1].
3. A node y to visit from x can be selected using some tie

breaking rules in such a way that possibility of
backtracking to explore other possible path from x. is
drastically reduced [18, 19].

4. At any stage, if dropping of node x yields more that one
dangle node [38], and if it is not avoidable (backtracking
not possible), the graph can be concluded as
nonhamiltonian.

5. If at the end only initial node is left then graph is
Hamiltonian otherwise it is nonhamiltonian [22].

The core of the algorithm development process lies in the point
3 above. The detailed steps are outlined in section 2 of this
paper. Section 3 contains proof for the correctness of the
algorithm followed by two illustrative examples in section 4.
Section 5 deals with computational analysis of the algorithm.
Before stepping into section 2 let us see a basic concept that if
graph contains an articulation point then graph is
nonhamiltonian [24].
Let G = (V, E) be a connected undirected simple graph with |V|
= n ≥ 3, and |E| = m where m ≥ n. A graph is simple if it
contains neither loop nor multi edge [3, 26]. A graph is
connected if there is a path between every pair of nodes in it
[3]. To maintain flow of presentation, few terms like node and
vertex, edge and arc are used synonymously. In this paper, a
graph implies a simple connected graph with no articulation
point, unless otherwise stated. DFS (depth first traversal)
algorithm is used to test connectivity and non-existence of
articulation point in graph. DFS algorithm executes in
polynomial time [2, 6, 27]. An articulation point in a graph G
is a node x that, when removed from G, partitions set V into
two (or more) non empty subsets U and W such that
• U and W are disjoined, and
• No node in U is adjacent to any node in W [28].

Theorem 1: A graph G = (V, E) with an articulation point has
no Hamiltonian Circuit.
Proof: Let v be the articulation point and U and W be the two
non empty subsets of V such that
• V= U ∪ W ∪ {v},
• v ∉ U, v ∉ W and
• U ∩ W ≠ φ
Let us proof it by contradiction. Suppose G has a HC. Three
possibilities about starting node x of HC in G are (a) x = v or
(b) x ∈ U or (c) x ∈ W.
Case (a) when x =v

Restricted Backtracked Algorithm For Hamiltonian Circuit in Undirected Graph

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 230

Since G is connected, v has adjacent nodes in both U and
W. Once a node in U is visited from v, there is no way to
come to any node in W without visiting v. Similar case is
faced when a node in W is visited first. Therefore there is
no HC in G [10].

Case (b) when x ∈ U
Starting from x visit all nodes in U first, in the best case.
Then visit v then a node in W. Once in W, there is no way
to return to x because v is removed. Therefore there is no
HC in G

Case (c) when x ∈ W
It can be proved in the same way as in the case (b). ♦

Corollary 1: A graph G containing a node of degree ≤ 1 is
nonhamiltonian.
Proof: Any node y adjacent to the node x of degree one is an
articulation point in G. A node of degree zero is unreachable. ♦
Converse of the theorem that “a graph having no articulation
point is Hamiltonian” is not true. Many graphs can be presented
in the support [13, 21]. However this theorem helps in early
conclusion on the nonhamiltonian graph. Presence of an
articulation point indicates that as and when it is dropped from
the graph while traversing to find HC, it ensures that at least
two nodes are left in the current subgraph when algorithm
terminates its execution.

2. ALGORITHM
The step by step algorithm determines existence of one cycle
out of possible n! to conclude that G is Hamiltonian. Current
node x, other than initial node, is dropped when its neighbour y
is visited. While dropping x it is ensured that no backtracking to
the node x, in due course can yield otherwise result. It is
achieved by applying tie breaking rule whenever ∃ more than
one options from x. If it is not possible to break a tie, the
possible options available at that point is stored in array
BACKTRACK []. The array BACKTRACK [] is indexed on the
nodes as visited in the graph. List of currently visited nodes is
denoted by π. And nodes are referred as v1, v2, v3, …, vn in the
sequence they are visited. Before applying the algorithm, line-
sweeping [37] algorithm is executed on the graph to merge all
nodes in one linear component because all nodes in a line are
visited one after other in a sequence as per this algorithm. For
example if nodes from j to k are merged (visited) in sequence
then merged (visited) nodes are referred as <vj, vj+1, … , vj + k>.
List of articulation points is updated in the current subgraph
when a node is dropped from graph. The list of current
articulation point is referred as ARTPNT.
When a node v2 or later visited node vk is dropped from current
subgraph, start node v1 may become dangle. While counting
number of dangle nodes at any stage in the algorithm, only
intermediate nodes are taken into account but not node v1.
Let G = (V, E) be a simple graph with |V| = n, |E| = m, m ≥ n.
Initialize adjacency matrix M[n, n] as per adjacency in G. The

degree spectrum [8, 9, 12] of G is stored in one dimensional
array Degree[n].

Step 1: Select a node v1 from G such that v1 is of minimum

degree. Resolve a tie by taking node from earliest row
(or column) of matrix M. For example if nodes in
rows 5 and 10 have same minimum degree then select
node from row 5. Initialize path π to v1 and
Start_node to v1.

Start_node ← v1; π: v1
Step 2: Find a node to be visited next from start node.

Step 2.1 Create a set of all nodes adjacent to v1 and call it
NGBR – set of neighbours of Start_node.

