
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 997

Optimization of KNN with Firefly Algorithm

Alka Lamba1 and Dharmender Kumar2

Submitted in April, 2016; Accepted in July, 2016

Abstract – Data mining has turned out to be a milestone in
information industry. The need of data mining tools can be
evidenced in almost every field. Classification is one of the
data mining techniques which are used for knowledge
discovery. Out of the various alternatives to evolve a
classification model, KNN is a very popular and
apprehensible one. Although, KNN incorporates a number of
limitations in it but these can be bumped-off by making some
alterations to the standard KNN algorithm. Numerous
variants of KNN have been proposed by many researchers in
previously done studies and they have also outperformed the
standard KNN. In present study, a modified version of KNN
algorithm has been proposed which commingles firefly
algorithm with standard KNN. The performance of this
modified algorithm is examined with respect to the standard
KNN and it is found that the proposed algorithm works well
in case of large data sets.

Index Terms – classification; data mining; firefly; KNN; self-
adaptive

1.0 INTRODUCTION
Today the data is increasing by leaps and bounds. The
availability of abundant amount of data has increased the
necessity of data mining tools. These tools help in exploring
data in such a way that it results in obtaining some crucial
information. These results of data mining can be utilized to
make important decisions in various fields such as marketing,
financial data analysis, medical science, intrusion detection,
retail industry etc[1],[2],[3]. Data mining offers different data
mining techniques which are used for mining knowledge from
data i.e. clustering, classification, association rule, prediction,
outlier detection. An introduction to these data mining
techniques and their applications are given in [4]. Classification
is one of the data mining techniques which are used frequently.
In this data mining technique, a classification model is built
which is called classifier. The model is capable of classifying a
data tuple. Classification constructs this classifier using a class-
labeled data set. This is the reason why classification is said to
be an example of supervised learning. The process of
classification starts with partitioning of the data set into two
sets: training set and test set.

1Master of Technology (CSE), Guru Jambheshwar University
of Science and Technology, Hisar, Haryana, India.
2Associate Professor (CSE), Guru Jambheshwar University of
Science and Technology, Hisar, Haryana, India.
1alkalamba07@gmail.com and
2dharmindia24@gmail.com

After this, two steps are followed. The construction of a
classifier using a pre-classified training data set is the first step
and the assessment of the constructed classifier using test set is
the second step. The second step testifies that how good is the
built classifier in predicting class labels for unknown tuples.
There are several classification algorithms to carry out the
process of classification for example k-Nearest Neighbor
(KNN), Bayesian Classifier, Decision Tree Induction, Support
Vector Machine (SVM), Classification using Back-Propagation,
Rule-Based Classification etc. [5]. A comparative study of
these classification algorithms is projected in [6]. Out of these,
KNN is the simplest and most comprehensible. KNN employs
the nearest neighbor technique where the classification of an
unseen tuple is done using similar data tuples to it. K-Nearest
Neighbor classifies a data tuple on the basis of class-labels of
the k nearest data tuples to it in the data set. The k is assumed to
be a positive integer and passed as input to the KNN algorithm.
KNN algorithm is a lazy learner with non-parametric nature [7].
Unlike parametric methods the non-parametric methods does
not make any presumption about the shape of the classification
model. The reason of categorizing KNN as a lazy learner and
rest of the classification algorithm as eager learners is that KNN
does not construct any classifier as done normally by other
classification algorithms on getting training data tuples. All the
calculations are done only at the time of classification of an
unseen tuple. On account of this working principle of KNN,
another name of it is instance-based learner.
Besides simplicity, there are many plus points of KNN. It is
scalable. No prior knowledge is required by it regarding the
data set. It gives quite good results when compared to the
results given by other classification algorithms. Insensitivity
towards the noisy data adds another element to its list of merits.
Despite of a number of positives, many negatives are associated
with KNN. k is the only parameter that KNN takes as input. But
it a very challenging task to determine the appropriate value of
k. It is so because taking the small value of k would increase
variance of the obtained model and large value of k would
increase bias of the resulting model [8]. And it is well- known
that we have to get a trade-off between variance and bias to
construct a good model. Another issue with KNN is that it
requires a lot of memory to store the training tuples due to its
lazy nature. This can be managed in case of small data sets but
with large data sets it becomes very nasty. The large
computational cost is another demerit of KNN. The cause of
this increased computational cost is the manner in which KNN
classifies a data tuple. In KNN, for classification of a novel
tuple the k nearest tuples to it are needed to be determined. And
this is accomplished by computing the distance of the novel
tuple with all the training tuples. It raises the computational cost
of the algorithm.

 BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 998

Owing to these infirmities of KNN, many researchers have
proposed reformed versions of KNN. Different variants of
KNN are discussed in [9]. These variants tried to alleviate the
shortcomings of KNN algorithm. The results of KNN algorithm
are influenced by numerous key factors such as the value of k,
distance metric which is used for computing similarity between
any two tuples, the weights of attributes in a data set. By
manipulating these key factors the performance of KNN can be
ameliorated. [10] chooses the value of k by consulting local
neighborhood of the data tuple which is to be classified. In the
primitive KNN all the attributes of data set give equal
contribution in classification of unprecedented tuple. But not all
the attributes are significant. This can contaminate the results
of KNN. [11] proposes an algorithm which is called weight
adjusted KNN. In this proposed algorithm the enumeration of
weights for each of the feature in the data set is done. [11]
exerted the proposed weight adjusted KNN for text
categorization. [12] uncovered the aspect that the classes in the
data set are not evenly dispersed. There can be more number of
tuples embraced in one class than other. By dint of which the
outcome can be biased towards the class which encompasses
larger number of tuples. [12] suggested a solution for this by
using different values of k for distinct classes according to the
number of tuples contained by them. Small value of k is used
for the class that has fewer tuples and large value of k is used
for the class that has large number of tuples. To lessen the
computational cost incurred in KNN, an amended variant of
KNN called adaptive KNN is proffered in [13]. It uses a non-
fixed value of k instead of a fixed value along with some early-
break heuristics. [14] discusses various extensions for KNN
which are density- based KNN classifier, variable KNN
classifier, weighted KNN classifier, class-based KNN classifier
and discernibility KNN. All of them use different methodology
to uproot the flaws in standard KNN. Another variant of KNN
is presented in [15] which performs classification of a data
tuple using shared neighbors. To gauge similarity between any
two tuples, it uses BM25 similarity measure. To confine the
number of neighbors that can vote for classification of a novel
tuple a threshold is set. An amalgam of clustering algorithm K-
Means with KNN is proposed in [16]. This amalgamation tried
to reduce the computational cost of KNN. To enhance the
accuracy attained from standard KNN, distance metric plays a
very vital role. Standard KNN generally employs Euclidean
distance metric. A new distance metric is introduced in [17]
which is called Mahalanobis distance metric. The advantage of
using this distance metric in place of Euclidean is that the
correlation between data tuples is also reckoned by it. One
more distance metric, informativeness is introduced in [18].
The algorithm proposed in [18] takes two parameters as inputs
which are k and I. Firstly, k nearest neighbors to the unseen
data tuple is determined. After this, informativeness for each
nearest neighbor is evaluated. Out of these, only I most
informative data tuples are considered to vote in classifying any
tuple. [19] proposed an algorithm which is combination of a
number of KNN classifiers. Each classifier is trained on
different part of data set. To find the class of a test tuple, the

