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Abstract – Data mining has turned out to be a milestone in 
information industry. The need of data mining tools can be 
evidenced in almost every field. Classification is one of the 
data mining techniques which are used for knowledge 
discovery. Out of the various alternatives to evolve a 
classification model, KNN is a very popular and 
apprehensible one. Although, KNN incorporates a number of 
limitations in it but these can be bumped-off by making some 
alterations to the standard KNN algorithm. Numerous 
variants of KNN have been proposed by many researchers in 
previously done studies and they have also outperformed the 
standard KNN. In present study, a modified version of KNN 
algorithm has been proposed which commingles firefly 
algorithm with standard KNN. The performance of this 
modified algorithm is examined with respect to the standard 
KNN and it is found that the proposed algorithm works well 
in case of large data sets. 
 
Index Terms – classification; data mining; firefly; KNN; self-
adaptive 
 
1.0 INTRODUCTION  
Today the data is increasing by leaps and bounds. The 
availability of abundant amount of data has increased the 
necessity of data mining tools. These tools help in exploring 
data in such a way that it results in obtaining some crucial 
information. These results of data mining can be utilized to 
make important decisions in various fields such as marketing, 
financial data analysis, medical science, intrusion detection, 
retail industry etc[1],[2],[3]. Data mining offers different data 
mining techniques which are used for mining knowledge from 
data i.e. clustering, classification, association rule, prediction, 
outlier detection. An introduction to these data mining 
techniques and their applications are given in [4]. Classification 
is one of the data mining techniques which are used frequently. 
In this data mining technique, a classification model is built 
which is called classifier. The model is capable of classifying a 
data tuple. Classification constructs this classifier using a class-
labeled data set. This is the reason why classification is said to 
be an example of supervised learning. The process of 
classification starts with partitioning of the data set into two 
sets: training set and test set.  
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After this, two steps are followed. The construction of a 
classifier using a pre-classified training data set is the first step 
and the assessment of the constructed classifier using test set is 
the second step. The second step testifies that how good is the 
built classifier in predicting class labels for unknown tuples. 
There are several classification algorithms to carry out the 
process of classification for example k-Nearest Neighbor 
(KNN), Bayesian Classifier, Decision Tree Induction, Support 
Vector Machine (SVM), Classification using Back-Propagation, 
Rule-Based Classification etc. [5]. A comparative study of 
these classification algorithms is projected in [6]. Out of these, 
KNN is the simplest and most comprehensible. KNN employs 
the nearest neighbor technique where the classification of an 
unseen tuple is done using similar data tuples to it. K-Nearest 
Neighbor classifies a data tuple on the basis of class-labels of 
the k nearest data tuples to it in the data set. The k is assumed to 
be a positive integer and passed as input to the KNN algorithm. 
KNN algorithm is a lazy learner with non-parametric nature [7]. 
Unlike parametric methods the non-parametric methods does 
not make any presumption about the shape of the classification 
model. The reason of categorizing KNN as a lazy learner and 
rest of the classification algorithm as eager learners is that KNN 
does not construct any classifier as done normally by other 
classification algorithms on getting training data tuples. All the 
calculations are done only at the time of classification of an 
unseen tuple. On account of this working principle of KNN, 
another name of it is instance-based learner.  
Besides simplicity, there are many plus points of KNN. It is 
scalable. No prior knowledge is required by it regarding the 
data set. It gives quite good results when compared to the 
results given by other classification algorithms. Insensitivity 
towards the noisy data adds another element to its list of merits. 
Despite of a number of positives, many negatives are associated 
with KNN. k is the only parameter that KNN takes as input. But 
it a very challenging task to determine the appropriate value of 
k. It is so because taking the small value of k would increase 
variance of the obtained model and large value of k would 
increase bias of the resulting model [8]. And it is well- known 
that we have to get a trade-off between variance and bias to 
construct a good model. Another issue with KNN is that it 
requires a lot of memory to store the training tuples due to its 
lazy nature. This can be managed in case of small data sets but 
with large data sets it becomes very nasty. The large 
computational cost is another demerit of KNN. The cause of 
this increased computational cost is the manner in which KNN 
classifies a data tuple. In KNN, for classification of a novel 
tuple the k nearest tuples to it are needed to be determined. And 
this is accomplished by computing the distance of the novel 
tuple with all the training tuples. It raises the computational cost 
of the algorithm. 
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Owing to these infirmities of KNN, many researchers have 
proposed reformed versions of KNN. Different variants of 
KNN are discussed in [9]. These variants tried to alleviate the 
shortcomings of KNN algorithm. The results of KNN algorithm 
are influenced by numerous key factors such as the value of k, 
distance metric which is used for computing similarity between 
any two tuples, the weights of attributes in a data set. By 
manipulating these key factors the performance of KNN can be 
ameliorated. [10] chooses the value of k by consulting local 
neighborhood of the data tuple which is to be classified. In the 
primitive KNN all the attributes of data set give equal 
contribution in classification of unprecedented tuple. But not all 
the attributes are significant. This can contaminate the results 
of KNN. [11] proposes an algorithm which is called weight 
adjusted KNN. In this proposed algorithm the enumeration of 
weights for each of the feature in the data set is done. [11] 
exerted the proposed weight adjusted KNN for text 
categorization. [12] uncovered the aspect that the classes in the 
data set are not evenly dispersed. There can be more number of 
tuples embraced in one class than other. By dint of which the 
outcome can be biased towards the class which encompasses 
larger number of tuples. [12] suggested a solution for this by 
using different values of k for distinct classes according to the 
number of tuples contained by them. Small value of k is used 
for the class that has fewer tuples and large value of k is used 
for the class that has large number of tuples. To lessen the 
computational cost incurred in KNN, an amended variant of 
KNN called adaptive KNN is proffered in [13]. It uses a non-
fixed value of k instead of a fixed value along with some early-
break heuristics. [14] discusses various extensions for KNN 
which are density- based KNN classifier, variable KNN 
classifier, weighted KNN classifier, class-based KNN classifier 
and discernibility KNN. All of them use different methodology 
to uproot the flaws in standard KNN. Another variant of KNN 
is presented in [15] which performs classification of a data 
tuple using shared neighbors. To gauge similarity between any 
two tuples, it uses BM25 similarity measure. To confine the 
number of neighbors that can vote for classification of a novel 
tuple a threshold is set. An amalgam of clustering algorithm K-
Means with KNN is proposed in [16]. This amalgamation tried 
to reduce the computational cost of KNN. To enhance the 
accuracy attained from standard KNN, distance metric plays a 
very vital role. Standard KNN generally employs Euclidean 
distance metric. A new distance metric is introduced in [17] 
which is called Mahalanobis distance metric. The advantage of 
using this distance metric in place of Euclidean is that the 
correlation between data tuples is also reckoned by it. One 
more distance metric, informativeness is introduced in [18]. 
The algorithm proposed in [18] takes two parameters as inputs 
which are k and I. Firstly, k nearest neighbors to the unseen 
data tuple is determined. After this, informativeness for each 
nearest neighbor is evaluated. Out of these, only I most 
informative data tuples are considered to vote in classifying any 
tuple. [19] proposed an algorithm which is combination of a 
number of KNN classifiers. Each classifier is trained on 
different part of data set. To find the class of a test tuple, the 

