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Abstract - This paper extends the comparison of gradient 
based training methods used in the construction of prediction 
models based upon neural network, for sustainable 
insurance. Here adaptive gradient based techniques are 
compared with simple first order gradient based technique 
and with some second order training techniques for learning 
of the network. Convergence towards minimum error, for a 
number of first and second order algorithms are compared 
while utilizing data taken from live data warehouse of life 
insurance. Method of back propagation of errors is adopted 
for training of multilayer feed forward networks, while 
employing these gradient based algorithms of training error 
reduction. This paper is extended version of the paper 
presented in IEEE Conference INDIACom-2014. 
 
Index Terms – Adaptive gradient algorithms, Error back- 
propagation, Error gradient, Multilayer-perceptron, Neural 
network, Supervised training, Sustainable insurance. 
 
NOMENCLATURE 
SDI – Sustainable Development Indicator 
GD – Gradient Descent 
CGM – Conjugate Gradient Method 
SCGM – Scaled Conjugate Gradient Method 
LMA– Levenberg Marquardt Algorithm 
GDA – Gradient Descent with Adaptive Learning Rate 
GDM – Gradient Descent with Adaptive Momentum 
 
1.0 INTRODUCTION 
Insurance industry need to exploit new market opportunities 
that will come from the shift of economic development to 
sustainable development. It has the power to inspire and create 
a greener society and plays a critical role to improve the 
adverse economic, social and environmental consequences of 
financial losses arising from fortuitous and accidental events. 
Sustainable Insurance provides a solution to inflate the 
innovative risk management and insurance ways that we need 
to promote saving of natural resources and to shape a safe 
future for the coming generations. One of the major goals is to 
offer low premium insurance policies and to support the rural  
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communities in developing countries and to offer retirement 
planning solutions across the globe especially in rural areas. 
Insurance in rural areas is a key sustainable development 
indicator (SDI) to safeguard the future of people in rural areas, 
which will otherwise have adverse effects on the usage of 
Based on the historical data; we have an urgent need to predict 
the prospective customers in rural areas and to launch new 
policies to ensure sustainable development. But due to 
complexity of nonlinear relationships present between input 
and output variables in the bulk amount of historical data and 
these types of problems are difficult to solve with older 
techniques. Various technologies of soft computing like Fuzzy 
Logic, genetic algorithms, evolutionary algorithms and 
artificial neural networks can be used to create the prediction 
models; which is related to field of nonlinear optimization 
[1][5]. The idea is to find an optimal solution for the complex 
nonlinear relationship between input and output variable; 
which generally exists in high dimensional data of real life 
problems [8]. 
In this paper, we extend the construction of prediction models 
based upon neural network and trained with adaptive gradient 
based techniques to find an approximation for the complex 
nonlinear relationship present in the insurance data, within the 
desired limits of accuracy [15]. Neural Networks are employed 
to solve complex problems of optimization in the areas of 
software engineering and data mining [17]. The gradient based 
algorithms used for the training of network optimize the 
weights present between the layers of the network until a state 
of minima of error gradient is reached. We descend along a 
multi-dimensional error gradient surface in a direction towards 
the minima of gradient, and proceed iteratively in small steps 
until we reach at the point of minima of the error gradient. We 
extend the study of gradient based training and compare the 
convergence and accuracy of adaptive gradient based 
techniques with first order and second order techniques. 
 
2.0 LITERATURE SURVEY & LEARNING 
METHODOLOGIES 
Taylor approximation of the error energy present during neural 
network training is written as: 