class of the test tuple is enumerated using all classifiers. The
majority class will be the class of test tuple.
Soft computing which offers information processing when
united with data mining in a creative way, then this formation
can be used efficaciously for knowledge discovery in large
databases. [20], [21], [22], [23] elaborates that how soft
computing helps in carrying out a better data analysis. Many
data mining tasks can be expressed as optimization problems
such as feature selection, clustering, classification etc. And soft
computing can be used to find approximate solutions for these
optimization problems. The principal components of soft
computing include Fuzzy Logic, Rough Sets, Neural Networks
and Evolutionary Computing. Further evolutionary computing
comprises of two kinds of algorithm: Evolutionary algorithms
and Meta-heuristic algorithms [24]. Evolutionary algorithms
include genetic algorithm and differential algorithm whereas
meta-heuristic algorithms embrace cuckoo search, particle
swarm optimization (PSO), firefly algorithm, ant colony
optimization (ACO), artificial bee colony (ABC), Bayesian
network etc. [25] discusses about all these nature-inspired meta-
heuristic algorithms. There are various studies that have been
carried out earlier which demonstrate that how well these meta-
heuristic algorithms perform in case of classification. [26], [27],
[28] have deployed Ant Colony Optimization algorithm for
classification. [29],[30] have used Particle Swarm Optimization
algorithm for classification. Artificial Bee Colony algorithm is
used for image classification in [31]. In [32] a hybrid fuzzy
firefly algorithm is used to derive classification rules. [33]
proposed a fuzzy classification system. Some of these principal
components of soft computing are infused with KNN in earlier
done studies. [34] proposed a fuzzy version of KNN algorithm.
In contrast to KNN, which gives crisp membership of the
tuples, it gives fuzzy membership. A fuzzy-rough nearest
algorithm is proposed in [35] which combines rough set theory
and fuzzy set theory. The proposed algorithm employs Rough
set theory to compute the lower and upper approximations of
classes using nearest neighbors [36]. Test tuple is classified
based on its membership in these approximations. Being a
powerful optimization tool [37], genetic algorithm has also
been implanted with KNN. A hybrid version of KNN with
genetic algorithm is proposed in [38]. Instead of using any
distance metric, it utilizes genetic algorithm for determining the
k nearest data tuples. [39] has used genetic algorithm with KNN
differently. It exercised genetic algorithm for extracting worthy
features from a data set. [40] indulges ACO algorithm with
KNN to pick out good features from a data set. PSO algorithm
has been integrated with KNN divergently. In [41], PSO is used
to find representatives of distinct classes in the data set. The
representatives will now be the new training data tuples and
KNN will be implemented on these new tuples for classification
of a novel tuple. [42] made use of PSO for figuring out weights
for features in the data set. ABC algorithm has also been used
similar to that of PSO with KNN. [43] practiced ABC for
extracting good features from a data set and [44] implemented
ABC to find representatives of distinct classes as done in [40].

Optimization of KNN with Firefly Algorithm

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 999

[43] put to use the combination of ABC and KNN for
diagnosing coronary heart disease.
After studying the erstwhile studies and weaknesses of KNN, it
can be concluded that standard KNN algorithm can be refined
further in order to grab good accuracy. Taking inspiration from
these, this study proffers another variant of KNN which would
conglomerate firefly algorithm and KNN. Firefly algorithm is
inspired from the flashing behavior of fireflies. [45], [46], [47],
[48] scrutinizes the performance of firefly algorithm. Many
variants of firefly algorithm can be seen in former studies. A
randomization term is needed in firefly algorithm which
comprises of two parameters α and ε. α is called randomization
parameter and it decides the next place to search for solution in
the search space or explicitly it defines the step size for a
firefly. ε is a vector of random numbers which is originated
from a probability distribution method. There are numerous
methods to draw this vector such as uniform distribution,
Gaussian distribution, levy flights distribution etc. [49]
proposed a variant of firefly algorithm called Levy Flights
Firefly algorithm. The algorithm draws the random number
vector using Levy Flights distribution. The firefly algorithm
makes an assumption that if all the fireflies have same
brightness then they will move randomly. [50] suggested that
rather than moving randomly they should move towards the
global best. Also it employed Gaussian distribution for drawing
ε. Another variant of firefly was proposed in [51] which is
called self-adaptive step firefly algorithm. The self-adaptive
step firefly algorithm computes step size for each firefly
according to its fitness values in previous generations. In
addition to flashing light of fireflies the algorithm propounded
in [52] considers some other affecting parameters also i.e. gene
exchange of firefly, its pheromone and the dispersion of the
pheromone due to wind. In this research paper, self-adaptive
step firefly algorithm is opted to infuse into standard KNN
algorithm.
In the subsequent sections of present research paper we will
learn about KNN, firefly algorithm and then the proposed
modified KNN algorithm. The performances of the KNN and
the propounded algorithm will be monitored on six data sets.
The data sets are taken from UCI Repository and Keel.

