
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi

Copy Right © BIJIT – 2009; July – December, 2009; Vol. 1 No. 2; ISSN 0973 – 5658 107

Solving Sequence Alignment Problem using Pipeline Approach
Pankaj Agarwal1 and S. A. M. Rizvi2

Abstract - This paper presents two models based on pipeline
approach for determining pair-wise sequence alignment of two
molecular sequences. One of the models considers a variation
of Needleman-Wunsch method as a basic algorithm and other
is based on the use of scoring matrix for alignment. The basic
purpose of using the pipelines is to reduce the time-complexity
of alignment significantly. Paper also discusses the design &
implementation of the basic linear version of the algorithms in
our software tool by the name “Sequence Comparison and
Analysis Tool [SCAT]”. Our tool also provides the option of
sequence alignment on the basis of common grouping like
chemical, functional & structural etc. The software tool is
implemented using Visual Basic-6 package with user-friendly
windows environment.

Index Terms - Sequence Alignment, Pipeline, Needleman-
Wunsch Algorithm, Scoring Matrix etc.

1. INTRODUCTION
Sequence comparison can be defined as the problem of finding,
which parts of the sequences are similar and which parts are
different [1,4,5]. It is regarded as the building block for many
other, more complex problems such as multiple alignments (the
comparison of a group of related sequences) and the construction
of phylogenetic trees that explain the evolutionary relationship
among species. Sequence comparison is actually a well-know
problem in computer science. For the computer scientist,
bimolecular sequences are just another source of data. Indeed,
one that has experienced a tremendous growth in interest to the
point that it has spawned an interdisciplinary field of its own;
generally know as bioinformatics, computational molecular
biology or just computational biology [4,5]. As biological
databases grow in size, faster algorithms and tools are needed [6-
15].
Our interest is to identify similarities and differences between
two sequences by comparing them with each other. Generally, a
measure of how similar they are is also desirable. A typical
approach to solve this problem is to find a good and plausible
alignment between the two sequences. If two sequences in an
alignment share a common ancestor, mismatches can be
interpreted as point mutations and gaps as indels (that is,
insertion or deletion mutations) introduced in one or both
lineages in the time since they diverged from one another. The
objective is to match identical subsequences as far as possible.
An alignment can bee seen as a way of transforming one
sequence into the other. Once the alignment is produced, a score
1Asst. Professor, Krishna Institute of Engineering and
Technology, Department of Computer Science and Engineering,
Ghaziabad, U.P
2Associate Professor, Department of Computer Science, Jamia
Millia Islamia Central University, New Delhi

can be assigned to each pair of aligned letters, called aligned
pair, according to some chosen scoring scheme such as PAM and
BLOSUM [4,5] that take into account physicochemical
properties or evolutionary knowledge of the sequences being
aligned.
Computational approaches to sequence alignment generally fall
into two categories: global alignments and local alignments.
Calculating a global alignment is a form of global optimization
that "forces" the alignment to span the entire length of all query
sequences. By contrast, local alignments identify regions of
similarity within long sequences that are often widely divergent
overall. Local alignments are often preferable, but can be more
difficult to calculate because of the additional challenge of
identifying the regions of similarity.

2. BACKGROUND
In our proposed method we have applied a multi-Pipeline
approach to the standard global alignment algorithm referred as
Needleman-Wunsch method. So let us first understand the
working principle behind Needleman-Wunsch algorithm [2]. It
computes the similarity between two sequences A and B of
lengths m and n, respectively, using a dynamic programming
approach. Dynamic
Pogramming is a strategy of building a solution gradually using
simple recurrences [3]. The key observation for the alignment
problem is that the similarity between sequences A[1..n] and
B[1..m] can be computed by taking the maximum of the three
following values:

1. The similarity of A[1..n −1] and B[1..m −1] plus the score of

substituting A[n] for B[m];
2. The similarity of A[1..n −1] and B[1..m] plus the score of

deleting aligning A[n];
3. The similarity of A[1..n] and B[1..m −1] plus the score of

inserting B[m].
From this observation, the following recurrence can be derived:
match (A[1..i], B[1..j]) = match (A[1..i −1], B[1..j −1]) + sub (
A[i], B[j]);
max{match (A[1..i −1], B[1..j]) + Del (A[i]);
match (A[1..i], B[1..j −1]) + Ins (B[j]) }
Where match (A, B) is a function that gives the similarity of two
sequences A and B, and sub (a, b), Del (c) and Ins (c) are scoring
functions that give the score of a substitution of character ‘a’ for
character ‘b’, a deletion of character ‘c’, and an insertion of
character ‘c’, respectively.
This recurrence is complete with the following base case:
match (A[0], B[0]) = 0; where A[0] and B[0] are defined as
empty strings.
To solve the problem with this recurrence, the algorithm
generally builds an (n +1) × (m +1) matrix where each M[i, j]
represents the similarity between sequences A[1..i] and B[1..j].
The first row and the first column represent alignments of one

