

BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT –2016; January - June, 2016; Vol. 8 No. 1; ISSN 0973 –5658 940

Quick Survey of Benefits from Control Plane and Data Plane Separation in
Software-Defined Networking

Pulkit Tanwar1, Rajender Gohil2 and Mudit Tanwar

3

Submitted in November, 2015; Accepted in February, 2016
Abstract — Software-Defined Networking (SDN) involves
programmable networks. It has recently gained popularity
because of simplicity in networks, easy evolvement and
providing innovation in network programmability. In this
paper, we survey the SDN infrastructure and the OpenFlow
standard, examine the need for Control Plane and Data Plane
separation, and study various SDN controllers and SDN
application in Data Centers.

Index Terms - Control Plane, Data Plane, Software-Defined
Networks, Survey, Comparative study, Networking,
Virtualization.

1.0 INTRODUCTION
Earlier Traditional networks were referred to as “Internet
ossification” because it was highly coupled network [25]. There
was very tight coupling between Control Plane and Data Plane.
This tight coupling discourages the evolvement of networks. All
the decisions of data flowing through the network were made on
boards’ network element.
Software-Defined Networking, SDN is the newest approach to
Computer Networking that separates the data plane i.e. the
network devices that forward traffic from the control plane i.e.
the software logic. This separation of data plane and control
plane allows the network operator to control the network
behavior from a single high level control program. This
technology is being applied in mobile open networks and
mobile transaction systems [26] to efficiently handle mobility in
the context of future 5th

The deployment of Software-Defined Networking is used to
solve complex Network management problems in real networks.
SDN started when distributed network configuration was found
to be unpredictable, faulty in operation and buggy. [1] To
overcome this, in 2004, Portal Gateway Protocol (PGP) [2] was
introduced and the central control point was named as Routing
Control Platform (RCP) [1]. In 2005, this architecture was
generalized and named as 4D architecture [3]. This 4D
architecture spotlight the separation of the routing decision logic
and the protocols of the network. In 2008, OpenFlow standard
[4] was introduced which standardized the information
exchange between data plane and control plane. An industrial
driven organization is formed called as Open Network
Foundation [5] to promote Software-Defined Networking and
OpenFlow standard protocol.

 Generation of mobile networks [27].

1, 2, 3

Delhi Technological University, New Delhi, India
Department of Computer Engineering,

Email Id: 1pulkit.tan45@gmail.com, 2rajgohil04@gmail.com
and 3

mudit1102@gmail.com

In this paper, we survey the Software-Defined Networking
paradigm and study in detail the infrastructure and architecture
of the same. We examine the need for control and data plane
separation. We then see the overview of various SDN
controllers. At the end, we study SDN application in Data
Centers.

2.0 DECOUPLING OF DATA PLANE AND CONTROL
PLANE
In Data Communication networks, end user devices are
interconnected with network infrastructure. This network
infrastructure includes many switching elements such as
switches and routers and they are shared between hosts. These
routers and Switches are closed devices which have very
limited interfaces. So it is very cumbersome for this network to
evolve.
Software-Defined Networking infrastructure consists of two
parts:
Control Plane
Control Plane is the logic that controls the forwarding behavior
in the network. It is also regarded as the brain of the network.
Examples:
• Routing Protocols
• Network middlebox configuration

i. Firewall configuration
ii. Load balancer configuration.

Data Plane
Data Plane forwards the traffic according to control plane logic.
Examples:
• IP forwarding
• Layer 2 switching.
The separation of data plane and control plane can be used to
evolve and develop them independently. This separation also
helps the network to be controlled from a single high level
software program which makes debugging easier. Both
software and hardware can be evolved independently.
Continual Challenges in separation of control and data plane
includes:
• Scalability: Control element responsible for a large

number of forwarding elements.
• Reliability: Controller may fail or compromise.
• Consistency: Ensuring consistency across multiple control

replicas.
Various opportunities from Control and Data Plane separation
include:
• Server load balancing [16]
• Virtual Machine Migration in Data Centers
• Network virtualization

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; January - June, 2016; Vol. 8 No. 1; ISSN 0973 –5658 941

• New routing services in the wide area
• Using multiple wireless access points
• Seamless mobility and migration
• Security in Enterprise Networks
• Denial-of-service attack detection
• Dynamic access control
• Adaptive traffic monitoring
• Energy-efficient networking

Figure 1. Separation of control plane and data plane.