2.0 K-NEAREST NEIGHBOR ALGORITHM
KNN algorithm is a very popular classification technique. It
can be put into practice very easily. The prerequisites for the
KNN algorithm are: a class-labeled data set and the input
parameter k. The value of input parameter k would resolve that
how many nearest neighbors are to be taken into account for
classification of any tuple. The procedure of classifying any
tuple using KNN is straightforward. Initially, the data set is
bifurcated. The two subsets are called training set and test set.
The part of both is same as they have in classification. Later on
k nearest data tuples to unseen tuple from the training set are
determined. The class which has majority in these unearthed k
data tuples is assigned to the unseen tuple, which is to be
classified. Test set will compute the accuracy of the KNN

algorithm. Pseudo code for the standard KNN algorithm is
given below:

ALGORITHM I

Each tuple in data set can be viewed as a data point in the n-
dimensional space, where n is the number of attributes
describing the data set. The distance between the data points is
computed generally using Euclidean distance. Euclidean
distance between two data tuples x and y is given below:

 (1)

n = number of attributes in data set
and are values of attribute i in data tuples x and y

respectively. Manhattan distance and Minkowski distance are
some other distance metrics which can also be used.
 The simplest case of k-nearest neighbor algorithm is when k is
taken to be 1. This case is called nearest neighbor rule, where
the class assigned to the unseen tuple is the class of most
nearest tuple to it. Another property of KNN is that it can be
employed not only for predicting a categorical attribute but also
for predicting a continuous valued attribute. The later one is
called regression. In regression, the value of class attribute of
an unseen tuple will be the average of the class attribute values
of the k nearest tuples to the unseen tuple.

3.0 FIREFLY ALGORITHM
Firefly algorithm is meta-heuristic in nature and is used to find
an approximate solution for an optimization problem. Flashing
behavior of the fireflies is inspiration of the firefly algorithm.
There are three assumptions made in the firefly algorithm:

• Any firefly can be attracted towards any other firefly.
• The attractiveness is relative to brightness of the firefly.

Brighter firefly would attract all other fireflies having
less brightness than the brighter firefly.

• When all fireflies have same brightness then they will
move randomly.

The attractiveness of a firefly is calculated using following
function:

β(r) = (2)
where is the attractiveness of the firefly when r = 0 and γ is
light absorption coefficient. The firefly’s movement totally
depends on its attractiveness. Firefly i would move towards
firefly j if and only the attractiveness of the firefly j is greater

Input Parameters: Data set, k
Output: Classified test tuples
Step 1: Store all the training tuples.
Step 2: for each test tuple

A. Compute distance of it with all the training
tuples using (1).

B. Find the k nearest training tuples to the test
tuple.

C. The class which is most common in the k
nearest training tuples to the test tuple is
assigned to the test tuple.

 End for

 BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 1000

than that of firefly i. In that case, the movement is shown by
following formula:

= + .(-) + α. .(- 0.5) (3)
and are values of attribute k. k takes values from

1,2………n, where n is the dimension of the data set. is
a random number between 0 and 1. α is called randomization
parameter which will decide how much to move and takes value
between 0 & 1. is scaling parameter which is calculated for
each attribute. is calculated as

= | - | (4)
and are the upper bound and lower bound of the attribute k

respectively. is the distance between the fireflies i and j
which calculated from:

 (5)
The value of attractiveness in optimization problems is
calculated using an objective function. The algorithm for
standard firefly algorithm is given below:

ALGORITHM II

4.0 KNN WITH FIREFLY ALGORITHM
As discussed before, there are many variants of firefly
algorithm available in antecedent studies. Self-adaptive step
algorithm is one of them. A comparison of the performances of
self-adaptive step firefly algorithm and the standard firefly
algorithm is demonstrated in [32]. The obtained results
demonstrate that self-adaptive firefly algorithm is better than
standard firefly algorithm in every aspect. The self-adaptive
step firefly algorithm and standard firefly algorithm differs at
randomization parameter α. In standard firefly algorithm the
parameter α is either fixed all time or decreases exponentially.
But in case of self-adaptive step firefly algorithm α is
calculated for each firefly according to the fitness values that it
has attained previously. The notion behind is that a firefly
which is far from the global best solution should take larger
steps and the firefly which is near to the global best solution

should take smaller steps so that it can converge slowly to give
best results.

(t) =1/ (6)

α(t+1)=1-1/ (7)

Here, fit(t-1) = fitness of the firefly in (t-1)th generation.
fit(t-2) = fitness of the firefly in (t-2)th generation.

