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Abstract - For the optimal design of frequency-selective 
digital filters, evolutionary optimization algorithms have been 
applied. In these design methods the goal of the optimization 
process is to find the optimal filter coefficients which closely 
approximate the desired frequency response. In this paper, 
an efficient alternative method for the design of linear phase 
digital FIR filter with ripple constraint is discussed. This 
method of optimization uses DE algorithm with modified 
selection rule for ripple constraint handling. The results 
obtained using this method are compared with those obtained 
for another method of ripple constraint handling based on 
penalty function using DE algorithm. From the simulation 
results it is observed that ripple constraint handling method 
based on the modified selection rule of DE shows better 
performance than that obtained using DE with ripple 
constraint method based on penalty function when number 
of runs is applied. 

Index Terms — Differential Evolution algorithm, FIR filters, 
Frequency response, Ripple constraint. 

NOMENCLATURE 
)( ωjeH : The frequency response of a digital filter, 

 )(nh      : The impulse response of a digital filter, 
)(ωA      : The magnitude response, 
)(ωθ      : The phase response, 

)(ka       : The filter coefficients, 
)(ωE      : The approximation error function, 
)(ωW      : The weighting function, 
)(ωD     : The desired frequency response, 

)(2 XL    : The discrete form of 2L norm approximation error, 
kX           :  The kth

kjx
 solution vector ,  

         :  The jth

F

 component of the solution vector, 
          : The scaling factor, 

CR         : The crossover factor. 
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Digital filters are recognized by great flexibility in design and 
implementation. This makes it is easier to implement complex 
signal processing schemes utilized in digital communication 
systems. The digital filters are classified according to the 
length of the impulse response as Finite Impulse Response 
(FIR) and Infinite Impulse Response (IIR) digital filters [1]. 
Special features of the FIR filters are their inherent stability 
and precise linear phase. The phase response of the FIR filter 
is linear if the coefficients of FIR are symmetric around the 
centre coefficient. Linear phase FIR filters have many 
applications such as in telecommunications, for demultiplexing 
the data that have been frequency-division multiplexed, 
without distorting the data in this process, and in systems, 
where it is necessary to have minimum signal distortion and 
signal dispersion so as to avoid inter symbol interference.  
In order to seek better control over different parameters in the 
design of digital filters, the design methods based on 
optimization algorithms are developed. Thus, Evolutionary 
algorithms (EA), such as Genetic algorithm (GA), Particle 
swarm optimization (PSO), and Differential evolution (DE) 
and many others have been used for better individual control 
over the parameters of digital filters. Generally, in these design 
methods, the unconstrained optimization is used. In this paper, 
DE algorithm is used for the design of linear phase digital FIR 
filter with two ripple constraint handling methods. One method 
is based on penalty function [2] and the other is based on a 
method proposed by Lampinen [3]. The simulation results 
obtained for these two methods show that when number of 
runs is applied, the ripples obtained in different frequency 
bands using the second method have smaller ripple size and 
smaller value of error as compared to those obtained for the 
first method. Thus a better performance is exhibited by the 
second method.  
 
2.0 LITERATURE SURVEY 
For the design of the digital FIR filters two classical methods 
are used namely, windowing method and frequency sampling 
method [4]. In general, an approximation error norm is used in 
these methods for designing an FIR filter. The two most 
commonly used norms are the least-squares (L2) norm and 
Chebyshev (L∞
In the design method based on windowing, the decrease in the 
transition bandwidth causes increase in the magnitude of the 
side lobes and consequently an increase in the approximation 
error. Also this method does not offer individual control over 
the approximation errors in different bands with any constraint 
criterion. The design method based on frequency sampling, 