Switches only have forwarding elements.

3.0 CONTROL PLANE
3.1 OpenFlow Communication Protocol Specification
OpenFlow protocol [5] defines the message format and
separates the data and control plane. OpenFlow controller
communicates with "OpenFlow switch" over a secure channel
and the protocol effectively instructs the "OpenFlow" switch to
update its flow table entries.
3.2 OpenFlow Switch Components
• Flow Table: The flow table performs packet lookup. Flow

tables consist of flow entries, which determine where the
packet is to be forwarded. Flow entries consist of: (1)
match fields, used to match incoming packets; (2)
counters, used to count statistics like number of packets
received, number of data bytes sent; and (3) a set of
actions, to be applied upon a match. The lookup function
compares the fields in each packet to a flow table that
reside in the switch and looks for a match. The action of a
switch depends on the match found. If no match is found,
traffic is sent to the controller.

• Secure Channel: It is used for the communication of
switch and the controller.

3.3 SDN Controller
Some of the important SDN Controllers include:
• NOX [7] : It was one of the widely used open-source, First

Generation OpenFlow controller. In NOX, Users
implement the control in C++ programming language. It
supports OpenFlow v.1.0. In NOX, the programmer first
writes a control program that registers for events and then
writes event handlers that respond to those events.

Figure 2. OpenFlow Switch Components consisting of flow

table and secure channel. Control logic is moved to the
controller.

• POX [8] : It is NOX implemented in python
programming language. POX only supports OpenFlow
v.1.0.

• Ryu [9] : It is an Open-Source python controller. It
supports OpenFlow v. 1.0, 1.2, 1.3, and 1.4. Ryu also has
OpenStack [17] integrations.

• Floodlight [6] : It is an Open-Source Java controller. It
supports OpenFlow v. 1.0. Floodlight is maintained by
Big Switch Networks. It was integration with REST API.

• OpenDaylight [10] : It is a common industry supported
platform. OpenDaylight has OpenStack integrations.

• LoxiGen [14] : It is an existing controller library that
generates OpenFlow language-specific bindings. If the
input is "Wire-protocol descriptions" of a control
protocol, the output would be "protocol specific bindings"
in different languages.

Network Virtualization is the abstraction of the physical
network that allows the support of multiple logical networks
running on a common shared physical substrate. Flowvisor [18]
is a proxy controller which can be employed to add network
virtualization to OpenFlow networks. It permits diverse
controllers to concurrently control the overlapping sets of
switches.
Various aspects of the network that can be virtualized include:
• Nodes: Virtual Machines
• Links: Tunnels
• Storage
SDN separates the Control Plane and the Data Plane, whereas
Virtual Networks separate logical and physical networks.
Network virtualization provides: 1. Rapid innovation, services
are delivered at software speeds. 2. New forms of network
control, it makes possible to instantiate multiple logical
networks on top of a single physical network. 3. Vendor Choice
4. Simplified programming and operation by allowing the
network operator to see the network through a logical
abstraction
Example: Virtual Machine Environment: Xen [20].
Xen hosts allow multiple guest operating systems that run on
the same shared physical hardware. Domain0 runs control
software in the XenoLinux environment.

Quick Survey of Benefits from Control Plane and Data Plane Separation in Software-Defined Networking

Copy Right © BIJIT –2016; January - June, 2016; Vol. 8 No. 1; ISSN 0973 –5658 942

4.0 PROGRAMMABLE DATA PLANE
In a conventional data plane, first the router receives the
packet. It then examines the packet header for its destination. It
looks for the forwarding table for the next hop output interface.
It then modified the header and passes the packet to the
appropriate output interface.
Data plane can easily be customized as it consists of streaming
algorithms that act on packets.
The data plane can perform the following functions:
• Forwarding
• Shaping and Scheduling
• Deep Packet Inspection
• Traffic Monitoring
• Access control
• Mapping header fields
• Buffering and marking
Two open platforms being used include:
• Click [19] : Software data plane in user space or the

kernel, Open, extensible and configurable router
framework.