Step 2.2 Select a node v2 from NGBR to visit next in the
following way. Resolve any tie as in Step 1.

Step 2.2.1 Pick up a node of degree two. If such node is
found then go to step 2.3 else continue to next
step 2.2.2

Step 2.2.2 Find a node that does not yield any dangle node
when dropped from graph G. If such node is
found then go to step 2.3 else continue to next
step 2.2.3.

Step 2.2.3 Find a node that yields only one dangle node
when dropped from G. If such node is found
then go to step 2.3 else skip to step 5.

Step 2.3 Initialize Current_node to v2 and extend path π
up to v2.
Current_node ← v2; π: v1 v2
Update NGBR = NGBR – {v2}
Update set ARTPNT treating Current_node as
dropped.

Step 3: Select a node vj + 1 from adjacent nodes of
Current_node vj to visit next in the following way.
Resolve a tie by ignoring the node that is in
ARTPNT. Even then if there is tie then resolve as in
Step 1, keep list of other candidate nodes at
BACKTRACK [vj] and set flag
BACKTRAK_possible as true.

Step 3.1 If number of adjacent node is one then return the
node and go to step 3.6 else remove the
Start_node from list of adjacent node, if it is in
the list, and continue to step 3.2.

Step 3.2 If there are more than one adjacent node of
degree two then go to step 5 else pick up the
node of degree two. If such node is found then
go to step 3.6 else continue to step 3.3.

Step 3.3 Find a node that is neither in NGBR nor equal to
Start_node and that does not yield any dangle
node when dropped from graph G. In case of tie
resolve it. If such node is found then go to step
3.6 else continue to next step 3.4.

Step 3.4 Find a node that is neither in NGBR nor equal to
Start_node and that yields only one dangle node

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 231

when dropped from G. In case of tie resolve it. If
such node is found then go to step 3.6 else
continue to step 3.5.

Step 3.5 Find a node from nodes not considered in step
3.3, 3.4 as below:

Step 3.5.1 Find a node that does not yield any dangle
node when dropped from G. If such node is
found then go to step 3.6 else go to step 3.5.2

Step 3.5.2 Select a node that yields one dangle node
when dropped. If such node is found then go
to step 3.6 else continue to step 5.

Step 3.6 Initialize
Prev_Cuurent_node←Current_node
Current_node← vj + 1
Extend path π up to vj + 1.
Drop Prev_Cuurent_node from graph and update
the degree of all affected nodes accordingly in G
Update set ARTPNT for the current subgraph
treating current node as dropped
Update NGBR, if required.

Step 4: Repeat Step 3 as long as visit to a neighbor is possible
else go to step 5.

Step 5: If only Start_node is left at this stage, after successive
removal of intermediate nodes, then G is Hamiltonian
Else If back track is possible (i.e.

BACKTRAK_possible is true) then
Restore the matrix by adding nodes one by one
from last visited node in π up to last index node
vk in array BACKTRACK. Then pick up first
node from list of options available in
BACKTRACK [vk] and initialize

Current_node← vk
Update set ARTPNT, NGBR and BACKTRAK_possible
flag as applicable for the latest subgraph and Repeat Step
3 as long as visit to a neighbour is possible.

Else Graph G is nonhamiltonian.

The algorithm in steps 1 through 5 ensures two things: (1) it
restricts backtracking by dropping the visited intermediate
nodes, and (2) while dropping a node it ensures that no other
path from that node shall yield different result in most of the
circumstances by using tie breaking rules. While iterating in
step 3, only remaining sub graph is taken. Algorithm terminates
when no more visit is possible i.e. even backtracking is not
feasible. A visit is not possible if there is no adjacent node to
Current_node and BACKTRAK_possible falg is false. This case
arises when there is only one node (i.e. Start_node) is left at the
end or graph is detected as nonhamiltonian at an early stage.
Two illustrations of the algorithm are given in the following
section that deals with the situation (1) when no backtracking is
required and (2) when it is really required.

3. ILLUSTRATIVE EXAMPLES

A primitive idea about working of the algorithm is shown
using a visually very simple graph in figure1. This is the case
when no backtracking is required. Represent the graph as
adjacency matrix [15, 20]. Start from a node of minimum
degree. All nodes in this graph are of equal degree 3. Without
loss of generality, let A be in the earliest row (column) and
select node A to start with. Here,

Start_node ← A;
π: A

A has three adjacent nodes B, E and M and all are of degree 3.
None of them yields any dangle node when dropped from G,
thus using step 2.2.2, we may select node B using tie breaking
rule to proceed further. Here,

Current_node ← B;
π: A B
NGBR = {B, E, M} – {B} = {E, M}
ARTPNT = {}

Now node B has two adjacent nodes C and K. Using step 3.3
select node C to proceed and following updating is done.

Prev_Cuurent_node← B
Current_node← C
π: A B C.

Drop node B from graph and update the degree of all affected
nodes accordingly in G. The set ARTPNT = {} for the current
subgraph. There is no need to update NGBR. The step by step
execution of algorithm is outlined in the table 1 below.