class of the test tuple is enumerated using all classifiers. The 
majority class will be the class of test tuple.  
Soft computing which offers information processing when 
united with data mining in a creative way, then this formation 
can be used efficaciously for knowledge discovery in large 
databases. [20], [21], [22], [23] elaborates that how soft 
computing helps in carrying out a better data analysis. Many 
data mining tasks can be expressed as optimization problems 
such as feature selection, clustering, classification etc. And soft 
computing can be used to find approximate solutions for these 
optimization problems. The principal components of soft 
computing include Fuzzy Logic, Rough Sets, Neural Networks 
and Evolutionary Computing.  Further evolutionary computing 
comprises of two kinds of algorithm: Evolutionary algorithms 
and Meta-heuristic algorithms [24]. Evolutionary algorithms 
include genetic algorithm and differential algorithm whereas 
meta-heuristic algorithms embrace cuckoo search, particle 
swarm optimization (PSO), firefly algorithm, ant colony 
optimization (ACO), artificial bee colony (ABC), Bayesian 
network etc. [25] discusses about all these nature-inspired meta-
heuristic algorithms. There are various studies that have been 
carried out earlier which demonstrate that how well these meta-
heuristic algorithms perform in case of classification. [26], [27], 
[28] have deployed Ant Colony Optimization algorithm for 
classification. [29],[30] have used Particle Swarm Optimization 
algorithm for classification.  Artificial Bee Colony algorithm is 
used for image classification in [31]. In [32] a hybrid fuzzy 
firefly algorithm is used to derive classification rules. [33] 
proposed a fuzzy classification system. Some of these principal 
components of soft computing are infused with KNN in earlier 
done studies. [34] proposed a fuzzy version of KNN algorithm. 
In contrast to KNN, which gives crisp membership of the 
tuples, it gives fuzzy membership.  A fuzzy-rough nearest 
algorithm is proposed in [35] which combines rough set theory 
and fuzzy set theory. The proposed algorithm employs Rough 
set theory to compute the lower and upper approximations of 
classes using nearest neighbors [36]. Test tuple is classified 
based on its membership in these approximations.  Being a 
powerful optimization tool [37], genetic algorithm has also 
been implanted with KNN. A hybrid version of KNN with 
genetic algorithm is proposed in [38]. Instead of using any 
distance metric, it utilizes genetic algorithm for determining the 
k nearest data tuples. [39] has used genetic algorithm with KNN 
differently. It exercised genetic algorithm for extracting worthy 
features from a data set. [40] indulges ACO algorithm  with 
KNN to pick out good features from a data set. PSO algorithm 
has been integrated with KNN divergently. In [41], PSO is used 
to find representatives of distinct classes in the data set. The 
representatives will now be the new training data tuples and 
KNN will be implemented on these new tuples for classification 
of a novel tuple. [42] made use of PSO for figuring out weights 
for features in the data set. ABC algorithm has also been used 
similar to that of PSO with KNN. [43] practiced ABC for 
extracting good features from a data set and [44]  implemented 
ABC to find representatives of distinct classes as done in [40]. 
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[43] put to use the combination of ABC and KNN for 
diagnosing coronary heart disease. 
After studying the erstwhile studies and weaknesses of KNN, it 
can be concluded that standard KNN algorithm can be refined 
further in order to grab good accuracy. Taking inspiration from 
these, this study proffers another variant of KNN which would 
conglomerate firefly algorithm and KNN. Firefly algorithm is 
inspired from the flashing behavior of fireflies. [45], [46], [47], 
[48] scrutinizes the performance of firefly algorithm. Many 
variants of firefly algorithm can be seen in former studies. A 
randomization term is needed in firefly algorithm which 
comprises of two parameters α and ε. α is called randomization 
parameter and it decides the next place to search for solution in 
the search space or explicitly it defines the step size for a 
firefly. ε is a vector  of random numbers which is originated 
from a probability distribution method. There are numerous 
methods to draw this vector such as uniform distribution, 
Gaussian distribution, levy flights distribution etc. [49] 
proposed a variant of firefly algorithm called Levy Flights 
Firefly algorithm. The algorithm draws the random number 
vector using Levy Flights distribution. The firefly algorithm 
makes an assumption that if all the fireflies have same 
brightness then they will move randomly. [50] suggested that 
rather than moving randomly they should move towards the 
global best. Also it employed Gaussian distribution for drawing 
ε. Another variant of firefly was proposed in [51] which is 
called self-adaptive step firefly algorithm. The self-adaptive 
step firefly algorithm computes step size for each firefly 
according to its fitness values in previous generations. In 
addition to flashing light of fireflies the algorithm propounded 
in [52] considers some other affecting parameters also i.e. gene 
exchange of firefly, its pheromone and the dispersion of the 
pheromone due to wind. In this research paper, self-adaptive 
step firefly algorithm is opted to infuse into standard KNN 
algorithm. 
In the subsequent sections of present research paper we will 
learn about KNN, firefly algorithm and then the proposed 
modified KNN algorithm. The performances of the KNN and 
the propounded algorithm will be monitored on six data sets. 
The data sets are taken from UCI Repository and Keel.  
 