= fitness value of the best firefly in (t-1)th

 generation.
fit(t) = fitness of the firefly in tth generation.
This conglomerate of KNN and self-adaptive step firefly
algorithm works as follows: The foremost task is to reckon the
representative of each distinct class in the data set using self-
adaptive step firefly algorithm. After accomplishing this, the
process of classifying any tuple becomes very easy. These
obtained representatives would now be acting as new training
data tuples. And when a job of classifying any unseen tuple is
assigned we have to just calculate its distance from these new
training data tuples only. The unknown tuple is categorized in
that class, the representative of which has the least distance
with that unknown tuple. The pseudo code for the proposed
algorithm is given below:

ALGORITHM III

Step 1: Normalize the data set.
Step 2: Find representatives of each class in data set using
 Self-adaptive step firefly algorithm and in order to
fulfill this, follow the subsequent steps.

a) Initialize algorithm parameters , and γ
and input objective function f(x).

b) Divide the training data set according to the
class attribute.

c) for each training data set grouped via class
attribute. Let n be the number of fireflies in
set.

 while (t <maxgeneration)
 for i=1:n
 for j=1:i
 if (f() < f())
 move firefly i towards firefly j
using equation (3). Calculate α
using formulas in (6) and (7).
 end if
 end for
 end for
 end while

d) Find the current best firefly and choose it as
representative of that class.

e) for each test tuple
 calculate the distance of the test tuple
from each of class representatives. Assign
 that class to the test tuple from whose
representative it has the least distance.

There are many advantages of this reoriented KNN algorithm.
The first one is you don’t need to pass the input parameter k

Input: Objective function f(x) and algorithm
 parameters , and γ
Output: Minimized function value position
Step 1: Initialize firefly population p randomly.
Step 2: Initialize algorithm parameters , and γ.
Step 3: Calculate fitness value using the objective function
f(x) for each firefly.
Step 4: while (t <maxgeneration)
 for i=1:p
 for j=1:i
 if (f() < f())
 move firefly i towards j using (3)
 calculate fitness value again of all
 fireflies
 end if
 end for
 end for
 end while
Step 5: Rank the fireflies to find the current best firefly.

Optimization of KNN with Firefly Algorithm

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 1001

anymore as we have to do in standard KNN. Ascertaining the
appropriate value of the parameter k is itself a challenging task.
The second benefit is, it would reduce the cost complexity of
KNN algorithm. This optimized KNN would sustain for longer
period because once you have computed the representatives of
each distinct class then the task of classifying a tuple would
take only a fraction of seconds. On the other hand in case of
KNN algorithm the cost complexity was high because for
classification of a tuple, you have to compute its distance with
all the training tuples every time.

5.0 EXPERIMENT AND RESULTS
The performance of the proposed modified KNN and the
standard KNN is tested on six data sets of different sizes. The
data sets are picked from UCI repository and Keel. Their
performances are summarized in form of tables TABLE I and
TABLE II. The TABLE I depicts the algorithmic parameters
taken for self-adaptive step firefly algorithm, the number of
generations for which the firefly algorithm is run. The proposed
algorithm and the standard KNN algorithm both are
implemented in MATLAB software. Hold out method has been
used to split up the data set into training and test sets. 30% of
the data set is upheld as test data set and rest of the data set is
used to train the model. Three parameters are used to compare
performances of both the algorithms which are accuracy, time
taken for classifying all the test tuples and kappa statistics. The
performances of both the algorithms in aspects of accuracy and
time are shown with help of graphs. Fig. 1 depicts that the
proposed algorithm gives accuracy comparable to that of
standard KNN in case of large data sets. From Fig. 2 it can be
seen that the proposed algorithm takes much less time in
classifying the test tuples when compared to standard KNN
algorithm and the difference enlarges when the size of data set
is large.

6.0 CONCLUSION
In present research paper, a modified KNN algorithm is
proposed which has used self-adaptive step firefly algorithm to
find representatives of distinct classes in data set. This study

demonstrates that the proposed algorithm optimize the results
by taking much less time in comparison to standard KNN. Due
to which the cost of computation also got reduced. On
scrutinizing the results obtained, it can be concluded that the
proposed algorithm performs well in case of large data sets.

