
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 990

Probe on Syntax Analyzer

Farhanaaz1, Sanju. V2 and M. Vinayaka Murthy3

Submitted in April, 2016; Accepted in July, 2016
Abstract – Syntax analysis is the second phase of the
compiler. Checks the syntactical structure of the
programming language due to the limitation of the regular
expression. Grammar is used to describe the syntax or rules
of the source language. Parser is a tool used to check the
syntactical structure and parsers are grammar specific.
Though the significant work has be done on the parallel
compilation process but still the parsing area is difficult to
implement parallel on multi-core machines.

Index Terms – Parallel Compilation, parallel Syntax
Analysis, Context Free Grammar, Top Down Parsing and
Bottom up Parsing.

NOMENCLATURE
NOC - Network On Chip, CFG – Context Free Grammars,
CFL – Context Free Language

1.0 INTRODUCTION
Grammar defines the syntactic structure of a programming
language. Each grammar defines a unique programming
language. Change in the grammar will result in programming
language. Roles and responsibilities of the syntax analyzer
[1][2][3][4] are :
(i) To take token as a input from lexical analyzer
(ii) To check if tokens could be generated from the specified
grammar of the programming language.
(iii) To report syntactical errors in the program if any.
(iv) To construct parse tree.

Figure 1: Position of a Parser in Compiler

1 Assistant Professor, School of Computer Science and
Applications, REVA University, Bangalore, India, Email:
farhanaaz3@gmail.com
 2Associate Professor & Head, Department of CSE, Muthoot
Institute of Technology and Science, Ernakulam, India, Email:
sanjuv21@gmail.com
 3Professor & Assistant Director, Research and Innovation,
REVA University, Bangalore, India,
Email: vinayakamurthy@revainstitution.org

2.0 GRAMMAR
A grammar is the powerful tool for describing the language.
Grammars are language generators. Noam Chomsky gave the
mathematical model for the grammars in 1956.

Though it can’t describe natural languages but it is very useful
to describe computer languages. There are different types of
grammar.
 (i) Type 0: unrestricted grammar include all formal
grammars. The languages generated by this grammar is known
as recursively enumerable languages.
(ii) Type 1: Context Sensitive Grammar generate Context
Sensitive Languages which is recognized by Non
Deterministic Turing Machine.
(iii) Type 2: Context Free Grammar generate Context Free
Languages which are recognized by Non Deterministic
Pushdown Automaton.
(iv) Type 3: Regular Grammar generate regular languages and
it is recognized by Finite State Automaton.
Out of these Context Free Grammars are used in syntax
analyzer to define a structure of a language.

Class Grammar Languages Automaton /
Machine

Type 0 Unrestricted Recursively
Enumerable

Turing
Machine

Type 1 Context
Sensitive

Context
Sensitive

Linear
Bound

Type 2 Context
Free

Context
Free

Push Down
Automata

Type 3 Regular Regular Finite

Table 1: Types of Languages and their Acceptable
Machines

Figure 2: Chomsky Hierarchy

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 991

2.1 Context Free Grammar
Formally Context Free Grammar is define by G = (N, T, P, S)
N : Finite set of Non Terminals; generally represented by
Upper case alphabets.
T : A finite set of Terminals represented by Lower case
alphabets.
S : Starting Non Terminal symbol of the grammar. S ∈ N
P : Set of rules or productions in Context Free Grammar, each
of the form D→ α, where D ∈ N and α ∈ (N∪T)*. First
production always indicates the start symbol of the grammar.
Below is an example of CFG and the derivation of the string
from the given productions.
S→0S0/1S1/0/1/ε.
Let us derive a string 1001001. Let us start with the
appropriate production
S→1S1→S →0S010S01→S →0S0100S001→S →11001001.
Superscript production indicates the application of that
production in next step. CFG generate CFL. The grammar
generated by G is represented by L(G). L(G) = { w | w ∈ T*,
and S⇒* w} .