zWEzzWEWEzWE k
TT
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When higher order terms are neglected then, first order and 
second order approximations for E is written as: 
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For minimizing of error function based on the weight vector 
present in neural network, we have used a number of first and 
second order approximation techniques. 
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Steepest descent (simple gradient descent) uses first order 
information to descend toward the point of local minimum. But 
this method shows a poor convergence and uses fixed value of 
learning rate parameter and is not useful for practical 
applications that require a faster speed for output [2]. A careful 
selection of the step size is extremely important for faster 
convergence toward point of minima. With larger values of the 
step size it will diverge and if taken too small it will take longer 
times to converge. Also, complex shape of the multi-
dimensional error surface usually presents irregularities and 
makes moving toward global minima problematic. Researchers 
have suggested modifications to improve the convergence and 
avoid stagnant learning and oscillations by introducing methods 
with varying step size. Proposed methods utilize learning rate and 
momentum parameters to decide for the optimal step size [18, 19]. 
When error is computed according to second order 
approximation then first order information is updated and a 
second order minimization step is performed. We have also 
applied second order methods like conjugate gradient, scaled 
conjugate gradient, which have their own positives and 
negatives in terms of computer memory required, convergence 
speed and accuracy. 
Earlier methods like Newton's method shows a faster 
convergence toward point of minimum training error than first 
order methods, because it also utilizes second order 
information and approximates the second order terms by 
evaluating the hessian matrix [4]. But computation of hessian 
becomes very tedious and time consuming when number of 
input variables goes high and weight vector is large in size[6]. 
This consumes a large memory and processing time and acts as 
a bottleneck in reaching towards the point of minima. 
An improvement on simple Newton Method is Quasi–Newton 
technique in which tedious computations of hessian are 
replaced by an approximation for the hessian [7, 9]. The 
Levenberg Marquardt Algorithm (LMA) provides a trust region 
approach to Gauss–Newton Algorithm [12] and interpolates 
between Gauss–Newton Algorithm and steepest descent 
algorithm. However, LMA is considered more powerful than 
Gauss–Newton Algorithm, because of its capability to find a 
solution in cases, when starting point is very far off the point of 
minimum error. 
Method of conjugate gradient (CGM) bypasses the 
computation of second order derivatives, and the idea is to 
restrict the search directions toward paths that are orthogonal to 
all previous searches [11]. Advantages of CGMare that they 
consume relatively lesser memory for large size problems and 
each step is quite fast [4]. It utilizes a simple line search to find 
the required step size in the search direction and jumps deep 
inside valley of error gradient. The line search avoids the 
tedious calculations of the hessian matrix; but needs to 
calculate the error gradient at a number of points in search 
direction.CGM saves the time for complex computation of 
second order derivatives but still line search along conjugate 
directions every time is very time consuming. The scaled 
conjugate gradient method (SCGM) avoids the need of time 
consuming line search [12, 13] and is applicable to larger 

networks. This method suppresses the instability in 
computation by combining the trust region approach of LMA 
with the CGM approach [12]. SCGM regulates the 
indefiniteness in tedious calculation of hessian with a scalar 
value and computes the optimal step size, without complex and 
costly calculations done during line search by the standard 
CGM. 
 
3.0 FIRST & SECOND ORDER ALGORITHMS 
EMPLOYED FOR TRAINING OF NETWORK 
We have applied following techniques for training the 
predictive neural networks. 
 
3.1 Gradient Descent (GD) Algorithm 
We move towards the point of minimum of error gradient along 
error surface in very small steps and descend in opposite 
direction of the error gradient [14]. New updated weight vector 
is computed as: 
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A control parameter η is introduced as shown in Eq. (5) to 
have an extra control over the speed of training which can 
regulate the amount of overall corrective adjustment applied to 
weight vector. 
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But here learning rate parameterη is kept constant leading to a 
slow convergence towards minima. In areas where the error 
surface is flat and error derivative is small in magnitude and 
here a small value of step size is required to find a significant 
decrease in error. On the contrary, if the error surface is highly 
curved and the derivative is large in magnitude and here small 
values will reduce the speed of convergence. Some variations 
are suggested to improve in these kinds of situations [20, 23, 
24, 25]. 
 