Solving Sequence Alignment Problem using Pipeline Approach

Copy Right © BIJIT – 2009; July – December, 2009; Vol. 1 No. 2; ISSN 0973 – 5658 108

sequence with spaces. M[0, 0] represents the alignment of two
empty strings, and is set to zero. All other entries are computed
with the following formula:
M[i, j] = M[i −1, j −1] + Substitute (A[i], B[j]); // if A[i]=B[j]
 Max{ M[i −1, j] + Del (A[i] ; M [i, j −1] + Ins (B[j] }
// if A[i]<>B[j]
The matrix can be computed either row by row (left to right) or
column by column (top to bottom). In the end, M[n, m] will
contain the similarity score of the two sequences. Since there are
(m+1) · (n+1) positions to compute and each take a constant
amount of work, this algorithm has time complexity [3] of O(n2).
Clearly, it has also quadratic space complexity since it needs to
keep the entire matrix in memory.
Once the matrix has been computed, the actual alignment can be
retrieved by tracing a path in the matrix from the last position to
the first. The trace is a simple procedure that compares the value
at each M[i, j] to the values of its left, top and diagonal entries
according to the formula given above. For instance, if M[i, j] =
M [i, j −1] + Ins (B[j]), the trace reports an insertion of
character B[j] and proceeds to entry M[i, j −1]. Alternatively,
pointers can be saved on each entry during the computation of
the matrix so that this evaluation step can be avoided at the cost
of more memory usage. Since the path can be as long as O(m +
n), this procedure has linear time complexity. Note that
sometimes more than one path can be traversed and, as a result,
multiple high-scoring alignments can be produced. In the matrix
of Figure 1, two optimal alignments can be retrieved
A = A C A A G A C A G – C G T
 | | | | | | | | |
B = A G A A C A – A G G C G T
It is often useful to see the dynamic programming solution for
the sequence alignment problem as a directed weighted graph
with (n +1) × (m +1) nodes representing each entry (i, j) of the
matrix, and having the following edges:
• ((i −1, j −1), (i, j)) with weight equals to sub (A[i], B[j]);
• ((i −1, j), (i, j)) with weight equals to Del (A[i]);
• ((i, j −1), (i, j)) with weight equals to Ins (B[j]);
A path from node (0, 0) to (n, m) in the alignment graph
corresponds to an alignment between the two sequences, and the
problem of retrieving an optimal alignment is converted to the
problem of finding a path in the graph with highest weight.
Needleman-Wunsch method works fine for short sequences but
for longer sequences the performance of the algorithm degrades
quite considerably due to its O(n2) behavior. Our proposed
method improves the time complexity to O(n) which is a
significant improvement.

3. PROPOSED METHODOLOGY
Problem 3.1: Sequence Alignment of two molecular
sequences
In recent years use of parallel algorithms and methods [18,19,20]
has gained a lot of attention by researchers particularly in the
area of sequence comparison related problems in molecular
biology. We have proposed a multi-Pipeline strategy with two-
stages per pipeline for alignment of two sequences. A delay of
one unit time is inserted in each of the successive pipelines as

each next pipeline is data dependent on its previous pipeline and
thus delay enables the availability of data for each successive
pipeline. Thus pipelines do not work concurrently with each
other; rather they follow a sequential order while execution i.e.
with the start of initial clock pulse pipeline-1 comes into play; at
the second clock pulse pipeline-2 takes off and in similar fashion
each of the other pipelines starts in successive clock pulses
following a delay of one unit every time.
In spite of this forced delay of one unit in each successive
pipeline time-complexity of the algorithm improves significantly.
The computation involved in the two stages employed in each
pipeline is given below with a general assumption that each stage
consumes one unit of cycle time.
The time complexity of the general algorithm given as below will
take O(m*n) which becomes quite significant as the size of the
sequences grows and thus is not feasible at all.
For i=1 to m
 For j= 1 to n
 If A[i]=B[j] then
 M[i,j]=M[i-1,j-1]+Sub[A(i),B(j)],
 Else
 M[i,j]=Max{M[i-1,j]+Del[A(i)], M[i,j-1]+Ins[B(j)}
Consider two short sequences
ACAAG-------------length 5
AGAAC-------------Length 5
We need to compute M[5,5]
M[0,j] and M[i,0] are initialized
Figure 3 shows the result of applying the general algorithm
which in this case will take 25 units of time to align two
sequences each of length 5. Figure 4 shows how the matrix of
order O (m*n) is filled by applying the proposed method
allowing a delay of one unit at the beginning of each pipeline.
Use of five pipelines has been depicted. Clearly there is
significant improvement in the time complexity where it only
takes 10 units of cycle-time to complete the process. In general
the time complexity can be given as O(c*n) where ‘c’ is a
constant term which is a very significant improvement over
O(m*n)
Figure 5 given above shows the general architecture of the
proposed pipeline-model with N functional units including Fetch
units [Fi], Decoders [Di], Execution unit with Adders [Ai],
Comparators [Ci] and Storage units [Si]