2.2 Parse Tree
Parse Tree is the pictorial representation of a derivation. A
parse tree is an ordered tree in which nodes are labeled with
the left side of the production and in which children of the
nodes represents its corresponding right side. Except root and
leaf nodes of the tree others are all non terminals therefore
productions are applied to replace the non terminals with the
RHS of the production and the leaf nodes are all terminals.
Formally Parse tree is defined as, If grammar G is the CFG
then G = (N, T, P, S). If G is the derivation
tree if and only if
(i) The root is the Start symbol.
(ii) Internal nodes are Non terminals from N.
(iii) Leaf nodes are Terminals from T.
(iv) If leaf node is # then it has no siblings.
Yield of the parse tree is the list of labels of all the leaf nodes
from left to right. If α is the yield of derivation tree for
grammar G , then S ⇒* α.

Figure 3: Parse Tree

2.3 Left and Right Linear Grammar
If all the productions in the CFG are in the form A → Bw / w
then it is known as left linear Grammar. If the productions are
of the type A → wB / w then it is a right linear grammar. A
and B are variable and w ∈ T*.
 Left most and Right most derivation

To restrict the number of choices while deriving a string we
opt for left most and right most derivation. A derivation is said
to be left most iff the left most non terminal is replaced by the
appropriate production till the string is formed. Likewise in
the right most derivation the right most non-terminal is
replaced with the appropriate production. Left most and right
most derivations can be derived for the string aabbaa and the
grammar is S → aDS / a and A → SbD / SS / ba. Left most
Derivation : S → aDS → aSbDS → aabDS → aabbaS →
aabbaa. Right most Derivation : S → aSD → aDa → aSbDa
→ aSbbaa → aabbaa.

2.4 Issues in writing a Context Free Grammar for
programming language
 1) Elimination of Ambiguous grammar: A grammar is
ambiguous, if for at least one string in the language, grammar
produces more than one parse tree. Derive a3 using grammar
S→ aS / Sa / a Sometimes ambiguity can be eliminated by
rewriting the grammar. For the simplicity purpose we can
restrict the format of the Context Free grammar without
reducing the language generation power. Let L be a non-
empty CFL, then CFL can be generated by a CFG G with the
following properties :
(i) Elimination of Useless Symbols : variables or terminals
that do not appear in any derivation of a terminal string from
start symbol.
(ii)Elimination of ε productions : If production of the form
D→ε for some variable D.
(iii) Elimination of unit productions : If productions of the
form D→E for variables D and E.

Figure 4: Different Parse Tree for a3

2) Elimination of left Recursion: Recursive non terminals are
very useful which allows grammar to describe infinite number
of input but left recursive grammars couldn’t be handled by
top down parsing techniques. A grammar contains a
production of the form A → Aα , where A is non terminal;
then this production can be replaced by a non left recursive
production of the form A → βB and B→ α, B→ε, without
changing the strings derivable from A. This grammar is of the
type Left recursive. This procedures remove left recursion
from A to B generating same language as A. This procedure
does not eliminate left recursion involving derivations of more
than 2 steps. Above procedure can be extended to n number of
variables on left hand side of the production.
3) Elimination of Left Factoring: Left factoring is the
powerful tool in generating grammar which is accepted by
predictive parsers or top down parser. Suppose we have the
production of the form A → αβ1 / αβ2 , then on seeing the

Probe on Syntax Analyzer

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 992

input α in the production A it is not clear which production is
of right choice, this can be rewritten in the form A → αB and
B → β1 / β2.

3.0 PUSHDOWN AUTOMATON
Finite Automaton cannot store / remember anything.
Therefore Finite Automaton can be extended by adding
auxiliary storage to accept CFG. Push down automaton is a
finite automaton with control of both an input tape and a stack
to store.
Formally, PDA is defined as a Finite Automaton P = (Q, Σ,
Γ, S, F, δ)
Q : Non empty finite set of states
Σ : Non empty finite set of input symbols
Γ : Stack alphabet
S : Initial State, S ∈ Q
F : Non empty finite set of Final State/(s) and F ⊆ Q
δ : Transition Function which maps to (Q ×Σ* ×Γ*) →
(Q ×Γ*).
Moves in Push Down Automaton
(i) δ(q, a, z)→(p, y) : If PDA is in the state q, with z as the
top of the stack and with a on the input tape then PDA
replaces z by y on top of the stack and enters state p.
(ii) δ(q, a, ε)→(p, a) : Push a on to the stack.
(iii) δ(q, a, z)→(p,ε) : Pop element from stack.
(iv) δ(p, a, z)→(p, z) : PDA does nothing.
Push Down Automata can recognize languages for which
there exist Context Free Grammar.