Figure 1: Graph depicting accuracies attained by both the

algorithms

Figure 2: Graph depicting time taken by both the

algorithms to classify test tuples

Table 1: Experiment Results for the Proposed Algorithm

Data sets
No. of

instances
in data

set

Numbe
r of

classes

Algorithmic parameters

Accurac
y(%)

Time taken
to classify

test
tuples(sec)

Time saved
In

comparison
to Standard

KNN

Kappa
Statistics γ

Number
of

generatio
ns

Iris 150 3 0.9 1 0.1 50 95.55 0.002110 39.57% 0.93
Wine 178 3 0.9 1 0.1 60 75.00 0.001160 74.15% 0.63

Wholesale 440 2 0.9 1 0.1 50 87.02 0.010322 47.34% 0.72
Data user
modeling 404 4 0.9 1 0.1 70 74.79 0.005516 61.58% 0.66

Australian 690 2 0.9 1 0.1 50 82.04 0.008165 84.21% 0.63
pima 768 2 0.9 1 0.1 50 73.91 0.029670 35.87% 0.43

 BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 1002

Table 2: Experiment Results For The Standard Algorithm

REFERENCES
[1]. “Data Mining Applications,” ZenTut. .
[2]. S. Bagga and G. N. Singh, “Applications of Data

Mining,” Int. J. Sci. Emerg. Technol. Latest Trends, vol.
1, no. 1, pp. 19–23, 2012.

[3]. N. Padhy, P. Mishra, and R. Panigrahi, “The Survey of
Data Mining Applications And Feature Scope,” Int J
ComputSciTechnol, vol. 2, no. 3, pp. 43–58, Jun. 2012.

[4]. B. M. Ramageri, “Data Mining Techniques and
Applications,” Int J ComputSciEng, vol. 1, no. 4, pp.
301–305.

[5]. R. Kumar and R. Verma, “Classification algorithms for
data mining: A survey,” Int. J. Innov. Eng. Technol.
IJIET, vol. 1, no. 2, pp. 7–14, 2012.

[6]. S. S. Nikam, “A Comparative Study of Classification
Techniques in Data Mining Algorithms,” Orient. J.
Comput. Sci. Technol., vol. 8, no. 1, pp. 13–19, Apr.
2015.

[7]. “A Detailed Introduction to K-Nearest Neighbor (KNN)
Algorithm,” God, Your Book Is Great !!, 18-May-2010. .

[8]. T. Larose and C. D. Larose, Data Mining and Predictive
Analytics, 2nd ed. Wiley, 2015.

[9]. Lamba and D. Kumar, “Survey on KNN and Its
Variants,” IJARCCE, vol. 5, no. 5, pp. 430–435, May
2016.

[10]. Wettschereck and D. Thomas G., “Locally adaptive
nearest neighbor algorithms,” Adv. Neural Inf. Process.
Syst., pp. 184–184, 1994.

[11] H. E.H.S, E.-H. Sam, G. Karypis, and V. Kumar, “Text
categorization using weight adjusted k-nearest neighbor
classification,” in Text categorization using weight
adjusted k-nearest neighbor classification, Springer
Berlin Heidelberg, 2001, pp. 53–65.

[12] B. Li, S. Yu, and Q. Lu, “An Improved k-Nearest
Neighbor Algorithm for Text Categorization,” in
Proceedings of the 20th International Conference on
Computer Processing of Oriental Languages, Shenyang,
China, 2003.

[13] S. Ougiaroglou, A. Nanopoulos, A. N. Papadopoulos, Y.
Manolopoulos, and T. Welzer-Druzovec, “Adaptive k-
Nearest-Neighbor Classification Using a Dynamic
Number of Nearest Neighbors,” in Advances in

Databases and Information Systems, Y. Ioannidis, B.
Novikov, and B. Rachev, Eds. Springer Berlin
Heidelberg, 2007, pp. 66–82.

[14] Z. Voulgaris and G. D. Magoulas, “Extensions of the K
Nearest Neighbour Methods for Classification
Problems,” in Proceedings of the 26th IASTED
International Conference on Artificial Intelligence and
Applications, Anaheim, CA, USA, 2008, pp. 23–28.

[15] Y. Cai, D. Ji, and D. Cai, “A KNN Research Paper
Classification Method Based on Shared Nearest
Neighbor,” in Proceedings of the 8th NTCIR Workshop
Meeting, 2008.

[16] P. WiraBuana, S. Jannet D.R.M., and I.
KetutGedeDarma Putra, “Combination of K-Nearest
Neighbor and K-Means based on Term Re-weighting for
Classify Indonesian News,” Int. J. Comput. Appl., vol.
50, no. 11, pp. 37–42, Jul. 2012.

[17] K. Q. Weinberger and L. K. Saul, “Distance Metric
Learning for Large Margin Nearest Neighbor
Classification,” J. Mach. Learn. Res., vol. 10, pp. 207–
244, Dec. 2009.