) norm.  
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provides good control over the transition bandwidth; however, 
the approximation error is zero exactly at the sampling 
frequencies.  
Recently, the design methods based on optimization 
algorithms are developed. Genetic Algorithm (GA) is one of 
the most useful, general purpose optimization algorithm [5]. 
GA has been used to solve a wide range of engineering design 
and testing optimization problems such as ATM network 
design [6], optimal testing of nonlinear allocation problems in 
modular softwares [7], etc. GA has also been applied for the 
design of digital FIR filters by Xu and Daley [8], Cen, [9] and 
others. Although GA is a good global searching algorithm, 
sometimes it gets trapped into the local minima, and is 
complex in coding. Also GA has slower convergence and takes 
more execution time. 
Particle swarm optimization (PSO) algorithm developed by 
Kennedy and Eberhart [10] requires less parameters and is 
simple. PSO has been used for various engineering 
optimization problems such as, in malicious node detection 
and path optimization for wireless sensor networks [11]. PSO 
and its variants have also been applied for the design of digital 
filters [12]-[15].  It gives faster convergence as compared to 
GA as shown by Ababneh [12]. The modified PSO is applied 
by Sharma and Arya [13] for the design of linear phase digital 
FIR filter to control global exploration and local exploration.  
Another optimization algorithm, Differential evolution (DE), 
developed by Storn and Price [16] has been used in power 
systems for optimization in planning, operation and 
distribution etc. [17]. DE has also been used for the design of 
digital FIR filters by Zhao and Meng [18], Albataineh et al. 
[19], Singh and Kaur [20], Sharma et al. [2] and others.  DE 
algorithms provide good global optimization if its control 
parameters are adjusted properly. DE algorithm, with two 
ripple constraint handling methods, is used in this paper for the 
design of linear phase digital FIR filter. One method is based 
on penalty function [2], and another is based on the method 
proposed by Lampinen [3]. The comparison of the simulation 
results obtained for these two methods shows that the 
maximum error magnitude between desired frequency 
response and the designed frequency response is equal to or 
below the constraint in the specified frequency bands. 
However, when number of runs is applied, the ripples obtained 
in different frequency bands for the first method have almost 
constant magnitude; while the ripple size and final error value 
is less in the case of second method and thus a better 
performance is exhibited by this method. 
This paper is organized in six sections as follows: In Section 3, 
Problem formulation of linear phase digital FIR filters is 
presented. Section 4 explains the DE algorithm for optimizing 
filter coefficients and describes the ripple constraint handling 
methods. In Section 5, design of linear phase FIR filters using 
DE with ripple constraint methods is given. Then, in Section 6, 
simulation results are discussed and analyzed. Finally, 
conclusion and future scope are discussed in Section 7.   

3.0 PROBLEM FORMULATION   
The frequency response of a linear-phase FIR filter is given 
by:  

             ∑
=

−=
N

n

njj enheH
0

)()( ωω                       (1) 

Where, h(n) is the real-valued impulse response of filter, 
(N+1) is the length of filter and ω is  the frequency of interest. 
The linear phase is possible if the impulse response h(n) is 
either symmetric {i.e. h(n) = h(N − n)}, or, is antisymmetric 
{h(n) =  − h(N − n)} for 0 ≤ n ≤ N. 
 In general, for causal linear-phase FIR filters, the 
frequency response )( ωjeH  can be expressed as: 

)()( 2/ ωβωω AeeeH jjNj −=       (2) 
Thus, the magnitude response is: 

                    )()( ωω AeH j =  ,     (3) 
& the phase response is: 
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When β = 0, h(n) is symmetrical, and when β = π/2, h(n) is 
antisymmetrical. 

   The amplitude response [1], for the case of type-I linear 
phase FIR filter, by substituting N = 2M, is given by: 

               
∑
=

=
M

k
kkaA

0
),cos()()( ωω                       (5) 

where, )()0( Mha = and )(2)( kMhka −= , for Mk ≤≤1 .  
 For the design of low pass digital FIR filters, the objective 
of the algorithm used for computation, is to determine the 
vector X of coefficients )(ka , so as to minimize the difference 
between the desired frequency response, )(ωD , and the 
realized amplitude frequency response, )(ωA . Generally this 
difference is specified as a weighted error function )(ωE  
given by: 

)]()()[()( ωωωω DAWE −=   (6) 
Where, )(ωW  is a non-negative weighting function and is 
accepted for the given pass band attenuation δp and stop band 
attenuation δs