3.2 Gradient descent with adaptive learning rate (GDA) 
GDA attempts to keep the learning step size large for the 
speedy convergence and also keeping the training stable. 
Learning rate is varied according to the complexity of the error 
surface. If the new error surpasses the old error by a predefined 
value, the new weight vector is rejected. Also, the rate of 
learning parameter is decreased by multiplying with fractional 
value which is less than 1. Otherwise, the new weight vector is 
retained. If the new error is lesser than previous error, the 
learning rate is further increased by multiplying with a factor 
slightly greater than 1 [21, 23]. 
Silva and Almeida implemented the same idea in a simpler way 
and suggested the changes to be done in constant fractional 
values. Rate of learning in the training algorithm is enhanced 
by multiplying with a fixed fractional value slightly more than 
1, generally 1.20 and reduced by multiplying with the 
reciprocal of fixed fractional value (i.e. 1/1.20), just to increase 
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or decrease by a small fraction. Momentum term can also 
participate in the algorithm; but is kept at fixed value and is 
non-adaptive in this method [21]. A backtracking process is 
utilized to keep an eye on the continuous increase in the error 
values and to revert back after a number of iterations to the 
historical points of lesser error values as accomplished in the 
preceding iterations. 
 
3.3 Gradient descent with adaptive momentum (GDM) 
GDM allows the network to be sensitive not only to the error 
gradient, but also respond to the latest trends in the error 
surface. Momentum term allows the network to ignore small 
irregularities on the error surface. Without momentum term a 
network can be caught in a small narrow local minimum; and 
momentum helps to slide through such a minimum. The 
parameter momentum constant α  determines the amount of 
influence of previous iterations on the on-going iterations and 
hence can be called to approximate the second order algorithms 
[14, 22]. 
 
Here, delta rule now becomes: 
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The reduced learning due to momentum parameter tries to slow 
down the search in irregular areas on the error surface and 
increased learning rate enhances the search in smooth areas on 
the error surface [21]. 
In initial studies, momentum parameter was kept fixed but later 
studies discovered that this technique suffers from unnecessary 
acceleration, when the current error gradient is in opposite 
direction to the previous searches. This results to move in the 
upward direction instead of going down the slope as required. 
Therefore, it is necessary that the momentum to be adjusted 
adaptively instead of setting it to a constant value [19, 21]. 
 
3.4 Conjugate Gradient Method (CGM) 
Early methods involve the calculation and storing of second 
order derivatives of error energy, the hessian and its inverse, 
which are very tedious and memory consuming, when the 
number of prediction variables is very large and overall weight 
matrix is large in size. Hence, in these situations it is better to 
employ algorithms like CGM; which avoids the computation of 
second order derivatives but still achieves quadratic 
termination. To avoid the need of second order derivatives, 
while descending across the error surface, we restrict the search 
direction to the paths that are orthogonal to all previous 
searches. An enhancement over the steepest descent method, 
the conjugate gradient method comprises of these 
computational steps: 
 

1. Choose the initial search direction opposite to error 
gradient i.e. 00 gd −= . 

2. Compute an optimal value for the training parameter kα
for minimum value of the gradient function with help of 
line search method. 

kkkk dxx α+=+1  
3. Find out a new search direction orthogonal to all previous 

searches and compute the parameterβk  

kkkk dgd β+−= ++ 11

such that: 
 

4. If convergence to point of minima is not reached or the 
stopping conditions set for training are not met, then 
proceed to second step of algorithm. 

 
Researchers have developed a number of variations for 
calculation of parameter kβ such as Hestenes and Stiefel 
variation, Fletcher and Reeves variation, Polak and Ribiere 
variation are widely used for practical purposes. The main 
advantage of conjugate gradient algorithm is that it uses 
relatively less memory when applied to bigger networks and 
bypass computations for second order derivatives. But on the 
negative side the line search method may require more 
computation for an optimal value of the parameter kα [11]. 
 