Problem 2: Determining the longest Continuous Subsequence
with no gaps in given two sequences.
Some times we are more interested in finding the longest
conserved region from two given molecular sequences. The
proposed model based on pipeline approach is an attempt to
solve the above stated problem. Again we propose a two stage
multi-Pipeline model. Input to the pipeline is two DNA
sequences which are converted in all the six-reading frames into
corresponding protein sequences and thus resulting in six pairs of
amino acid sequences. For each of the sequence pairs; matrix of
order m*n is constructed based on some scoring matrix where m
& n are the lengths of the sequences respectively.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; July – December, 2009; Vol. 1 No. 2; ISSN 0973 – 5658 109

Here we have proposed the use of six-pipelines each with two
stages where all the six pairs of obtained sequences are input to
one pipeline. All the six-pairs of sequences can be aligned
concurrently with each other and thus improving the time
complexity significantly. Figure 9 shows how the pipeline works
for the given prepared matrix in figure 7.
Traditional algorithms would have taken O(6*n*m) time in the
worst case and even the best algorithm would have taken O(6*n)
time-complexity. However our strategy provides a better time
complexity of O(n) in the worst-case with some overhead on the
required resources in the form of multiple functional units. This
is indeed a very significant improvement. Method does require
the existence of multiple functional units like loaders, adders etc.
All the six pairs of obtained sequences can be mapped on to the
six pipelines simultaneously as shown in figure 9 (here we have
not shown the six pairs of obtained sequences converted in all the
six reading frames). Scoring matrices are constructed for each
pair of all the six sequences where values in the matrix are
identified by the taken variables aij , bij, cij, dij, eij and fij. Each of the
pipelines has global variables by the names Si, Ti, Qi, Wi, Xi and
Zi respectively that computes the sum starting from the residues
positions ai1 to aik for each of the six sequences. Then we look for
the maximum of the obtained sum values in each of the sequence
pairs. For example in the above taken sample sequence the sum
S2=S2+a21 + a32 + a43 + a54=10+7+6+8=31 is the maximum sum
among the sum values S1, S2, S3, S4, and S5.
The best alignment corresponding one of the obtained pairs of
sequences (one of the six reading frames) is a21, a32, a43, a54 i.e. at
pipeline 1.
 D A L T N
 | | | |
T D A L T
Where aligned characters are marked by pipe symbols. Similarly
the alignment for the other pairs of sequences can be obtained
simultaneously reducing the time complexity of the algorithm
significantly.
Xi and Zi respectively that computes the sum starting from the
residues positions ai1 to aik for each of the six sequences. Then we
look for the maximum of the obtained sum values in each of the
sequence pairs.]

4. IMPLEMENTATION
Here we have shown the screen formats of the implementation of
the linear versions of the presented algorithms in our tool named
as ‘Sequence Comparison and Analysis Tool’. The tool actually
provides the solution to number of sequence comparison
problems prevalent in molecular biology. Figure 10 show the
interface that captures all the input details for aligning two
sequences. As it can be seen sequence alignment can be done in
four ways i.e. between nucleotide-to-nucleotide, nucleotide to
proteins, Proteins to proteins and proteins to nucleotide. For a
given input DNA sequence, one can not only consider it’s upper
& lower strands but also the reverse strand in either case.
Alignment can be done for all the sequences obtained in six
reading frames. Both the local and global alignments are
possible. One can also provide the values for residue match

mismatch and gap value. A number of algorithms including
standard and self developed {algorithms are a part of our
research papers already published in various journals and
conferences [21-27] } are implemented in our tool (description of
these algorithms are beyond the scope of this paper). One can
align the sequences based on various scoring matrices also such
as PAM & BLOSUM . Four types of alignment have been
considered i.e. exact alignment, gap alignment, alignment based
on groupings and ends-free alignment. Result window is quite
user-friendly showing the alignment score and % of matched
residues.