=
.,1
,),/(

)(
stopbandthein
passbandthein

W ps δδ
ω

, as: 
  (7) 

And D(ω), the desired magnitude response for the low pass 
filter given by: 





=
.,0
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D ω   (8) 

The least-squares, or, L2 

212
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norm; which considers error energy, 
is defined in the integral form [2] as: 

 (9) 

In practice, the discretized version of integral scalar error used 
in L2 norm is approximated by a finite sum given by: 
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Where, ( )XL2
 is L2

X

 norm approximation error determined for 

a vector and ω i

 

 is suitably chosen grid of digital angular 
frequencies for the range 0 ≤ ω ≤ π for 1 ≤ i ≤ K.  

4.0 DE ALGORITHM 
DE algorithm introduced by Storn and Price [16] is a simple 
population based stochastic search algorithm for objective 
function minimization. Application of DE for the design of 
digital filters has been described in [2], [18][19][20]. In basic 
DE algorithm, the initial NP population vectors are formed 
randomly from the vectors having bounded parameter values. 
Each of these vectors has D-parameters and belongs to a D-
dimensional vector space. The optimization task is to 
successively improve these vectors by applying mutation, 
crossover and selection operators; similar to those used by GA. 
DE generates new solution vectors in the D-dimensional vector 
space using mutation. To produce mutated vector the weighted 
difference between two randomly chosen, distinct population 
vectors, is added to another distinct vector. Then crossover is 
performed to produce a trial vector from target vector and 
mutated vector. By evaluating objective function for target 
vector and trial vector, either one is then selected on the basis 
of their fitness.  
 
4.1 The Steps of DE Algorithm  
Step 1: 
Initialization: An initial population of ‘NP’ solution vectors is 
generated as follows: 
                        ],...,,[

00
2

0
1

0
NPXXXP =                        (11) 

Where, 0P  is the initial population of solution vectors, 
0
iX , 

for NPi ≤≤1 given by:  

          ],...,,[ 00
2

0
1

0

iDiii xxxX =             (12) 

The jth 0
ijx component, or parameter, , for NPi ≤≤1 , 

Dj ≤≤1 , is obtained from uniform distribution as follows: 

                  j
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j
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j

L
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Where, L
jx and U

jx are lower and upper bounds on parameter 

jx  and jrand  is a random number in the range [0, 1]. 
 
Step 2: 
Mutation: A mutant vector in the generation (G + 1) is created 
for each population vector by mutation: 

        ],...,,[ 11
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In this paper DE/best/1/bin is implemented for the design of 
FIR digital filter, hence a single difference of vectors is 
utilized. In DE/best/1/bin, a mutant vector 

1+G
iV  is generated for 

each target vector 
G
iX by adding a weighted difference 

between two randomly selected distinct population vectors, 
G
rX 1 and

G
rX 2 , to the best vector 

G
bestX   as follows: 

)( 21
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r
G
r

G
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G
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Where, 
1+G

iV is a mutant vector, 
G
bestX  is the best vector of the 

current population which gives the lowest cost function value; 
1r  and 2r  are randomly chosen integers such that 

},...,2,1{2,1 NPrr ∈ , 21 rr ≠ ; and F  is a real and constant 
scaling factor which usually lies in the range [0, 1]. 
 
Step 3: 
Crossover: To increase the diversity of population, crossover 
operation is used. This operation causes crossover or exchange 
of parameters of mutant vector with those of the target vector 

and generates trial vector 
1+G

iT given by:  
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In the binomial crossover scheme, uniform crossover is 
performed as follows: 
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Where, 1+G
ijt is jth 1+G

iT component of trial vector , 1+G
ijv  is jth

1+G
iV

 

component of mutant vector and G
ijx is jth

G
iX

 component of 

target vector . jrand  is the jth

randj

 evaluation of the random 
number in the range [0, 1]. CR is the crossover constant in the 
range [0, 1] and   is randomly chosen index within the 
range [1, D]. As shown above, the trial vector component is 
adopted from the mutant vector 

1+G
iV , if the random number 

jrand  is less than or equal to CR, or j is equal to index randj . 
Otherwise, the trial vector component is adopted from target 
vector G

iX . The index randj  ensures that the trial vector 
1+G

iT contains at least one parameter from mutant vector 
1+G

iV and does not duplicate the target vector. 
 