Figure 1

A

B

C

I

H

G
F

E D

N

M

L
K

J

O

S

R

Q

P
 T

Restricted Backtracked Algorithm For Hamiltonian Circuit in Undirected Graph

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 232

Algorithm
steps

Node Selected Current Path π: Articulation Set
ARTPNT

BACKTRACK [iteration]

1 A A
2.2.2 B A B {}
3.3 C AB C {} {K}
3.3 D ABC D {} {I}

3.3* G ABCD G {}
3.3 F ABCDG F
3.3 P ABCDGF P
3.3 T ABCDGFP T {L}
3.3 S ABCDGFPT S {L K, J}

3.4* R ABCDGFPTS R {L, K, J}
3.2 Q ABCDGFPTSR Q {L, K, J}
3.1 … ABCDGFPTSR QHIJKL {}
3.1 M ABCDGFPTSRQHIJKL M
3.2 N ABCDGFPTSRQHIJKLM N {E}
3.1 …A ABCDGFPTSRQHIJKLMN OEA

Table 1: Indicates that a tie was resolved between nodes G and E using NGBR

.At the end only one node A is left in the subgraph and hence G
is Hamiltonian. Here numbering of node has no effect on the
requirement of backtracking as long as tie is resolved as per the
algorithm. The graph in figure 2 is Hamiltonian. Backtracking

may be required in one case. Node A in this graph is of
minimum degree 2. Select node A to start with. Here,

Start_node ← A;
π: A

Node A has two adjacent nodes B and H and both are of degree
3. None of them yields any dangle node when dropped from G,
thus using step 2.2.2, we may select node B using tie breaking
rule to proceed further. Here,

Current_node ← B;
π: A B
NGBR = {B, H} – {B} = {H}
ARTPNT = {H}

Now node B has two adjacent nodes C and G. Using step 3.3,
node C is selected to proceed further with following updating.

Prev_Cuurent_node← B
Current_node← C
π: A B C.
ARTPNT = {H, F}

Drop node B from graph and update the degree of all affected
nodes accordingly in G. The set ARTPNT = {} for the current
subgraph. There is no need to update NGBR. The step by step
execution of algorithm is outlined in the table 2 below.

Algorithm

steps
Node Selected Current Path π: Articulation Set

ARTPNT
BACKTRACK [iteration]

1 A A
2.2.2 B A B {H}
3.3 C AB C {H, F} {G}
3.3 D ABC D {H, F, E, P}
3.2 G ABCD G {H, F, E, P}

Figure 2

A

GB F

E

H C D

I

P

J K

O N M

LA

GB F

E

H C D

I

P

J K

O N M

L

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 233

Algorithm
steps

Node Selected Current Path π: Articulation Set
ARTPNT

BACKTRACK [iteration]

3.1 F* ABCDG F * *
℘5 G AB G {H}
3.3 F ABG F {H, C, D}
3.3 E ABGF E {H, C, D, L}
3.3 P ABGFE P {H, C, D, L}
3.3 I ABGFEP I {H, C, D, L} {O}
3.3 J ABGFEPI J {H, C, D, L}
3.4 K ABGFEPIJ K {H, C, D, L, M, N} {M}
3.2 O ABGFEPIJ K {H, C, D, L, M, N}
3.1 …A ABGGFEPIJK ONMLDCHA

Table 2
* Dropping of the node F yields two dangle nodes E and H (other than start node).
℘ By step 5 backtracking is initiated up to node C and replacing C by G (available option at that level).

Examples demonstrate the working of the algorithm. At the end
only one node A is left in the subgraph and hence G is
Hamiltonian. The following graph in figure 3 is a
nonhamiltonian. To show this there is no need to explore
possibly all 9! permutations of 9 nodes. Just two runs are
enough to say that the graph is nonhamiltonian.

Algorithm correctness is proved in the following section.
Related theorems, lemma, propositions and definitions are
described as and when required. Obvious results are taken as
axioms without any proof.

4. PROOF OF CORRECTNESS
An adjacent node y is visited from x in such a way that a cycle
of length less than |V| does not form in the graph. The algorithm
takes a biconnected graph (connected graph without articulation
point) [14, 17] G = (V, E) as input (precondition) and outputs
(post condition) a Hamiltonian (or nonhamiltonian path) π and a
subgraph H of G with following properties:
If G is Hamiltonian

then H = (VH, EH) with |VH | = 1 and |EH | = 0
Else H = (VH, EH) with |VH | ≥ 2 and |EH | ≥ 0
Here VH is set of nodes in H and EH is set of edges in H. The
proof of correctness has two parts:

(i) Partial correctness: If the algorithm will terminate then it
will give the right result i.e. the result will satisfy the post
condition.

(ii) Termination: Proof that the algorithm terminates [24].
To prove the correctness of the algorithm, it is required to
prove the following postulates:
(a) Algorithm always finds a correct start node,
(b) It always finds a node adjacent to start node in correct

way, if available, to initiate the process of finding HC in
G,

(c) In every iteration, next node from the current node is
found, if a visit is possible otherwise program terminates,

(d) Tie breaking rules restrict (in fact reduces number of
possible) backtracking i.e. if G is found to be
nonhamiltonian at kth node, then backtracking to any of
the previously ignored node does not yield any otherwise
result.