5. CONCLUSIONS AND FUTURE WORK
The proposed models can be easily implemented on parallel
computers with multiple functional pipelines and will improve
the time complexity of aligning the sequences. Assumption of
multiple pipelines and functional unit improves the time
complexity of the standard algorithms quite considerably from
O(n2) to O(n). The most significant part of the algorithm is its
ability to align more than one pair of sequences simultaneously
with no additional overhead. Use of data-flow computers can be
quite useful for the discussed sequence alignment problem and
can provide even a better solution for sequence comparison types
of jobs. we hope to come up with a better solution in our next
paper by using the strategy data flow computing.

6. REFERENCES
[1] Apostolico, A. and R. Giancarlo, “Sequence Alignment in

Molecular Biology”, Purdue University Technical Report,
PURDUE CS TR 95-075, 1975.

[2] Needleman, S. B. and C. D. Wunsch, “A General
Method Applicable to Search for Similarities in the
Amino Acid Sequence of Two Proteins”, Journal of
Molecular Biology, 48:443-453, 1970.

[3] Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein,
“Introduction to Algorithms”, Second edition, MIT Press,
2001.

[4] Lesk, A., “Computational Molecular Biology”, Oxford
University Press, 1988.

[5] Setubal, J. C. and J. Meidanis, “Introduction to
Computational Molecular Biology”, PWS Publishing
Company, 1997.

[6] Altschul, S., W. Gish and W. Miller, E. W. Myers and D.
Lipman, “A Basic Local Alignment Search Tool”, J.
Molecular Biology, 215:403-10, 1990.

[7] Masek, W.J., and M.S. Paterson, “A faster algorithm for
computing string edit distances”, J. Comput. Syst. Sci., 20,
18{31 (1980).

[8] Sheik, S. S., Aggarwal, S. K., Poddar, A., Balakrishnan, N.
and Sekar, K., “A FAST pattern matching algorithm.” J.
Chem. Inf. Comput. Sci., 2004, 44, 1251–1256.

[9] Charras, C. and Lecroq, T., Handbook of Exact String
matching algorithms (available at the website: http://www-
igm.univ-mlv.fr/ ~lecroq/string/).

[10] Needleman, S.B. and C.D. Wunsch, “A general method
applicable to the search of similarities in the amino acid

Solving Sequence Alignment Problem using Pipeline Approach

Copy Right © BIJIT – 2009; July – December, 2009; Vol. 1 No. 2; ISSN 0973 – 5658 110

sequences of two proteins”, J. Molec. Biol. 48(1970) 443-
453.

[11] Smith, T.F. and M.S. Waterman, “Identification of common
molecular subsequences”, J. Molecular Biology; 147
(1981) 195-197.

[12] Hirschberg, D.S. “A Linear Space Algorithm for computing
maximal Common Subsequences”. CACM V18 No6 p431-
343 1975.

[13] Myers, E. W. “An O (nd) Difference algorithm and its
variations“ Algorithmica, vol.2, 1986, pp.251-226.

[14] Edmiston, E.W., Core, N.G., Saltz, J.H and R.M. Smith,
“Parallel processing of biological Sequence Comparison
Algorithms”, Internet. J. Parallel Programming 17(3)
(1988) 259-275.

[15] Delcher, A.L. et al.(2002). Fast Algorithms for Large scale
Genome Alignment and Comparison. Nucleic Acids
Research, Nuclei Acids Research, 30(11), 2002, pp.2478-
2483

[16] Gusfield, D., Algorithms on Strings, Trees, and
Sequences, Cambridge University Press, 1997.

[17] Durbin, R., S. Eddy, A. Krogh and G. Mitchison,
Biological Sequence Analysis, Probabilistic Models of
Proteins and Nucleic Acids, Cambridge University Press,
1998.

[18] Huang, X. “A space-efficient Parallel Sequence
Comparison algorithm for a message-passing
multiprocessor”, Internat.J. Parallel Programming 18(3)
(1989) 223-239.

[19] Edmiston, E.W., Core, N.G., Saltz, J.H and R.M. Smith,
“Parallel processing of biological Sequence Comparison
Algorithms”, Internet. J. Parallel Programming 17(3)
(1988) 259-275.

[20] Aluru, S., and N. Futamura, “Parallel biological sequence
comparison using prefix computations”, J. Parallel Distrib.
Computt.63 (2003) 264-272.

[21] Pankaj Agarwal and S.A.M. Rizvi; ”The Future: Integrated
Environment For Bioinformatics”; Proceedings of
Bioinformatics National Conference (BIOCON-2006),
Sirsa, Haryana (2006).