• NetFPGA [11] : Hardware data plane based on FPGAs

5.0 SDN DATA CENTER NETWORKS
One of the applications of Data Centers is mobile cloud
computing [22]. Data centers have multiple tenants or
independent users which allows the users of the data center to
advertise the cost of the shared infrastructure. One of the key
enabling technologies behind data centers is Visualization, the
ability to run multiple virtual machines on one shared physical
machine.
In conventional Data Center topology, the core of the data
center is connected to the internet with layer-3 routers. The
servers at the edge of the data center were connected to one
another with layer-2 switches and the access layer was
connected to the core with aggregation switches. This topology
has numerous drawbacks like single point of failure, over
subscription of links higher up in the topology.
A solution to this topology problem is to use an alternate
topology [28] or to design the data center as a multi-rooted fat
tree [12], where capacity increases towards roots of the tree.
The PortLand [13] design introduces a fabric manager which in
combination with positional pseudo MAC address, allows a
layer-2 network to scale to tens to thousands of servers inside a
data center.
In 2012, Google presented a SDN based network connecting its
data centers at the Open Network Summit [15]. B4 [24], one of
the largest SDN deployments, is a Wide Area Network
connecting Google’s Data Centers.

6.0 SDN NETWORK VERIFICATION
Verification of Software-Defined Networks is necessary for the
proper functioning of the Networks without any faults. Proper
configuration provides the flexibility for realizing operational
goals and behavior of the network. For network verification,
correctness specification and constraints for global internet

routing are being employed. Router Configuration Checker
(rcc) is a static configuration tool which is generally used for
fault detection.
Data plane verification can be done by performing symbolic
execution on packets. Veriflow [23], a layer between a
software-defined networking controller and network devices
check network-wide invariants in real time using data plane
state. It monitors the dynamic changes in the network,
constructs a model of the network behavior, and uses custom
algorithms to automatically derive whether the network
contains errors. Veriflow runs its analysis over a forwarding
graph and produces a set of invariant violations and a set of
packets that caused the invariant to be violated. Veriflow
figures out which sets of packets belong to the same
equivalence classes to reduce the number of tests that need to
be run.
Kinetic, a domain specific language enables verifiable, event
based network control. Network policies are represented as
finite state machines, where each finite state machine maps to a
pyretic [21] policy. Pyretic enables sequential composition of
finite state machines.

7.0 CONCLUSION
In this paper, we surveyed the need to decouple the control and
data plane in a network. The control Plane is the logic that
controls the forwarding behavior in a network whereas the Data
Plane forward traffic according to the control plane logic. We
examined various SDN controllers. Further, we studied the
OpenFlow communication protocol. The application of
Software-Defined Networking in Data Centers is also studied.
We also saw the challenges in Control and Data Plane
separation. Software-Defined Networking has many
applications in Optical Networks, Wireless Access Networks
and Enterprise Networks.

REFERENCES
[1]. Feamster et al. “The Case for Separating Routing from

Routers.” Proc. SIGCOMM FDNA, 2004
[2]. Caesar et al. Design and implementation of a Routing

Control Platform. Proc NSDI, 2005
[3]. A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J.

Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4d approach to network control and management.
ACM SIGCOMM Computer Communication Review,
35(5):41–54, 2005.

[4]. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
Openflow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[5]. Open networking foundation.
https://www.opennetworking.org/about.

[6]. Floodlight, an open sdn controller.
http://floodlight.openflowhub.org/.

[7]. N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.
McKeown, and S. Shenker. Nox: towards an operating
system for networks. ACM SIGCOMM Computer
Communication Review, 38(3):105–110, 2008.