4.0 PARSER
Parser is the program for parsing. Parsing is the technique
which it produces an output as a parse tree for the input string
w. An error message will be indicated if w is not a valid for
the given grammar, otherwise parse tree is generated. Parsing
is classified based on the rules implemented to arrive at the
solution. Following are the types

4.1 Top Down Parsing
In a top down approach, a parser starts constructing a parse
tree from the top node called root node and it completes the
parse tree in pre order fashion for the given input string. Top
down parsing holds the technique form leftmost derivation for
an input string. The types of top down parsing is depicted in
Figure6.

Figure 5: Types of parsing.

1) Recursive-descent parsing: This is one of simplest form of
top down approach. The program consist of a set of

procedures, one for each non terminal of the grammar.
Execution begin with the process for the start symbol, which
stops and announces hit if its procedure scans the entire input
string. Following is the procedure for the non terminal A in
the grammar.
void A(){
Choose an A production, A→ X1 ,X2 . . . Xk ;
for(i = 1 to k){
if(Xi is a non terminal)
call procedure Xi ();
else if(Xi equals the current input symbol a)
advance the input to the next symbol; else
Error occurred; }
}

Figure 6: Types of Top down Parsers

General recursive-descent may need backtracking technique
for repeated scans over input to arrive at the correct input. To
allow backtracking the above code, the code needs to be
modified in such a way that, it not only checks for current non
terminal but also for all non terminals available in grammar to
find the correct productions which matches with the input
string, if it does not match then it raises an error.
Back Tracking Technique: Every string generated by applying
productions on trail and error method based on the input string
matched. If the prediction of the production is successful then
parsing continues, otherwise in case of mismatch then at this
stage previous prediction has to be rejected and pointer has to
be set to the previous position and next production is
predicted. This is known as Backtracking. Backtracking is one
of the major drawback of top down parser. Predictive parser is
the efficient non backtracking form of top down parser, where
lookahead symbol unambiguously determines the procedure
for each non terminal and hence no backtracking occurs.
Following example demonstrates the Backtracking
technique. Consider the following grammar
S→ hQf
Q→al/a
Using above grammar evaluate string w=haf
Step 1: S is the start symbol, therefore grammar starts from the
symbol S and has only one production.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 993

Figure 7

Step 2: Now input pointer is set to Q because h is a terminal.
At this stage Q tends to 2 production that is Q → al/a. Parser
predicts the production and Q is expanded.

Figure 8: Backtracking

Step 3: Correct alternative is predicted and yield of the parse
tree is w = haf.

Figure 9: Alternative production

2) Predictive Parser: Recursive Descent parser which needs no
back tracking is called predictive parser. Predictive parser
technique can exactly decide that which production to be used
based on the next input symbol. Predictive parser program
maintains a stack which hold only non terminals and uses two
dimensional table created from grammar.
Parser acts on the basis of two symbols that a symbol on top
of stack and look ahead pointing to input buffer. Based on the
various possibilities
1. If Stack top $ = lookahead symbol $ then parser halts.
Successful Parsing Condition.
2. If Stack top is a terminal. Stack top t = lookahead symbol t
then parser pops t and advances lookahead pointer, otherwise
an error is raised.
3. If Stack top is a non terminal then parser predicts the entry.
Non terminal is popped from stack and the right side of the
production is pushed on to the stack from left to right. If
appropriate production is not present then parser raises an
error.
Predictive Parsers can be constructed for the class of grammar
called LL(1). LL(1) grammar covers most of the programming
constructs.
FIRST and FOLLOW Computation : FIRST and FOLLOW
are the two necessary preliminary functions which is used in

LL grammar. These functions allows us to select which
productions to apply, based on the next input symbol.