3.5 Scaled Conjugate Gradient Method (SCGM) 
Similar to CGM, while computing the error gradient, SCGM 
bypasses the tedious and memory consuming computation of 
complex hessian matrix and computes an approximation which 
is close to second order derivatives. A new search direction kd
; but a new step size kα are calculated every time during 
kth

 

iteration in order to update the weight vector for training of 
network, such that: 

)()( kkkk WEdWE <+α  

The quadratic approximation on the error surface )( kWE in a 

neighboring point of the weight vector kW is given by the 
Taylor’s approximation as [16]: 
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But it is very time and memory consuming to exactly calculate 
the hessian )( kWE ′′ and particularly when weight vector is 

large in size, therefore, second order information kS is 
approximated in terms of first order derivatives as: 
 

k
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Where, )( kWE denotes the multidimensional error surface and

kW is the weight matrix forkth )( kWE′iteration, is the error 
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gradient. And parameter kσ denotes the incremental change in 
the network weights for this second order method. In this 
algorithm, the trust region approach of Levenberg Marquardt 
algorithm is used with the conjugate gradient approach to 
calculate the next step size [12]. Variable kc is used to control 

the indefiniteness of )( kWE ′′ . This is done by computing the 
second order information as: 
 

kk
k

kkkk
k dcWEdWES +

′−+′
=

σ
σ )()(

 

And at every step, we keep on computing value k
T

kk Sd=δ
for checking the indefiniteness of )( kWE ′′ . We keep on 

adjusting kc and keep looking at the sign of kδ in each 

iteration, which checks that hessian )( kWE ′′ is not positive 

definite. When 0≤kδ ; kc is increased and kS is calculated 
again. The new weight vector is now calculated as: 

kkkk dWW α+=+1  
, till we reach the point of minima or stopping conditions for 
the training are met. 
 
4.0 EXPERIMENTAL OBSERVATIONS AND RESULTS 
Training functions of first and second order (traingd, traingda, 
traingdm, traincgp, trainscg) available in MATLAB Neural 
toolbox package were employed to train the neural networks. 
Large data sets taken from live data warehouse are employed 
for experimentation and model development. Training 
performance based on Mean Squared Error (MSE), gradient 
plot for algorithm convergence are observed to check for the 
behavior and efficiency of gradient algorithms under 
consideration. A variety of neural networks architectures are 
tested for development of desired prediction models.  But two 
layered architecture with 15 neurons is observed as the optimal 
configuration with data sets employed under similar 
hardware/software configurations. 
 

 
Figure 1: Performance plot when employing simple 

gradient descent learning 
 

 
Figure 2: Performance plot when employing gradient 

descent with adaptive learning 
 

 
Figure 3: Performance plot when employing gradient 

descent with adaptive momentum 
 

 
Figure 4: Performance plot when employing conjugate 

gradient learning 
 

 
Figure 5: Performance plot when employing scaled 

conjugate gradient learning 
 

 
Figure 6: Error gradient plot when employing simple 

gradient descent learning 
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Figure 7: Error gradient plot when employing gradient 

descent with adaptive learning 

 
Figure 8: Error gradient plot when employing gradient 

descent with adaptive momentum 
 

 
Figure 9: Error gradient plot when employing conjugate 

gradient learning 

 

 
Figure 10: Error gradient plot when employing scaled 

conjugate gradient learning 
 

Figures 1 to 5 show changes in mean square error (MSE) 
verses numbers of epochs achieved in the best cases while 
applying the simple, adaptive(learning, momentum) and second 
order gradient methods. Error gradient plots, while employing 
different training methods are shown in Figures 6 to 10. It has 
been observed that gradient decent, adaptive learning and 
adaptive momentum methods were unable to accomplish the 
error gradient of 10-4 even in the 1000th

Table 1: Experimental results of employing different gradient based learning algorithms of first and 
second order 

 epoch but second order 
methods like CGM converged in 135 epochs and SCGM in 119 
epochs.