[8]. POX. http://www.noxrepo.org/pox/about-pox/.
[9]. Ryu. http://osrg.github.com/ryu/.
[10]. Opendaylight, 2013 http://www.opendaylight.org/.
[11]. NetFPGA platform. http://netfpga.org.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT –2016; January - June, 2016; Vol. 8 No. 1; ISSN 0973 –5658 943

[12]. M. Al-Fares, A. Loukissas, A. Vahdat, A scalable,
commodity data center 2 network architecture, in: ACM
SIGCOMM 2008 Conference on Data 3 Communication,
Seattle,WA, 2008, pp. 63–74

[13]. Niranjan Mysore, Radhika et al. "PortLand: a scalable
fault-tolerant layer 2 data center network fabric."
SIGCOMM '09 Proceedings of the ACM SIGCOMM
2009 conference on Data communication Pages 39-50

[14]. LOxiGen https://github.com/floodlight/loxigen
[15]. Inter-datacenter wan with centralized to using sdn and

openflow. In Open Networking Summit, April 2012.
[16]. Sulata Mitra, Arkadeep Goswami, "Load Balancing in

Integrated MANET, WLAN and Cellular Network",
BIJIT - BVICAM's International Journal of Information
Technology, Vol.3 No.1, January – June, 2011.

[17]. http://www.openstack.org/. Openstack, 2013.
[18]. R. Sherwood, M. Chan, A. Covington, G. Gibb, M.

Flajslik, N. Handigol, T.Y. Huang, P. Kazemian, M.
Kobayashi, J. Naous, et al. Carving research slices out of
your production networks with openflow. ACM
SIGCOMM Computer Communication Review,
40(1):129–130, 2010.

[19]. http://read.cs.ucla.edu/click/. Click
[20]. Barham, Paul, et al. "Xen and the art of virtualizaLon."

ACM SIGOPS Opera.ng Systems Review 37.5 (2003):
164 ‐177.

[21]. J. Reich, C. Monsanto, N. Foster, J. Rexford, and D.
Walker, “Modular SDN Programming with Pyretic,”
USENIX; login, vol. 38, no. 5, October 2013.

[22]. Rana, "Innovative Use of Cloud Computing in Smart
Phone Technology", BIJIT - BVICAM's International
Journal of Information Technology, Vol.5 No.2, July-
December, 2013.

[23]. Ahmed Khurshid , Wenxuan Zhou , Matthew Caesar , P.
Brighten Godfrey, VeriFlow: verifying network-wide
invariants in real time, Proceedings of the first workshop
on Hot topics in software defined networks, August 13-
13, 2012, Helsinki, Finland

[24]. Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong,
Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim
Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experience
with a globally-deployed software defined wan. In
Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 3–14. ACM, 2013

[25]. K. Bhatia, A. K. Pal, Anu Chaudhary, "Performance
Analysis of High Speed Data Networks Using Priority
Discipline", BIJIT - BVICAM's International Journal of
Information Technology, Vol.1 No.2, July – December,
2009.

[26]. R. B. Patel, Anu, "A Mobile Transaction System for Open
Networks", BIJIT - BVICAM's International Journal of
Information Technology, Vol.1 No.1, January – June,
2009.

[27]. Meneses, F.; Corujo, D.; Guimaraes, C.; Aguiar, R.L.
"Multiple Flow in Extended SDN Wireless Mobility",
Software Defined Networks (EWSDN), 2015 Fourth
European Workshop on, On page(s): 1 – 6

[28]. Shafi Patel, Parag Parandkar et al., "Exploring Alternative
Topologies for Network-on-Chip Architectures", BIJIT -
BVICAM's International Journal of Information
Technology, Vol.3 No.2, July – December, 2011.

	1.0 INTRODUCTION
	Email Id: P1Ppulkit.tan45@gmail.com, P2Prajgohil04@gmail.com and P3Pmudit1102@gmail.com

	2.0 DECOUPLING OF DATA PLANE AND CONTROL PLANE
	3.0 CONTROL PLANE
	3.1 OpenFlow Communication Protocol Specification
	3.2 OpenFlow Switch Components
	3.3 SDN Controller

	4.0 PROGRAMMABLE DATA PLANE
	5.0 SDN DATA CENTER NETWORKS
	6.0 SDN NETWORK VERIFICATION
	7.0 CONCLUSION