[22] Pankaj Agarwal and S.A.M. Rizvi; ” Three New
Approaches For Finding Exact Patterns In DNA
Sequences”; Proceedings of Bioinformatics National
Conference (BIOCON-2006), Sirsa, Haryana (2006).

[23] Pankaj Agarwal and S.A.M. Rizvi, ”A New Index-Based
Parallel Algorithm for finding Longest Common
Subsequence in Multiple DNA Sequences" ; Proceedings of
7th International Conference on Cognitive Systems, New
Delhi, India (2005).

[24] Pankaj Agarwal and S.A.M. Rizvi; ”A New Bucket-Based
Algorithm For Finding LCS From Two Given Molecular
Sequences”; IEEE Proceedings in 4th IEEE International
Conference of Information and Technology, Las Vegas,
USA (2006);

[25] Pankaj Agarwal and S.A.M. Rizvi, ”Prediction Of
Secondary Structure Of Proteins Using An Artificial
Intelligence Technique: The Nearest Neighbor Strategy";

Proceedings of International Conference on Bioinformatics,
New Delhi, India (2006); [Abstract Published]

[26] Pankaj Agarwal and S.A.M. Rizvi; ” A New Parallel
Technique for Alignment of Two Amino Acid Sequences ";
Accepted at Computer Science & IT Education Conference
to be hosted by Institute of Technology, Mauritius in
November 2007.

[27] Pankaj Agarwal and S.A.M. Rizvi, ” Neural Network For
Prediction Of Initiation Site Of mRNA Sequences “;
Published at 5th Annual CISTM Conference on
Information Science Technology and Management to be
held in July 2007 at Hyderabad.

Figure 1: Standard dynamic programming matrix for the
global alignment of sequences A=ACAAGACAGCGT and

B=AGAACAAGGCGT with paths to retrieve optimal
alignments indicated with arrows.

Figure 2: Two stage single pipeline

LOAD A[I],

B[J], OTHER
INITIALIZATI

ON

IF A[I]=B[J] THEN
M[I,J]=M[I-1,J-
1]+SUB[A(I),B(J)],
ELSE
M[I,J]=MAX{M[I-1,J]+DEL[A(I)],
 M[I,J-1]+INS[B(J)}

STAGE
1

STAGE
2

Ai/Bj -- A G A A C

-- 0 -1 -2 -3 -4 -5

A -1 1 0 -1 -2 -3

C -2 0 0 -1 -2 -1

A -3 -1 -1 1 0 -1

A -4 -2 -2 0 2 1

G -5 -3 -1 -1 1 1
Figure 3: Result of alignment [Algorithm will take 25(5*5)

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; July – December, 2009; Vol. 1 No. 2; ISSN 0973 – 5658 111

Figure 4: Result of the proposed model with one unit of delay

in each successive pipeline

Figure 6: Two stage single pipeline.

Figure 8: Architecture with multiple Functional Unit {P:

Pipeline, F: Fetch Unit, D: Decode unit, A: adder, L: Loader,
C: Comparator, S: storage unit}

Figure 5: General architecture of the proposed-
Pipeline [F: Fetch unit, D: Decode Unit, C:

Comparator, A: adders, S: store units]

F1

F

F3

F2

F4

D1

D2

D3

D4

D

C
2

C
1

C

A
1

A
2

A

S1

S2

S3

S4

Load A[i], B[j],

Other
Initialization

If A[i]=B[j] then
Compute

sumi=sumi+matrixvalue

Stage 1 Stage 2

Ai/Bj D A L T N
T -2[a11] 0[a12] -

3[a13]
8[a14] 0[a15]

D 10[a21] -
3[a22]

-
7[a23]

-
2[a24]

2[a25]

A -3[a31] 7[a32] -
3[a33]

0[a34] -
3[a35]

L -7[a41] -
3[a42]

6[a43] -
3[a44]

-
6[a45]

T -2[a51] 0[a52] -
3[a53]

8[a54] 0[a55]

Figure 7: Alignment scores using BLOSUM-80

F

F

F

F

F

F

D

D

D

D

D

D

L L L L L L

C C C C C C

A A A A A A

S

S

S

S

S

S

P

P

P

P

P

P

Figure 10: Interface that captures the inputs for aligning

Solving Sequence Alignment Problem using Pipeline Approach

Copy Right © BIJIT – 2009; July – December, 2009; Vol. 1 No. 2; ISSN 0973 – 5658 112

Figure 11: Showing alignment of the two input sequences

with alignment score.

Figure 9: Working of the Proposed Pipeline [Each of
the pipelines has global variables by the names Si, Ti,

Qi, Wi,