 

Training 
Method 

Steepest 
(Gradient) 
Descent 

Gradient descent 
with adaptive 
learning rate 

Gradient descent 
with momentum 

Conjugate 
Gradient 
(Pollok Variation) 

Scaled Conjugate 
Gradient 

Training 
Function traingd traingda traingdm traincgp trainscg 

Hidden Layer Neurons 15 15 15 15 15 

MinimumGradient 0.0001 0.0001 0.0001 0.0001 0.0001 

TransferFunction TANSIG TANSIG TANSIG TANSIG TANSIG 

Final No. of Epochs 10 103 103 135 3 119 

TrainingTime 0:16:14 0:14:39 0:15:27 0:07:24 0:04:41 

TrainingPerformance 0.0566 0.0427 0.05836 0.0390 0.0375 

InitialGradient Value 0.6460 0.4470 0.4470 0.6760 0.4470 

FinalGradient Value 3.20E-02 0.0473 0.0427 6.96E-05 8.04E-05 
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5.0 CONCLUSION 
The main focus of the research is to improve the speed and 
accuracy of convergence in network training. Convergence of 
adaptive methods is compared with simple gradient descend 
and second order methods. It is concluded that adaptive 
gradient based method are slightly better than simple gradient 
but still there performance is not comparable to second order 
techniques. Adaptive methods took lesser training time than 
simple gradient but they were not able to converge even in 
1000 epochs toward error gradient of the order of 10-4. While 
on the other hand, second order techniques were able to reach 
an accuracy level of 10-4 and 10-5

 

 and prove far better in terms 
of training time and accuracy. Simple gradient (GD) with 
constant learning rate has shown the poor convergence, 
conjugate and scaled conjugate gradient methods (CGM, 
SCGM) show the fastest convergence and adaptive methods 
(GDA, GDM) fall in between, in terms of convergence towards 
the minimum error gradient. 

REFERENCES 
[1]. S. V. Chande and M. Sinha, “Genetic Algorithm: A 

Versatile Optimization Tool”, BIJIT - BVICAM’s 
International Journal of Information Technology, Vol. 
1, No. 1, pp. 7-12, Jan.-Jun. 2009. 

[2]. J. C. Meza, “Steepest descent”, Wiley Interdisciplinary 
Reviews: Computational Statistics, Vol. 2, No. 6, pp. 
719-722, Dec. 2010. 

[3]. S. Osowski, P. Bojarczak, and M. Stodolski, “Fast 
second order learning algorithms for feed forward 
multilayer neural networks and its applications”, Neural 
Networks, Elsevier,  Vol. 9, No. 9,  pp. 1583–1596, Dec. 
1996. 

[4]. R. Battiti, “First & second order methods for learning 
between steepest-descent & Newton’s method”, MIT 
Press, Neural Computation,vol. 4(2), pp. 141-166, Mar. 
1992. 

[5]. A. K. Verma, R. Anil and Dr. O. P. Jain, “Fuzzy Logic 
Based Revised Defect Rating for Software Lifecycle 
Performance Prediction Using GMR”, BIJIT - 
BVICAM’s International Journal of Information 
Technology, Vol. 1, No. 1, pp. 1-6, Jan.-Jun. 2009. 

[6]. R. Rojas, Neural Networks - A Systematic Introduction, 
Berlin, Springer, 1996. 

[7]. A. Likas, and A. Stafylopatis, “Training the random 
neural network using Quasi–Newton methods”, Euro. 
Jour. of Operational Research, Elsevier, Vol. 126, Issue 
2, pp. 331-339, Oct. 2000. 

[8]. R. Rastogi, S. Agarwal, P. Sharma, U. Kaul and S. Jain, 
“Business Analysis and Decision Making Through 
Unsupervised Classification of Mixed Data Type of 
Attributes Through Genetic Algorithm”, BIJIT - 
BVICAM’s International Journal of Information 
Technology, Vol. 6, No. 1, pp. 683-689, Jan.-Jun. 2014. 

[9]. S. M. A. Burney, T. A. Jilani, and C. Ardil, “A 
Comparison of first and second order training algorithms 
for artificial neural networks”, International Journal of 

Computational Intelligence, Vol. 1, No. 3, pp. 176-182, 
2005. 

[10]. M. T. Hagan, and M. B. Menhaj, “Training feed forward 
networks with Marquardt algorithm”, IEEE Tran. on 
Neural Networks, Vol. 5, No. 6,  pp. 989-993, Nov. 
1994. 