Step 4: 

Selection: In order to decide whether trial vector 
1+G

iT , or, the 
target vector G

iX , is to be selected as the member of 
population vectors in next generation G + 1, the objective 
function is evaluated for target vector and trial vector. If the 
trial vector gives a smaller value of objective function, then 
this vector replaces the target vector for the next generation; 
otherwise, the old target vector is retained as follows: 

.
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The process of mutation, crossover and selection is executed 
for all target vector index i  and new population is created till 
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the optimal solution is achieved. The procedure is terminated if 
maximum number of generations has been executed. 
 
4.2 Bounce Back Technique for Handling Bounds on 
Parameters of Mutant Vector: 
In the process of generating mutant vector, some of the 
components of this vector may cross the lower or upper 
bounds. In such cases bounce back mechanism [17] is adopted 
to bring such elements of the mutant vector within limit. In this 
method the element, which has violated the limits, is replaced 
by a new element whose value lies within the best vector value 
and the bound being violated. The following relations are used 
for violated mutant vector elements: 







>−⋅+
≤−⋅+

= +

+
+

U
j

G
ijjbest

U
jjbest

L
j

G
ijjbest

L
jjbestG

ij xvifxxrandx
xvifxxrandx

v 1
,,

1
,,1

),(
),(   (19) 

Where, 1+G
ijv is jth 1+G

iV element of mutant vector, , jbestx , is jth

G
bestX

 

element of the best vector,  and L
jx , U

jx are lower and 

upper bounds on parameter jx  respectively and rand  is a 
random number in the range [0, 1]. 

 
4.3 Ripple Constraint Handling methods:       
In this paper two methods are used for ripple constraint 
handling. First we have discussed the method based on penalty 
function used by Sharma et al. [2].  Another method is based 
on modified selection rule as proposed by Lampinen [3].   

                                
4.3.1 Method # 1: Method Based on Penalty Function: 
This method is based on penalty function, which penalizes 
infeasible frequency response ripple values obtained in the 
pass band and stop band. Thus, for a vector X , the objective 
function with ripple constraint )(2 XJ  is developed as follows: 

    
.1

),()()()( 22

=++

++=

spL

ssppL

cccwith
XcXcXLcXJ δδ               (20) 

Where, Lc , pc  and sc are suitable weight parameters for )(2 XL , 

)(Xpδ  and )(Xsδ  respectively. )(Xpδ  and )(Xsδ  are the 
maximum pass band and stop band ripples given as follows: 
      )(1max)( iPassbandp AX

i

ωδ
ω

−=
∈

                                     (21) 

      
)]([max)( iStopbands AX

i

ωδ
ω∈

=                                     (22) 

Where, )( iA ω  is the magnitude of the frequency response 
of the filter, defined earlier in (3), for the suitable set of 
frequencies iω . 

4.3.2  Method # 2: Method Based on Modified Selection   
Rule of DE:   

The penalty function method uses additional control 
parameters, which are termed as the weight parameters. Setting 
the weight (or, penalty) parameters for getting their appropriate 
values by trial and error method, is a laborious task. The 
penalty function method effectively converts a constrained 

problem into an unconstrained one as shown by Lampinen [3]. 
This is seen from Equation (20) where, objective 
function )(2 XJ is used instead of )(2 XL .   
In this subsection an improved version of constraint handling 
method used by Lampinen [3] is described. It allows to get rid 
of setting of the weight parameters for individual constraints. 
In this method, only the selection operation of the basic 
Differential Evolution algorithm is modified, for handling the 
ripple constraints. The selection criteria of Equation (18) to 
select either trial vector

1+G
iT  or, target vector G

iX for the next 
generation vector 1+G

iX is changed as follows: 

• If both solution vectors satisfy all ripple constraints, 
then the one with lower objective function value is 
selected, OR, 

• If target vector satisfies all ripple constraints, while 
trial vector does not satisfy, and if target vector also 
has lower objective function value then it is selected, 
OR, 

• If target vector does not satisfy all ripple constraints 
but provides lower or equal value for all ripple 
constraints as compared to the trial vector, and also if 
target vector has lower objective function value then 
it is selected. 