2.0 K-NEAREST NEIGHBOR ALGORITHM 
KNN algorithm is a very popular classification technique. It 
can be put into practice very easily. The prerequisites for the 
KNN algorithm are: a class-labeled data set and the input 
parameter k. The value of input parameter k would resolve that 
how many nearest neighbors are to be taken into account for 
classification of any tuple. The procedure of classifying any 
tuple using KNN is straightforward. Initially, the data set is 
bifurcated. The two subsets are called training set and test set. 
The part of both is same as they have in classification. Later on 
k nearest data tuples to unseen tuple from the training set are 
determined. The class which has majority in these unearthed k 
data tuples is assigned to the unseen tuple, which is to be 
classified. Test set will compute the accuracy of the KNN 

algorithm. Pseudo code for the standard KNN algorithm is 
given below: 

 

ALGORITHM I 

Each tuple in data set can be viewed as a data point in the n-
dimensional space, where n is the number of attributes 
describing the data set. The distance between the data points is 
computed generally using Euclidean distance. Euclidean 
distance between two data tuples x and y is given below: 

          (1) 

n = number of attributes in data set 
and are values of attribute i in data tuples x and y 

respectively. Manhattan distance and Minkowski distance are 
some other distance metrics which can also be used.  
 The simplest case of k-nearest neighbor algorithm is when k is 
taken to be 1. This case is called nearest neighbor rule, where 
the class assigned to the unseen tuple is the class of most 
nearest tuple to it. Another property of KNN is that it can be 
employed not only for predicting a categorical attribute but also 
for predicting a continuous valued attribute. The later one is 
called regression. In regression, the value of class attribute of 
an unseen tuple will be the average of the class attribute values 
of the k nearest tuples to the unseen tuple. 
 