(e) If only Start_node is left at the end then graph is
hamiltonian else it is nonhamiltonian, and

(f) Finally algorithm terminates.
In general, if G is Hamiltonian then a HC may start from any
node [35] and if G is nonhamiltonian then a cycle cannot be
completed starting from any nodes in G. There is no loss of
generality in selecting a start node based on some criteria.
Thus the proposition,
“In a Hamiltonian graph a HC begins from a node x of
minimum degree”
is true. And step 1 of algorithm selects a node of minimum
degree from G to start with. Further, a start node has at least
two adjacent nodes.
Lemma 1: ∀x deg(x) ≥ 2, where x is a node in the input graph
G.
Proof: Let y be any node in G. The graph G is biconnected so
there are at least two node disjoint paths between x and y. It
implies that ∃ distinct nodes u, v adjacent to x such that one
path from x to y goes through u and another through v.
∴deg(x) ≥ 2.♦
Corollary: The start node v1 has m ≥ 2 adjacent nodes.

Figure 3

A

F

DC EB

H

G

I

A

F

DC EB

H

G

I

Restricted Backtracked Algorithm For Hamiltonian Circuit in Undirected Graph

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 234

Let L(x) denote the set of all adjacent nodes of x then L(v1) = {y
| y is adjacent to v1}. We refer L(v1) as NGBR. Among m (≥ 2)
adjacent nodes to start node v1, the different possibilities are:
(i) all are of degree two, or
(ii) some are of degree two and other are of degree > 2, or
(iii) all are of degree > 2.
One node from NGBR is taken to leave the start node and one
other will be required to complete HC if G is Hamiltonian. In
the case of (i) and (ii), it is STEP 2.2.1 that picks up a node v2
of degree 2 to start with. However in case of (iii), the algorithm
looks one step further to make sure that once the node (to be
selected) is removed from graph, it yields not more than one
dangle node (excluding start node). The algorithm prefers in
step 2.2.2 over 2.2.3, to select a node that does not yield any
dangle node. Thus in order of precedence of steps 2.2.1, 2.2.2
and 2.2.3 (from left to right) the algorithm finds a node next to
start node yielding the post condition as below:

π : v1v2
H = G
NGBR = L(v1) – {v2}
ARTPNT = As determined.

It is obvious that algorithm finds a node next to start node. It
resolves a tie as per the criteria described in the algorithm as and
when it arises. Backtracking is restricted at this stage. It is
proved in the lemma 2 that no backtracking is required at this
level. Correctness of this step is implied from the lemma 2 and
theorem2.
Lemma 2: If G is Hamiltonian then ∀x ∈ L(v1) pre Hamiltonian
v1x leads to a Hamiltonian cycle. Proof: Let us prove it using
mathematical induction on the degree m of start node v1. It is to
be noted that start node is of minimum degree in G.

Basis Step: For m = 2, the result is obviously true.
Inductive Step: Let the result be true for m = k i.e. ∀x ∈ L(v1)
pre Hamiltonian v1x leads to a Hamiltonian cycle. Let one of
the Hamiltonian cycle be

v1x…z…y v1

where x, y ∈ L(v1). See the figure 4(a) for conceptual
visualization of Hamiltonian cycle from graph shown in figure
5(a). It is in no way to trivialize the general proof of the
lemma.

Let us add an edge from v1 to a node z in G in such a way that
degree (v1) remains minimum in G and v1 remains the start
node. Also ∀x ∈ L(v1) degree(x) > k otherwise v1 can no
longer remain minimum degree node if an edge is added from
v1 to any other node z ∉ L(v1) in G. Further, addition of an
edge in graph may make a nonhamiltonian graph Hamiltonian
but not the reverse.
Let us now remove the edge between v1 and x. Even then v1
remains one of the minimum degree node and hence the start
node. For conceptual visualization see figure 5(b).

Now again m = k and hence the result is true from the
assumption. See figure 4(b) for Hamiltonian cycle from graph
5(b). Presence of edge (v1, x) does not alter the result but only
increases the number of possible Hamiltonian cycles in G.♦
Theorem 2: If G is found to be nonhamiltonian at kth node,
then backtracking to any node x in NGBR = L(v1) – {v2}
does not yield any otherwise result.

Proof: Let deg(v1) = m (≥ 2). When m = 2, v1 has two
adjacent nodes i.e. |L(v1)| = 2 and any of the three cases
outlined above may be applicable.
When m > 2, only case (iii) is applicable. Algorithmic step
2.2.2 or 2.2.3 finds a node v2 because step 2.2.1 is not relevant.
Case 1: When m = 2. Let the two adjacent nodes be x and y
and rest of the graph be H. If both x and y are of degree two
then any one can be used to leave the start node and other is

y

v1

x

z

(a)

y

v1

x

z

(b)