Figure 10: Model of Non recursive Parser

Figure 11: Meaning of LL(1)

FIRST : is function which gives the set of terminals that
begins the strings derived from the production rule. Formally
FIRST(α) = { t / (t is the terminal and α ⇒* tβ) or (t→ ε
and α ⇒*ε)}
FIRST Computation : To define FIRST(α). Let us define for
a single symbol D
1. If D is a terminal : FIRST(D) = D.
2. If D is ε : FIRST(D) = ε.
3. If D is non terminal : In this case we must look at all
grammar productions with D on left. If production is of the
form D → Y1Y2 Y3 · · · Yn , where Yi is single terminal
or non terminal. a is in FIRST(D), if for some i, a is in
FIRST(Yi)
and ε is in all of FIRST(Y1)· · · FIRST(Yi) that is Y1 ·
· ·
Yi-1 ⇒* ε. If ε is in FIRST(Yj) where j = 1,2,...,n then add ε to
FIRST(D). Everything in FIRST(Y1) is surely in FIRST(D). if
Y1 does not derive ε then we add nothing more to FIRST(D)
but if Y1 ⇒* ε then FIRST(D) = FIRST(Y1) -{ε} ∪
FIRST(Y2) and same method is applied to subsequent non
terminals.
FOLLOW : is function which gives the set of terminals that
can appear immediately to the right side of the given symbol.
It is defined for the single non terminal. Formally :
FOLLOW(A) = {t / (t is the terminal and S ⇒ +αAtβ) or (t

Probe on Syntax Analyzer

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 994

is EOF and S⇒*αA)}. FOLLOW Computation : To define
FALLOW(A). A is a single non terminal. FOLLOW(A) =
EOF, if A is the start non terminal. For each production
X→αAβ put FIRST(β) - {ε} in FOLLOW(A). if ε is in
FIRST(β)then put FOLLOW(X) into FOLLOW(A). For each
production X→αA, put FOLLOW(X) into FOLLOW(A).
Construction of Parsing Table.
Parsing Table is constructed based on the function call select.
Select function can be defined by First and Follow function. If
production is of the form A→X then Select(A→X) =
FIRST(FIRST(X) x FOLLOW(A)).
A Context Free grammar whose parsing table has no multiple
entries is said to be LL(1). If LL(1) has same entries then the
grammar is ambiguous and/or left recursive and/or not left
factored. LL(1) Property : If non terminal appears on the left
side of more than one production and select for those
productions are disjoint. If this property hold good for a given
grammar then grammar is LL(1). Following is the example to
check id following grammar is LL(1).
E → PX
X → +PX / ε
P → RK
K → *RK / ε
R → (E) / id
FIRST and FOLLOW Computations : Compute FIRST and
FOLLOW Functions for all the non terminals. Both are
computed based on the given definitions above.
FIRST(E) = FIRST(PX) because : E →PX
= FIRST(P)
= FIRST(RK)
= FIRST(R)
= {(, id }
Likewise for the other productions FIRST function is
computed
FIRST(X) = {+, ε}
FIRST(P) = FIRST(R) = {(, id }
FIRST(K) = {*, ε}
FIRST(R) = {(, id }
Now Compute FOLLOW function
FOLLOW(E) = { $,) }
FOLLOW(X) = FOLLOW(E) = { $,) }
FOLLOW(P) = FIRST(X) ∪ FOLLOW(E) = { +, ε } - {ε} ∪
{ $,)} = { +,), $ }
FOLLOW(K) = FOLLOW(P) = { +,), $ }
FOLLOW(R) = FIRST(K) ∪ FOLLOW(P) ∪ FOLLOW(K)
=
{*, ε} -{ε} ∪ { +,), $ } ∪ { +,), $ } = { *, +,), $}
Now Construct Parsing Table
To Construct parsing table which is also called as M table, we
need Compute Select Function which guides us to fill the
table. Select function is defined by FIRST and FOLLOW
functions. For any production say X→W. Select function for
the given production is defined as
SELECT(X→W) = FIRST(FIRST(W) x FOLLOW(X))
Let us compute Select functions for all the productions

SELECT(E→PX) = FIRST(FIRST(PX) x FOLLOW(E)) =
FIRST({(, id} x {$,)}) = FIRST{((, $), ((,)), (id, $), (id,)}
= {(, id}.
Similarly for the other productions SELECT function is
computed.
SELECT(X→+PX) = FIRST(FIRST(+PX) x FOLLOW(X)) =
FIRST({+} x { $,) }) = { + }
SELECT(X→ε) = FIRST(FIRST(ε) x FOLLOW(X)) =
FIRST({ε} x { $,)}) = {$}
SELECT(P→RK) = FIRST(FIRST(RK) x FOLLOW(P) = {(,
id}
SELECT(K→*RK) = { * }
SELECT(X→ ε) = { +,), $}
SELECT(R→(E)) = { (}
SELECT(R→id) = {id}
Following is the Parsing Table
The above table is filled on the following basis. For the
production E →PX, SELECT(E) = { (, id } in this case the
corresponding entry for M[E, (] = PX and M[E, id] = PX.
Likewise other entries are made in the table based on Select
function.