3.0 FIREFLY ALGORITHM 
Firefly algorithm is meta-heuristic in nature and is used to find 
an approximate solution for an optimization problem. Flashing 
behavior of the fireflies is inspiration of the firefly algorithm. 
There are three assumptions made in the firefly algorithm: 

• Any firefly can be attracted towards any other firefly. 
• The attractiveness is relative to brightness of the firefly. 

Brighter firefly would attract all other fireflies having 
less brightness than the brighter firefly. 

• When all fireflies have same brightness then they will 
move randomly.  

The attractiveness of a firefly is calculated using following 
function: 

β(r) =  (2) 
where  is the attractiveness of the firefly when r = 0 and γ is 
light absorption coefficient. The firefly’s movement totally 
depends on its attractiveness. Firefly i would move towards 
firefly j if and only the attractiveness of the firefly j is greater 

Input Parameters: Data set, k 
Output: Classified test tuples 
Step 1: Store all the training tuples. 
Step 2: for each test tuple 

A. Compute distance of it with all the training  
tuples using  (1). 

B. Find the k nearest training tuples to the test 
tuple. 

C. The class which is most common in the k 
nearest training tuples to the test tuple is 
assigned to the test tuple. 

            End for 
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than that of firefly i. In that case, the movement is shown by 
following formula: 

= + .(  - ) + α. .(  - 0.5)     (3)       
and  are values of attribute k. k takes values from 

1,2………n, where n is the dimension of the data set. is 
a random number between 0 and 1. α is called randomization 
parameter which will decide how much to move and takes value 
between 0 & 1. is scaling parameter which is calculated for 
each attribute. is calculated as 

= |  -  |                               (4) 
and are the upper bound  and lower bound of the attribute k 

respectively. is the distance between the fireflies i and j 
which calculated from: 

         (5) 
The value of attractiveness in optimization problems is 
calculated using an objective function. The algorithm for 
standard firefly algorithm is given below: 

ALGORITHM II 

4.0 KNN WITH FIREFLY ALGORITHM 
As discussed before, there are many variants of firefly 
algorithm available in antecedent studies. Self-adaptive step 
algorithm is one of them. A comparison of the performances of 
self-adaptive step firefly algorithm and the standard firefly 
algorithm is demonstrated in [32]. The obtained results 
demonstrate that self-adaptive firefly algorithm is better than 
standard firefly algorithm in every aspect. The self-adaptive 
step firefly algorithm and standard firefly algorithm differs at 
randomization parameter α. In standard firefly algorithm the 
parameter α is either fixed all time or decreases exponentially. 
But in case of self-adaptive step firefly algorithm α is 
calculated for each firefly according to the fitness values that it 
has attained previously. The notion behind is that a firefly 
which is far from the global best solution should take larger 
steps and the firefly which is near to the global best solution 

should take smaller steps so that it can converge slowly to give 
best results. 

(t) =1/ (6) 

α(t+1)=1-1/ (7) 

Here, fit(t-1)  = fitness of the firefly in (t-1)th generation. 
fit(t-2) = fitness of the firefly in (t-2)th  generation. 

= fitness value of the best firefly in (t-1)th 

 generation. 
fit(t)   =  fitness of the firefly in tth  generation. 
This conglomerate of KNN and self-adaptive step firefly 
algorithm works as follows: The foremost task is to reckon the 
representative of each distinct class in the data set using self-
adaptive step firefly algorithm. After accomplishing this, the 
process of classifying any tuple becomes very easy. These 
obtained representatives would now be acting as new training 
data tuples. And when a job of classifying any unseen tuple is 
assigned we have to just calculate its distance from these new 
training data tuples only. The unknown tuple is categorized in 
that class, the representative of which has the least distance 
with that unknown tuple. The pseudo code for the proposed 
algorithm is given below: 

ALGORITHM III 

Step 1: Normalize the data set. 
Step 2: Find representatives of each class in data set using 
            Self-adaptive step firefly algorithm and in order to    
fulfill this, follow the subsequent steps. 

a) Initialize algorithm parameters ,  and γ 
and input objective function f(x). 

b) Divide the training data set according to the 
class attribute. 

c) for each  training data set grouped via class 
attribute.   Let n be the number of fireflies in    
set. 

                 while ( t <maxgeneration) 
                    for i=1:n 
          for j=1:i 
                                         if ( f( ) < f( ) ) 
                                         move firefly i towards firefly j     
using equation (3). Calculate α    
using formulas in (6) and (7). 
                                         end if 
                        end for 
                    end for 
                              end while 

d) Find the current best firefly and choose it as 
representative of that class. 

e) for each test tuple 
                           calculate the distance of the test tuple  
from each of class representatives. Assign  
                           that class to the test tuple from whose     
representative it has the least distance. 