Figure 5

x y

z

v1

(a)

z y

x

v1

(b) Figure 4

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 235

used to arrive at. No backtracking to y (in case x is selected) or
to x (if y is selected) can yield otherwise result.
Suppose, without loss of generality, that deg(x) = 2 and deg(y)
> 2. Instead of selecting x, refer figure 6, let node y be selected
to start with and at the kth stage it is found that x is an adjacent
node of vk then it leaves no alternative but to backtrack to the
earliest available option from vk – 1 otherwise the visit to x
shall form a cycle of length < n. On the other hand if x is
selected then y can always be ignored as it is in NGBR and
alternative node to move ahead is available. Dotted lines in the
figure 4 indicate the adjacency to y from kth node (current
subgraph H).
When deg(x) > 2 and deg(y) > 2 and both yield no dangle node
when dropped then any one can be selected to leave the start
node and other to arrive at. Same is true when both yield single
dangle node when dropped from G. When one yields no dangle
and other yields one dangle node then the first is selected to
keep wider option available at the next step and hence reducing
the number of possible backtracking later on to nodes v3 or any
node visited thereafter. It is in no way contradictory to
previous one when a node with degree 2 is preferred over other
one.
Case 2: when m > 2. Because v1 is of minimum degree
therefore ∀x ∈ L(v1), deg(x) > 2 and algorithmic step 2.2.2 is
applicable to select a node v2. Obviously at this stage no node x
can yield any dangle node. Tie is broken as per the coding of
adjacency matrix M for G. Correctness follows from lemma
2.♦

After proving the correctness of step 2, it is turn to show the
correctness of step 3 and 4 of algorithm. Let vk be the current
node visited at the Kth iteration. It is essential to establish that in
a Hamiltonian graph ∃ no valid current node vk such that it is
adjacent to more than one node of degree 2, and, backtracking
from it is not possible. This excludes the start node. A current
node is taken in context of the present subgraph H of G after
successive removal of the visited nodes. A current node is said
to be valid if and only if it either leads to a Hamiltonian cycle
(possibly with backtracking) or helps in concluding that graph
is nonhamiltonian at that stage itself. The hypothesis is proved
in Lemma 3 and the hypothesis that a valid current node has at
least one adjacent node in a Hamiltonian graph is proved in
Lemma 4.
Lemma 3: In a Hamiltonian graph a valid current node cannot
be adjacent to n > 1 nodes of degree 2, excluding start node.

Proof: Let the current node be vk and y and z be two adjacent
nodes of vk such that both are of degree 2 none is equal to v1.
Node vk is dropped once its neighbour is visited. It causes the
degree of y and z reduced to one. While arriving at v1 in order
to complete the HC either y or z is left out. This is
contradiction to the assumption that graph is Hamiltonian.♦
Lemma 4: A valid current node has at least one adjacent node
in the current sub graph in a Hamiltonian graph.
Proof: Let vk be the current node in the current subgraph H of
G. Lemma 1 and lemma 3 imply that every node is of
minimum degree two. Let y and z be two such adjacent nodes
to vk. If vk is visited before visiting both y and z, or vk is
visited after y but before z or vice versa then the result is
obvious. In the case when vk is visited possibly after visiting y
and z both, then in order to complete HC in G, there must be
another arc as exit route from vk and hence an adjacent node.♦
Let L(vk) = {y | y is adjacent to current node vk}. A node y =
vk+1 ∈ L(vk) is taken to visit next using step 3 and step 4 of the
algorithm. Step 3.1 does not leave any option whereas step 3.2
is preferred because of reason proved in case 1 of theorem 2.
Backtracking at 3.2 is restricted because selection of any node

x ∈ L(vk) – {y | y ∈ L(vk) and degree(y) = 2}
would make y dangle. Correctness of the step 3.1 and 3.2 is
implied from lemma 3. Again from second part of case 1 of
theorem 2, step 3.3 is preferred over 3.4. Since current node
may not satisfy the condition of minimum degree node of
original graph G, a provision of possible backtracking is kept
wherever tie breaking is not possible. Precedence and
correctness of the steps is implied from lemma 2 and 3.
Step 3.5 finds node from NGBR which are possibly available
and not considered in step 3.3 and 3.4 in order to ensure that a
cycle of length < n is not formed prematurely. This step is
executed if it is not possible to find a node in 3.3 or 3.4.
Correctness of precedence of steps in order of 3.1, 3.2, 3.3, 3.4,
3.5.1 and 3.5.2 is derived from Lemma 2, 3 and theorem 2.
After selection of a node in step 3, the post condition is:

π : v1v2 v3 ... vk+1
H = H – {vk}
NGBR = L(v1) – {vk+1}
ARTPNT = As determined.
BACKTRACK [vk+1] = {x | x ∈ L(vk) and x satisfies

criteria of 3.3 or 3.4 based on
which vk+1 has been selected to
move on.}

A node y selected in step 3.5 is from NGBR only. It implies
that current node vk has more than one adjacent nodes and
degree(y) > 2 otherwise it would have been selected in either
step 3.1 or step 3.2. It further implies that there is no non
NGBR node adjacent to vk that satisfies 3.3 and 3.4. If there
exists more than one nodes satisfying 3.5.1 or 3.5.2 then a
node is selected without noting the tied node for backtracking
later on. It is implied from lemma 2 that backtracking to any