[11]. E. K. P. Chong, and S. H. Zak, An Introduction to 
Optimization, 2nd

[12]. M. F. Moller, “A scaled conjugate gradient algorithm for 
fast supervised learning”, Neural Networks, Elsevier, 
Vol. 6, Issue 4, pp. 525–533, 1993. 

Edition, John Wiley and Sons, 2001. 

[13]. J. Lunden,  and V. Koivunen, “Scaled conjugate 
gradient method for radar pulse modulation estimation”, 
IEEE International Conference on Acoustics, Speech, 
and Signal Processing, Proceedings ICASSP’07, Vol. 2, 
pp. 297–300, Apr.2007. 

[14]. M. T. Hagan, H. B. Demuth, and M. Beale, Neural 
Network Design, Chapter 12, PWS Publishing, Boston, 
1996. 

[15]. S. Goel, J. B. Singh and A. K. Sinha, “Traffic 
Generation Model For Delhi Urban Area Using 
Artificial Neural Network”, BIJIT - BVICAM’s 
International Journal of Information Technology, Vol. 
2, No. 2, pp. 239-244, Jul.-Dec. 2010. 

[16]. Swanston D. J., Bishop J. M., and Mitchell R. J., 
“Simple Adaptive Momentum New Algorithm for 
training Multilayer Perceptron,  J. Engineering Letters, 
Vol. 30 (18), pp. 1498-1500, 1994. 

[17]. G. Kumar and P. K. Bhatia, “Optimization of 
Component Based Software Engineering Model Using 
Neural Network”, BIJIT - BVICAM’s International 
Journal of Information Technology, Vol. 6, No. 2, pp. 
732-742, Jul.-Dec. 2014. 

[18]. Y. H. Zweiri, L. D. Seneviratne, and K. Althoefer, 
“Stability Analysis of a Threeterm Back Propagation 
Algorithm”, Neural Networks,Elsevier,vol. 18, no. 10, 
2005. 

[19]. M. Z. Rehman, and N. M. Nawi, “Studying the Effect of 
Adaptive Momentum in Improving the Accuracy of 
Gradient Descent Back Propagation Algorithm on 
Classification Problems”, International Journal of 
Modern Physics, World Scientific,Vol. 1(1),pp. 1–5, 
2010. 

[20]. R. A. Jacobs, “Increased Rate of Convergence through 
Learning-Rate Adaptation", Elsevier, Neural Networks; 
1:295–307, 1988. 

[21]. M. Moreira, and E. Fiesler, Technical-Report IDIAP, 
Neural Networks with Adaptive Learning Rate & 
Momentum Terms, No.95-04, Oct.1995. 

[22]. Y. Bai, H. Zhang , and Y. Hao, “The performance of the 
back propagation algorithm with varying slope of the 
activation function”, Chaos, Solitons and Fractals, 
Elsevier, 40, pp.69–77, 2009. 

[23]. Saduf, M. A. Wani, “Comparative Study of Back 
Propagation Learning Algorithms for Neural Networks”, 
International Journal of Advanced Research in 



Predicting for Sustainable Insurance with Adaptive Gradient Methods 
 

Copy Right © BIJIT – 2015; July - December, 2015; Vol. 7 No. 2; ISSN 0973 – 5658                                                                  902 

Computer Science and Software Engineering, Volume 
3(12), pp. 1151-1156, December 2013. 

[24]. M. Z. Rehman, and N. M. Nawi, “Improving the 
Accuracy of Gradient Descent Back Propagation 
Algorithm on Classification Problems”, Int. Journal on 
New Computer Architectures and Their 
Applications,1(4): pp. 838-847, 2011. 

[25]. G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, 
“Improving Convergence of the Back-Propagation 
Algorithm Using Learning-Rate Adaptation Methods”, 
MIT Press, Neural Computation,vol. 11, No. 7,pp. 
1769–1796 Oct. 1999. 