• Else, trial vector is selected. 
 

5.0 DESIGN OF LINEAR PHASE FIR FILTERS USING 
DE WITH RIPPLE CONSTRAINTS 
This section is divided into two subsections. Subsection 5.1 
describes the specifications of the digital low pass FIR filter. 
The design parameters of DE algorithm with ripple constraints 
for Method # 1 and Method # 2 are discussed in subsection 
5.2.     

 
5.1 Specifications of The Digital Low Pass FIR Filter 
Designed: 
Type-I linear phase FIR filter is designed with the filter length 
taken as N+1 = 31, and the grid of digital angular frequencies 
as K = 180. The cut-off frequency of the pass band is ωp = 
0.3π and cut-off frequency of the stop band is ωs

πωπ
πω

ω
≤≤

≤≤





=
4.0,0

3.00,1
)(D

 = 0.4π. The 
desired ideal frequency response D(ω) has unity gain in the 
pass band and zero gain in the stop band and is given by: 

                             (23) 

For passband attenuation δp = 0.06 and stopband attenuation δs

)(ωW
 

= 0.06, the weighting function used, is given by: 



 =

=
stopbandthein
passbandthein

W ps

,1
,1)/(

)(
δδ

ω   (24) 

 
5.2 Design Parameters of Differential Evolution Algorithm 
with Ripple Constraint for Method # 1: 
For applying DE with ripple constraint for obtaining the 
coefficients of the filter, )(ka ; the size of each solution 
vector, X , is taken as D = M + 1 = 16. The scaling factor F 
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and crossover constant CR used are taken as, F = 0.5 and CR = 
0.7. The population size is taken as NP = 50. The numbers of 
generations used are 200. The weight parameters Lc , pc and 

sc  used in the objective function of (20) are arbitrarily set as 
0.0006, 0.2894 and 0.71respectively so as to reject larger 
values of objective function for larger size of ripples. It is 
observed that the amplitudes of the ripples are larger in the 
stop band, so more weight is assigned to sc as compared to pc . 

 
5.3 Design Parameters of Differential Evolution Algorithm 
with Ripple Constraint for Method # 2: 
There is no specific parameter used for ripple constraint 
handling Method # 2. All other parameters of DE algorithm are 
kept same as mentioned in the subsection 5.2. 
 
6.0 SIMULATION RESULTS AND ANALYSIS 
The summary of the parameters obtained for the best of 30 
runs, for Type-I FIR low pass filter (LPF) design, using DE 
with ripple constraint Method # 1 and Method # 2, is shown in 
the TABLE-1 and TABLE-2 for the time-domain and the 
frequency domain respectively. In TABLE-3, the statistical 
parameters obtained for the two cases are compared.  
In Fig. 1, the error plots for the best run of the two cases are 
shown. The frequency responses obtained for the filter design 
using DE with ripple constraint methods are compared in Fig. 
2. It is observed from Fig. 1, that the absolute value of error 
obtained for Method # 2 is lower than that obtained for Method 
# 1.  This fact is also exhibited in TABLE-3. 
By comparing the frequency responses in Fig. 2, it is observed 
that ripple constraint handling Method # 2 shows a better  
frequency response as compared to Method # 1. It is also obse- 
 