vk

v1

x

H

y

v1

x

H

y

Figure 6

Restricted Backtracked Algorithm For Hamiltonian Circuit in Undirected Graph

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 236

node latter on does not yield any otherwise result. This
provides the proof for postulate (d). The proof of the next
postulate (e) is given in theorem 3.
Theorem 3: A graph G is Hamiltonian, if and only if only start
node is left at the end of the execution of the algorithm.
Proof: If only start node v1 is left at the end of the execution of
the algorithm then G is Hamiltonian:
If the algorithm terminates with one node v1 left subgraph H, it
ensures that all intermediate nodes have been visited and
subsequently removed. It proves that all nodes starting from
the start node have been visited exactly once before finally
arriving at start node, therefore forming a HC.
If G is Hamiltonian then only start node is left at the end of the
execution of the algorithm:
From lemmas 3 and 4, it is always possible to find an adjacent
node to currently visited node in a Hamiltonian graph using the
algorithm. Thus at the end only start node v1 is left when
algorithm successfully terminates.♦
Corollary: If more than one node is left when algorithm
terminates then G is nonhamiltonian.
Proof: This can be proved by method of contra positive. The
‘only if’ part of theorem 3 may be stated contra positively as “If
not ‘only start node is left at the end of the execution of
algorithm’ then graph is not Hamiltonian’”. It can be further
stated in simplified language as “if more than one node is left
when algorithm terminates then G is nonhamiltonian". Proof is
obvious from second part of theorem 3.♦
The important thing for any algorithm is not only to find a
correct solution when it exists but to terminate after a finite
number of steps in every case. The loop due to step 4
terminates when either or both of the following conditions are
met.
i) Number of nodes in the leftover current sub graph is

reduced to 1, or/and
ii) No suitable node is found to visit next.
In case (ii) the loop due to step 4 is possibly restarted subject to
availability of a node to backtrack. Now it remains to prove that
the algorithm terminates in all cases. It is implied from lemma
3 and 4 that the algorithm always returns a node to visit next
from the current node if a graph is Hamiltonian. Whenever a
valid node is returned to visit next, the number of nodes in the
graph is reduced by 1. At the end, the subgraph contains start
node only. The step 4 terminates and algorithm goes to step 5.
‘If’ part of this step ensures the termination.
On the other hand, if a graph is nonhamiltonian then the
algorithm goes to step 5 either from 2.2.3 or from 3.5.2. In case
of step 2.2.3 there is no possibility of backtracking and hence
number of nodes left at that time is > 2. Whereas if control is
transferred to step 5 from 3.5.2 then either backtracking is
possible to step 3 or it is not possible. In former case, the loop
at step 3 and 4 is restarted from a node stored at step 3.3 or 3.4.
The node considered once is not considered again for
backtracking and therefore ultimately ensures termination of
algorithm. This is ensured by step 5. In the latter case the
algorithm terminates there.

5. ANALYSIS OF THE ALGORITHM
Determining time complexity of an algorithm requires
derivation of an expression that finds number of steps needed
to complete the task as a function of the problem size n and is
to be considered modulo a multiplicative constant [25, 29].
Objective of this section is to compute time complexity of the
algorithm in best, worst and average cases [32, 33, 34]. The
computation takes into consideration possibility of
backtracking in case of tie breaking rules become insufficient.
The algorithm consists of the following major components.
(i) Step 1 and Step 2 are executed once and in sequence.
(ii) Step 3 and step 4 are repeated (n – 2) times.
(iii) Step 5 may force back tracking.
Time complexity of algorithm depends upon number of nodes
n and edges e in G [30, 31]. Step 1 finds start node and it
executes in O(n2) times. Step 2 is executed once and in
sequence with step 1. Let time complexity of the step 2 be f(n)
to be computed later. Next step 3 and 4 are repeated n times.
Let its time complexity be h(n) to be computed later. Hence,
the time complexity H(n), of the algorithm is

)1.....(..........).........(*))((()()()(2 nBnhnOnfnOnH ∗++=
Here B(n) is a time complexity function due to possible
backtrack. There are three sub steps within step 2. Step 2.1
computes set NGBR. The set union operation is of O(1) as it
simply appends a node adjacent to Start node to set NGBR.
Append operations may be executed at the most (n – 1) times
when all other nodes are adjacent to start node i.e. when graph
is complete. Matrix encoding of the graph ensures that no
checking of prior presence of a node is required before putting
the node in NGBR. Thus step 2.1 if of O(n).
Within step 2.2, 2.2.1 is of O(n). Step 2.2.2 and 2.2.3 can be put
within a loop that executes in O(n2) time complexity. Thus step
2.2 is of O(n2). In step 2.3, set difference operation

NGBR = NGBR – {Current_node}
is performed in O(n) times. Existence of an articulation point in
a graph is determined by applying depth first traversal (DFS)
algorithm, which of order of number of edges in the graph i.e.
O(n2) in the worst case. Therefore,

)2.....(..).........2n(

)2()2()()(

O

nOnOnOnf

=

++=

Turning to step 3, it is repeated n, in fact (n – 1) times due to
step 4. It contains six sub steps. In order to initiate the task a list
of adjacent nodes is constructed which is of O(n). Then from
3.1 to 3.6 steps are executed in sequence. Step 3.1 and 3.2 are
of O(1) and O(n) respectively. Step 3.3 and 3.4 are of O(n3).
Tie, if any, is broken in O(n) and BACKTRACK list is updated
in O(1) and that too in sequence, therefore step 3.3 and 3.4
remains of O(n3).
Next Step 3.5 is of O(n) average case as number of such node
shall be minimum. However in worst case it may be of O(n2).
Step 3.6 performs all tasks that step 2.3 performs. In addition to
that step 3.6 drops the node just previously visited. The task is
performed in O(n) time. Thus, step 3.6 is of O(n2). Time
complexity h(n) of step 3 and 4 therefore can be written as