 
There are many advantages of this reoriented KNN algorithm. 
The first one is you don’t need to pass the input parameter k 

Input: Objective function f(x) and algorithm 
            parameters , and γ 
Output: Minimized function value position  
Step 1: Initialize firefly population   p randomly. 
Step 2: Initialize algorithm parameters ,  and γ. 
Step 3: Calculate fitness value using the objective function  
f(x) for each firefly. 
Step 4: while ( t <maxgeneration ) 
    for i=1:p 
        for j=1:i 
             if ( f( ) < f( ) ) 
                            move firefly i towards j using  (3) 
              calculate fitness value again of all  
                            fireflies 
                          end if 
         end for 
     end for 
 end while 
Step 5: Rank the fireflies to find the current best firefly. 
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anymore as we have to do in standard KNN. Ascertaining the 
appropriate value of the parameter k is itself a challenging task. 
The second benefit is, it would reduce the cost complexity of 
KNN algorithm. This optimized KNN would sustain for longer 
period because once you have computed the representatives of 
each distinct class then the task of classifying a tuple would 
take only a fraction of seconds. On the other hand in case of 
KNN algorithm the cost complexity was high because for 
classification of a tuple, you have to compute its distance with 
all the training tuples every time. 
 
5.0 EXPERIMENT AND RESULTS 
The performance of the proposed modified KNN and the 
standard KNN is tested on six data sets of different sizes. The 
data sets are picked from UCI repository and Keel. Their 
performances are summarized in form of tables TABLE I and 
TABLE II. The TABLE I depicts the algorithmic parameters 
taken for self-adaptive step firefly algorithm, the number of 
generations for which the firefly algorithm is run. The proposed 
algorithm and the standard KNN algorithm both are 
implemented in MATLAB software. Hold out method has been 
used to split up the data set into training and test sets. 30% of 
the data set is upheld as test data set and rest of the data set is 
used to train the model. Three parameters are used to compare 
performances of both the algorithms which are accuracy, time 
taken for classifying all the test tuples and kappa statistics. The 
performances of both the algorithms in aspects of accuracy and 
time are shown with help of graphs. Fig. 1 depicts that the 
proposed algorithm gives accuracy comparable to that of 
standard KNN in case of large data sets. From Fig. 2 it can be 
seen that the proposed algorithm takes much less time in 
classifying the test tuples when compared to standard KNN 
algorithm and the difference enlarges when the size of data set 
is large. 
 
6.0 CONCLUSION 
In present research paper, a modified KNN algorithm is 
proposed which has used self-adaptive step firefly algorithm to 
find representatives of distinct classes in data set. This study 

demonstrates that the proposed algorithm optimize the results 
by taking much less time in comparison to standard KNN. Due 
to which the cost of computation also got reduced. On 
scrutinizing the results obtained, it can be concluded that the 
proposed algorithm performs well in case of large data sets. 

 
Figure 1: Graph depicting accuracies attained by both the 

algorithms 

 
Figure 2: Graph depicting time taken by both the 

algorithms to classify test tuples 

 

 
Table 1: Experiment Results for the Proposed Algorithm 

 

Data sets 
No. of 

instances 
in data 

set 

Numbe
r of 

classes 

Algorithmic parameters 

Accurac
y(%) 

Time taken 
to classify 

test 
tuples(sec) 

Time saved 
In 

comparison 
to Standard 

KNN 

Kappa 
Statistics   γ 

Number 
of 

generatio
ns 

Iris 150 3 0.9 1 0.1 50 95.55 0.002110 39.57% 0.93 
Wine 178 3 0.9 1 0.1 60 75.00 0.001160 74.15% 0.63 

Wholesale 440 2 0.9 1 0.1 50 87.02 0.010322 47.34% 0.72 
Data user 
modeling 404 4 0.9 1 0.1 70 74.79 0.005516 61.58% 0.66 

Australian 690 2 0.9 1 0.1 50 82.04 0.008165 84.21% 0.63 
pima 768 2 0.9 1 0.1 50 73.91 0.029670 35.87% 0.43 
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Table 2: Experiment Results For The Standard Algorithm 
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