Non-
terminals

(id + *) $

E PX PX

X +PX ε ε

P RK RK

K ε *RK ε ε

R (E) id
Table 2: Predictive Parsing Table

LL(1) property : A grammar is an LL(1) iff the parsing table
has no entries that are multiply defined. If a non terminal
appears on the left side has more than one production then
SELECT for those productions are disjoint, this is LL(1)
property. For the same grammar above, non terminals which
has more than one production are X, B and F.
For production X→+PX, X→ε SELECT function for X,
SELECT(X→+PX) ∩ SELECT(X→ε) = φ
For production K→*RK andK→ε SELECT(K→*RK) ∩
SELECT(K→ ε) = φ
For production R→(E) and R→id SELECT(R→(E)) ∩
SELECT(R→ id) = φ
Therefore X, K and R have LL(1) property. The given
Grammar is LL(1).

4.2 Bottom Up Parsing
In bottom up approach, Parser starts constructing parse tree
from the leaf node and works towards root node. Simplest
form of Bottom up parsing is Shift Reduce Parser.
1) Shift Reduce: Shift reduce parser reduces the given input
string into the start symbol. This parser uses 2 unique steps,

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 995

namely shift and reduce step. Data Structure used in this
parser are Stack, input buffer, data structures to store and
access the left and right of the production. Shift reduce parser
performs various actions.

Figure 12: Shift reduce parser

(1)Shift action: Parser shifts the input symbol from the input
tape on top stack one symbol at a time.
(2) Reduce action: It reduces top of the stack using appropriate
production. The reduction is performed by popping the right
side of the rule from the stack and pushing the left side of the
production.
(3) Accept action: Parser announces the successful parse if the
stack contains the start symbol and input tape is empty then
input is accepted.
(4) Error action: If parser is not able to shift or reduce or
accept, it announces syntax error has occurred.
Initial Configuration: $ is push on to stack to mark end of the
stack and $ is concatenated at the end of the input string to
indicate the end of string.
Limitations of Shift Reduce Parser :
(1) Shift Reduce Conflict : If Context Free Grammar has 2
productions of the form A→β and β→βpγ. If B is on top of
the stack and next token is p then parser is not able to decide
whether it has to shift or reduce. This is known ans shift
reduce conflict.
(2) Reduce Conflict: If Context Free Grammar has 2
productions of the form A→α and B→α. If α is on top of the
stack then in this case parser is not able to decide which
production to apply to perform reduce action. This situation is
Reduce Conflict.
2) LR Parser: LR parser is a non recursive, shift reduce,
bottom up parser. LR grammars are a subset of CFG for which
LR parsers can be constructed.

Figure 13: Model of LR Parser

LR parser require input, output, a stack, driver program and a
parsing table. Parsing table consist action and goto procedure.
Driver program remains same for all parsers, only parsing
table changes according to the grammar. The parsing program
reads characters from an input buffer one at a time. A program
uses a stack to store a string of the form S0 X1S1X2 · · · SmXm
where Sm is on top of the stack and Xi is grammar symbol and
Si is a State. If Sm is top of the stack and ai is the current input

symbol then driver program perform action[Sm, ai] procedure
which can one of the following actions
(1) Shift S, where S is the state action[Sm, ai] = shift s, parser
executes the shift move entering the configuration. A
configuration of an LR parser is a pair whose first component
is a stack content and second component is a the input.
(2) Reduce by the grammar production A→β action[S m,
ai]=reduce →β
(3) accept action[Sm,ai] = accept, paring successfully
completed.
(4) error action[Sm, ai] = Error, parser discovers an error and
calls for error recovery routine.