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 237

)3.....(..).........3n(

)2()3()()(

O

nOnOnOnh

=

++=

Substituting values (2) and (3) in equation (1), the complexity
H(n) is O(n4 *B(n)). The B(n) factor is applicable when
backtracking is unavoidable from third node onward. Though
backtracking is required to a few (one or two) nodes in a few
graphs, statistically, even then it can not be overlooked in the
worst case.
In the best case, if every node is adjacent to a few nodes e.g.
two or three, then f(n) and h(n) are of order n and hence H(n) is
of O(n2). In general, number of adjacent nodes decreases as the
algorithm progresses. This happens because of removal of
intermediate nodes. In a complete graph, it will be (n – 1), then
(n – 2), then (n – 3) and so on. And towards the end, it will be
4, 3, 2 and finally left with one. Therefore while computing f(n)
and h(n), steps 3.3 and 3.4 are considered for (n – 1)(n – 2) then
for (n – 2)(n – 3) and so on up to 3*2, 2*1 times. The average
number of time then steps 3.3 and 3.4 are executed is

)(1

1*22*3....)3)(2()2)(1(

2
1

2

1

2

2 nOii
n

n
nnnn

n

i

n

i

=

+=

+++−−+−−
=

∑∑
−

=

−

=

Considering call to set membership function, h(n) shall return a
complexity of O(n3) and f(n) of O(n2). If gradual removal of
nodes are taken into consideration then algorithm may not enter
into nested loop like construct of 3.3 and 3.4 all the times. In
this case h(n) and f(n) shall return complexity of O(n) for some
node. If about 50% call enter into nested loop and remaining
return without entering into it then amortized analysis yields
time complexity of O(n2) for h(n). It means H(n), the
complexity of the algorithm, is of O(n3*B(n)) from equation (1)
in average case.

6. CONCLUSION
The algorithm presented in the paper has been tested on large
number of graphs varying from simple to very complex up to
the tune of 300 nodes. The algorithm is programmed in C
language and adjacency matrix is used as data structure to store
graph. A graph is pre-processed using line-sweeping [37]
algorithm, to merge all nodes in a linear component. It is found
that the algorithm executes in polynomial time in most of the
time. Number of backtracking required is almost negligible.
But unless the algorithm is improved to completely prevent the
backtracking from third node onward, it can not be claimed of
the polynomial time.
The gist of algorithm is to visit next node, prune the graph by
dropping the visited intermediate node as and when its
neighbour is visited. While selecting the neighbour to visit
next, it is ensured that no backtracking to the current node will
be needed in many cases to confirm the result. Wherever there
is absolutely no way to break the tie, provision to keep the
option open for backtracking is made. Number of nodes to be

explored, next, is reduced at every step due to pruning. This
reduces the complexity of the algorithm from n! to polynomial
of degree 3. In worst case, when backtracking is required, the
complexity calculation is generalized to non polynomial.
The presented algorithm may be further improved to evolve tie
breaking rule(s) to prevent backtracking in steps 3.3 and 3.4. If
it so happens, it might be a breakthrough in the field of graph
algorithm and theory of algorithmic complexity. The algorithm
presented may find its application in many areas. The author of
this paper is using it in steganographic technique using graph
theoretic approach.

7. ACKNOWLEDGEMENT
I am thankful to my friends and students who occasionally
come to me for guidance in Discrete Mathematics, Theory of
Computation and Analysis & Design of Algorithms. I am
grateful to all those who constantly encouraged me to go for
such academic work besides the work which I am doing in
NIC. I remain indebted to my teachers and colleagues who
have supported in many ways in completing the work. At the
last but not the least, I place my sincere thanks to all
anonymous referees/reviewers who gave very critical
judgement and suggestions to improve upon algorithm and
overall presentation of the paper.

REFERENCES
[1]. A. M. Frieze, “Limit Distribution for the Existence of

Hamiltonian Cycles in a Random Bipartite Graph”,
European Journal of Combinatorics (1985) 6, 327-334.

[2]. Akiyama, Takanori, Nishizeki, Takao and Saito, Nobuji,
NP-completeness of the Hamiltonian cycle problem for
bipartite graphs. J. Inf. Process. v3 i2. 73-76.

[3]. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,
1974, The Design and Analysis of Computer Algorithm,
Addison-Wesley.

[4]. Berge C. 1962, Theory of Graphs and its Application,
Methuen Press.

[5]. Berge, Graphs and Hypergraphs, Elsevier Science Ltd,
1985.

[6]. Bertossi, Alan A., Finding Hamiltonian circuits in proper
interval graphs. Inform. Process. Lett. v17 i2. 97-101.

[7]. Bertossi, Alan A., The edge Hamiltonian path problem is
NP-complete. Inform. Process. Lett. v13 i4-5. 157-159.

[8]. Bollob~s, 'Almost all regular graphs are Hamiltonian',
European Journal of Combinatorics 4 (1983) 311-316.