[18] Y. Song, J. Huang, D. Zhou, H. Zha, and C. L. Giles,
“Iknn: Informative k-nearest neighbor pattern
classification,” in Knowledge Discovery in Databases:
PKDD 2007, 2007, pp. 248–264.

[19] A. K. Saxena, “On the Importance of Ensembles of
Classifiers,” BIJIT, vol. 5, no. 1, pp. 569–576, Jun. 2013.

[20] S. Mitra, S. K. Pal, and P. Mitra, “Data mining in soft
computing framework:a survey,” IEEE Trans. Neural
Netw., vol. 13, no. 1, pp. 3–14, 2002.

[21] K. Lal, N. .Mahanti, and P. Bihar, “Role of soft
computing as a tool in data mining,” pp. 526–537, 2011.

[22] Y. K. Mathur and A. Nand, “Soft Computing Techniques
and its impact in Data Mining,” Int. J. Emerg. Technol.
Adv. Eng., vol. 4, no. 8, Aug. 2014.

[23] R. Kruse, C. Borgelt, D. D. Nauck, N. J. Van Eck, and
M. Steinbrecher, “The Role of Soft Computing in
Intelligent Data Analysis,” in Proceedings of the 16th
IEEE International Conference on Fuzzy Systems, 2007,
pp. 9–17.

Data sets No. of instances in
data set k Number

of classes Accuracy(%) Time taken to classify
test tuples(sec)

Kappa
Statistics

Iris 150 5 3 97.78 0.003492 0.97
Wine 178 5 3 96.15 0.004487 0.94

Wholesale 440 5 3 93.89 0.019602 0.86
Data user
modeling 404 5 4 87.39 0.014356 0.83

Australian 690 5 2 81.55 0.051713 0.63
pima 768 5 2 73.91 0.046269 0.42

Optimization of KNN with Firefly Algorithm

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 1003

[24] T. Gupta and D. Kumar, “Performance Optimization of
Benchmark Functions Using VTS-ABC Algorithm,”
BIJIT, vol. 6, no. 2, Dec. 2014.

[25] Y. Kumar and D. Kumar, “Parametric Analysis of
Nature Inspired Optimization Techniques,” Int J
ComputAppl Found ComputSci, vol. 32, no. 3, pp. 42–
49, Oct. 2011.

[26] R. S. Parpinelli, H. S. Lopes, and A. Freitas, “Data
mining with an ant colony optimization algorithm,”
IEEE Trans. Evol. Comput., vol. 6, no. 4, pp. 321–332,
Aug. 2002.

[27] P. Jaganathan, K. Thangavel, A. Pethalakshmi, and M.
Karnan, “Classification rule discovery with ant colony
optimization and improved Quick Reduct algorithm,”
IAENG Int. J. Comput. Sci., vol. 33, no. 1, pp. 50–55,
Mar. 2007.

[28] D. Martins, M. D. Backer, R. Haesen, J. Vanthienen, M.
Snoeck, and B. Baesens, “Classification with ant colony
optimization,” IEEE Trans. Evol. Comput., vol. 11, no.
5, pp. 651–665, Oct. 2007.

[29] Y. Lui, Z. Qin, Z. Shi, and J. Chen, “Rule discovery with
particle swarm optimization,” in Content Computing,
2004, pp. 291–296.

[30] C. R. Hema, M. P. Paulraj, S. Yaacob, A. H. Adom, and
R. Nagarajan, “Particle swarm optimization neural
network based classification of mental tasks,” in 4th
Kuala Lumpur International Conference on Biomedical
Engineering 2008, 2008, pp. 883–888.

[31] S. Banerjee, A. Bharadwaj, D. Gupta, and V. K. Panchal,
“Remote sensing image classification using artificial bee
colony algorithm,” Int J ComputSciInf, vol. 2, no. 3, pp.
67–72, 2012.

[32] M. B. Pouyan, R. Yousefi, S. Ostadabbas, and M.
Nourani, “A Hybrid Fuzzy-Firefly Approach for Rule-
Based Classification,” in Proceedings of the Twenty-
Seventh International Florida Artificial Intelligence
Research Society Conference, 2014, pp. 357–362.

[33] S. S. Jamsandekar and R. R. Mudholkar, “Fuzzy
Classification System by Self Generated Membership
Function Using Clustering Technique,” BIJIT, vol. 6, no.
1, pp. 697–704, Jun. 2014.