5.0 PARALLEL SYNTAX ANALYZER
Research was started on parallel compilation with the advent
of microprocessors early in 1970 where Lincoln[12] first
proposed the idea of parallel object code. Later Zosel[5]
recognized the parallel loops. Mickunas and Shell[6]
recognized the area in a compilation method where
parallelization can be achieved and also proposed parallel
lexical analysis, where lexical analysis can be broken into 2
sections called scanning and screening. They also proposed a
parallel parsing method based on LR parsing. The 2 major
requirement of the parallel processing is determining the ends
of the reducible phrase and performing reduction parser was
also extended, called piecewise LR (PLR). Many researchers
attempted many other techniques to achieved parallelism
during compilation process. Parallel syntax analyzer was
implemented on different files[7]. This was achieved by
selecting the file and scheduling to the specific processor for
syntax analysis using processor affinity[8]. To estimate the
speed up[9] in parallel processing 3 different modules were
written.
(1) A Simulator, which emulates the behavior of the
processor.
(2) A Generator, which keeps track of time as simulator
works.
(3) An Estimator, computes the approximate numbers of basic
parsing operation.
To compare the performance with that of parallel compilation
in multi-core with respect to single core, Jacqus, Hickey and
Joel[10] Computed upper Bounds for Speed up gained
synchronous, multi purpose, bottom up, no back tracking
parsing generated by bottom up parsing along with few
assumptions made by them. Issues in implementing Parallel
parsing on multi core machines was also identified[11]. Issues
are division of code and Synchronization, Processor issues,
Threading, Task distribution and Context Switching.

6.0 CONCLUSION
Though the work has been done but still the significant
research has to carried out in this field to parallel syntax
analysis. Various attempts has been made to parallelize
parsing but still issues exists. Major work has to be done in
identifying the area to be parallelized, splitting the code and
synchronizing it. Future work is to develop syntax analyzer for
NoC architecture.

Probe on Syntax Analyzer

Copy Right © BIJIT –2016; July - December, 2016; Vol. 8 No. 2; ISSN 0973 –5658 996

REFERENCES
[1]. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffery D.

Ullman Principles of Compiler Design, Addison
Wesley Publication Company, USA, 1985.

[2]. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffery D.
Ullman Compilers : Principles, Technique and Tools,
Addison Wesley Publication Company, USA, 1986.

[3]. Jean Paul Tremblay,Paul G. Sorenson; The Theory and
Practice of Compiler Writing, McGraw-Hill Book
Company USA 1985.

[4]. David Gries; Compiler Construction for digital
Computers, John Wiley & Sons Inc. USA, 1971.

[5]. M. Zosel; A Parallel Approach to Compilation, Conf.
REc. ACM Sysposium on Principles of Programming
Languages, Boston, MA, pp. 59-70, October 1973.

[6]. M. D. Mickunas, R. M. Schell; Parallel Compilation in
a Multiprocessor Environment, Proceedings of the
annual conference of the ACM, Washington, D.C.,
USA, pp. 241246, 1978.

[7]. Amit Barve and Brijendra Kumar Joshi; Parallel Syntax
Analysis on Multi-Core, International Conference on
Parallel, Distributed and Grid Computing, 2014.

[8]. http://www.linuxjournal.com/article/6799
[9]. Jacques Cohen and Stuart Kolodner; Estimating the

Speedup in Parallel Parsing, IEEE Transaction on
Software Engineering Vol SE - 11 1985.

[10]. Jacques Cohen, Tomothy Hickey and Joel Katcoff;
Upper Bound for Speed up in Parallel Parsing, Journal
of the Association for Computing Machinery Vol. 29
pp. 408 - 428 1982.

[11]. Amit Barve and Brijendra Kumar Joshi; Issues in
Implementation of Parallel Parsing on Multi-Core
Machines, International Journal of Computer Science,
Engineering and Information Technology Vol 4, 2014.

[12]. N. Lincoln; Parallel Compiling Techniques for
Compilers, ACM Sigplan Notices, 10(1970), pp. 18-31,
1970.

	1.0 INTRODUCTION
	2.0 GRAMMAR
	3.0 PUSHDOWN AUTOMATON
	4.0 PARSER
	5.0 PARALLEL SYNTAX ANALYZER
	6.0 CONCLUSION
	REFERENCES