[9]. Chvátal, V., Hamiltonian cycles. In: Wiley-Intersci. Ser.
Discrete Math, Wiley, Chichester. pp. 403-429.

[10]. Corneil, D.G., Lerchs, H. and Stewart Burlingham, L.,
Complement reducible graphs. Discrete Appl. Math. v3.
163-174.

[11]. E. Shamir, 'How many edges are needed to make a
random graph Hamiltonian?' Combinatorica (1983).

[12]. G. A. Dirac, 1952, Some theorems on abstract graphs,
Proc. London. Math. Soc.2.

Restricted Backtracked Algorithm For Hamiltonian Circuit in Undirected Graph

Copy Right © BIJIT – 2010; July – December, 2010; Vol. 2 No. 2; ISSN 0973 – 5658 238

[13]. Garey, M.R., Johnson, D.S. and Endre Tarjan, R., The
planar Hamiltonian circuit problem is NP-complete.
SIAM J. Comput. v5 i4. 704-714.

[14]. Haiko Müller, Hamiltonian circuits in chordal bipartite
graphs, Discrete Mathematics, v.156 n.1-3, p.291-298,
Sept. 1, 1996

[15]. Itai, Alon, Papadimitriou, Christos H. and Szwarcfiter,
Jayme Luiz, Hamilton paths in grid graphs. SIAM J.
Comput. v11 i4. 676-686.

[16]. J. A. Bondy and U.S.R. Murty, 1976, Graph Theory with
Applications, North-Holland.

[17]. J. Blazewicz , A. Hertz , D. Kobler , D. de Werra, On
some properties of DNA graphs, Discrete Applied
Mathematics, v.98 n.1-2, p.1-19, Nov. 15, 1999.

[18]. Jacek Błazewicz , Marta Kasprzak, Complexity of DNA
sequencing by hybridization, Theoretical Computer
Science, v.290 n.3, p.1459-1473, 3 January 2003.

[19]. Jacek Blazewicz , Marta Kasprzak, Computational
complexity of isothermic DNA sequencing by
hybridization, Discrete Applied Mathematics, v.154 n.5,
p.718-729, 1 April 2006.

[20]. Jan van Leeuwen, 1990, Handbook of theoretical
computer science, MIT Press.

[21]. Jitender S. Deogun , George Steiner, Polynomial
Algorithms for Hamiltonian Cycle in Cocomparability
Graphs, SIAM Journal on Computing, v.23 n.3, p.520-
552, June 1994 [doi>10.1137/S0097539791200375].

[22]. Karp, Richard M., Reducibility among combinatorial
problems. In: Complexity of Computer Computations
(Proc. Sympos., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y, 1972), Plenum, New York. pp.
85-103.

[23]. Knuth, D. E., 1973, The art of Computer Programming,
vol 1, Fundamental algorithm, Addison-Wesley
Publishing Company.

[24]. Lawler, Eugene L., Combinatorial Optimization:
Networks and Matroids. 1976. Holt, Rinehart and
Winston, New York.

[25]. Lewis, Harry and Christos Papadimitriou, 1978, “The
efficiency of algorithms, Scientific American”, 238:96-
109.

[26]. M. Held and R. M. Karp, ' A dynamic programming
approach to sequencing problems', SIAM Journal on
Applied Mathematics 10 (1962) 196-210.

[27]. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
simplified NP-complete problems. Proceedings of the
sixth annual ACM symposium on Theory of computing,
p.47-63. 1974.

[28]. Mark Keil, J., Finding Hamiltonian circuits in interval
graphs. Inform. Process. Lett. v20 i4. 201-206.

[29]. Michael R. Garey and David S. Johnson (1979).
Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman. ISBN 0-7167-1045-5.
A1.3: GT37–39, pp.199–200.

[30]. Karp, R. M., & Steele, J. M. (1985). Probabilistic
analysis of heuristics. In The Traveling Salesman
Problem, pp. 181-205. John Wiley & Sons, Essex,
England.

[31]. Rubin, Frank, "A Search Procedure for Hamilton Paths
and Circuits'". Journal of the ACM, Volume 21, Issue 4.
October 1974.

[32]. Selmer Bringsjord & Joshua Taylor, P = NP,
Department of Cognitive Science, Department of
Computer Science, RAIR Lab, RPI, Troy, NY

[33]. Sipser, M. 1992, The history and status of the P verses
NP question, in Proceedings of the 24th Annual ACM
Symposium on the Theory of Computing, pp 603-618.

[34]. Stephen Cook, 2000, The P versus NP Problem, Official
Problem Description, Millennium Problems, Clay
Mathematics Institute.

[35]. T.I. Fenner and A.M. Frieze, 'on the Existence of
Hamiltonian Cycles in a Class of Random Graphs',
Discrete Mathematics 45(1983) 301-305.

[36]. Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, 1998, Introduction to Algorithms, PHI.

[37]. Vinay Kumar, and Sharma, V. (2006) ‘Overcoming 64kb
data size limit in handling large spatial data in GISNIC
while cleaning and building topology’, Int. J. Information
Technology and Management, Vol. 5, No. 1, pp.77–86.

[38]. Vinay Kumar, 2002, Graph Theory, Chapter 7, Discrete
Mathematics, Ed 1, BPB Publication, New Delhi, India.