[34] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy K-
nearest neighbor algorithm,” IEEE Trans. Syst. Man
Cybern., vol. SMC-15, no. 4, pp. 580–585, Jul. 1985.

[35] R. Jensen and Cornelis, Chris, “Fuzzy-rough nearsest
neighbor classification,” in Transactions on rough sets
XIII, Springer Berlin Heidelberg, 2011, pp. 56–72.

[36] N. Verma, N. Verma, and A. B. Patki, “Rough Set
Techniques for 24 Hour Knowledge Factory,” BIJIT,
vol. 4, no. 1, pp. 421–426, Jun. 2012.

[37] S. V. Chande and M. Sinha, “Genetic Algorithm: A
Versatile Optimization Tool,” BIJIT, vol. 1, no. 1, pp. 7–
12, Jun. 2009.

[38] N. Suguna and K. Thanushkodi, “An Improved k-
Nearest Neighbor Classification Using Genetic
Algorithm,” Int J ComputSci Issues, vol. 7, no. 2, pp.
18–21, Jul. 2010.

[39] M. A. Jabbar, B. Deekshatulu, and P. Chandra,
“Classification of heart disease using K-nearest neighbor
and genetic algorithm,” Procedia Technol., vol. 10, pp.
85–94, Dec. 2013.

[40] Shrivastava, Shailendra Kumar and P. Mewada, “ACO
Based Feature Subset Selection for Multiple K-Nearest
Neighbor Classifiers,” Int. J. Comput. Sci. Eng., vol. 3,
no. 5, pp. 1831–1838, May 2011.

[41] I. Babaoğlu, O. Findik, E. Ulker, and N. Aygul, “A novel
hybrid classification method with particle swarm
optimization and k-nearest neighbor algorithm for
diagnosis of coronary artery disease using exercise stress
test data,” Int. J. Innov. Comput. Inf. Control, vol. 8, no.
5, 2012.

[42] M. CHEN, J. GUO, C. WANG, and Fenlin WU, “PSO-
based Adaptively Normalized Weighted KNN
Classifier,” J. Comput. Inf. Syst., vol. 11, pp. 1407–
1415, Apr. 2015.

[43] H. Yigit, “ABC-based distance-weighted kNN
algorithm,” J. Exp. Theor. Artif. Intell., vol. 27, no. 2,
pp. 189–198, Mar. 2015.

[44] İ. Babaoğlu, “Diagnosis of Coronary Artery Disease
Using Artificial Bee Colony and K-Nearest Neighbor
Algorithms,” Int. J. Comput. Commun. Eng., pp. 56–59,
2013.

[45] A. Hashmi, S. Goel, N. Goel, and D. Gupta, “Firefly
Algorithm for Unconstrained optimization,” IOSR J.
Comput. Eng. IOSR-JCE, vol. 11, no. 1, pp. 75–78, Jun.
2013.

[46] F. Iztok, X.-S. Yang, and J. Brest, “A comprehensive
review of firefly algorithms,” Swarm Evol. Comput.,
vol. 13, pp. 34–46, Dec. 2013.

[47] X.-S. Yang and X. He, “Firefly algorithm: recent
advances and applications,” Int J Swarm Intell, vol. 1,
no. 1, pp. 36–50, Jan. 2013.

[48] N. Ali, M. A. Othman, M. N. Husain, and M. H. Misran,
“A Review of Firefly Algorithm,” ARPN J EngApplSci,
vol. 9, no. 10, pp. 1732–1736, Oct. 2014.

[49] X.-S. Yang, “Firefly Algorithm, Lévy Flights and Global
Optimization,” in Research and development in
intelligent systems XXVI, 2010, pp. 209–218.

[50] S. M. Farahani, A. A. Abshouri, B. Nasiri, and M. R.
Meybodi, “A Gaussian Firefly Algorithm,” Int. J. Mach.
Learn. Comput., vol. 1, no. 5, pp. 448–453, Dec. 2011.

[51] S. Yu and S. Yang, “Self-Adaptive Step Firefly
Algorithm,” J. Appl. Math., Nov. 2013.

[52] A. Ritthipakdee, A. Thammano, and N. Premasathian,
“An Improved Firefly Algorithm for Optimization
Problems,” in The 5th International Symposium on
Advanced Control of Industrial Processes (ADCONIP
2014), 2014.