Table 1: Time-Domain Parameters 
 

DE with ripple constraint 
Method # 1 

DE with ripple Constraint 
Method # 2 

Impulse response h(n)  Impulse response h(n)   
h(0)   =  − 0.0033 =  h(30)   h(0)   =  −  0.0058 =  h(30)   
h(1)   =     0.0081 =  h(29)   h(1)   =      0.0025 =  h(29)   
h(2)   =     0.0170 =  h(28) h(2)   =      0.0104 =  h(28) 
h(3)   =     0.0090 =  h(27) h(3)   =      0.0071 =  h(27) 
h(4)   =  − 0.0080 =  h(26) h(4)   =  −  0.0051 =  h(26) 
h(5)   =  − 0.0226 =  h(25) h(5)   =  −  0.0201 =  h(25) 
h(6)   =  − 0.0104 =  h(24) h(6)   =  −  0.0136 =  h(24) 

 h(7)   =     0.0229 =  h(23) h(7)   =      0.0154 =  h(23) 
 h(8)   =    0.0356  =  h(22) h(8)   =      0.0367 =  h(22) 
 h(9)   =    0.0120  =  h(21) h(9)   =      0.0195 =  h(21) 
 h(10) =  − 0.0412 =  h(20) h(10) =  −  0.0385 =  h(20) 
 h(11) =  − 0.0708 =  h(19) h(11) =  −  0.0717 =  h(19) 

 h(12)  =  −  0.0167 =  h(18) h(12) =  −  0.0195 =  h(18) 

 h(13)  =     0.1316  =  h(17) h(13) =      0.1250 =  h(17) 
 h(14)  =     0.2804  =  h(16) h(14) =      0.2839 =  h(16) 

 h(15) =  0.3493   h(15) =  0.3535 
-rved that the stop band attenuation is decreased further with 
the increase in frequencies in the case of Method # 2. Finally, 
from the TABLE-3 it is observed that the frequency of 
convergence of Method # 2 is higher than that of Method # 1; 

however, the value of standard deviation obtained for Method 
# 2 is larger.  

Table 2: Frequency-Domain Parameters 

 
Parameter 

DE with ripple constraint 
Method # 1 

DE with ripple 
constraint Method# 2 

 Pass 
Band 

Stop 
Band Pass Band Stop 

Band 

Lower Band 
Edge 0.0000 0.4000 π 0.0000 0.400 π 

Upper Band 
Edge 0.3500 π 1.0000 π 0.3500 π 1.000 π 

Desired 
Value: D(ω) 1.0000 0.0000 1.0000 0.0000 

Maximum 
ripple 0.0243 0.0231 0.0229 0.0226 

Maximum 
ripple (dB) 0.2087 − 32.70 0.1972 − 32.88 

Minimum 
ripple 0.0010 0.0057 0.0010 0.0022 

Minimum 
ripple (dB) 0.0094 − 44.78 0.0091 − 52.81 

 
Table 3: Statistical Parameters of DE With Ripple 

Constraint Method # 1 And 
Method # 2 for the Low Pass Filter 

(Number of runs = 30; Number of generations = 200; 
Population Size = 50.) 

Sr. 
No. 

Parameters DE with 
ripple 

constraint 
Method    # 1 

DE with 
ripple 

constrai
nt 

Method    
# 2 

1 Best fitness  value of error of all 
runs 

0.2711 0.1552 

2 Average value of minimum error 
of all runs 

0.4599 0.3174 

3 Worst minimum value of all 
runs 

0.9015 0.7021 

4 Standard deviation of minimum 
error from average 

0.1389 0.1440 

5 Frequency of convergence* 0.5000 0.6000 

*(Frequency of convergence = number of better fitness values than 
mean out of all runs / total no. of runs) 
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Figure 1: Error plots of Type-I FIR LPF obtained using 
DE with ripple   constraint Method # 1 and Method # 2. 

 
Figure 2: Comparison of Magnitude Frequency responses 
of Type-I FIR LPF for DE with ripple constraint Method   

# 1 and Method # 2. 
 
7.0 CONCLUSION AND FUTURE SCOPE 
In this paper an efficient alternative method for the design of 
linear phase digital FIR filter with ripple constraint is 
discussed. This method of optimization of the filter 
coefficients uses DE algorithm with modified selection rule for 
ripple constraint handling. The results obtained using this 
method are compared with those obtained for another method 
of ripple constraint handling based on penalty function. From 
the simulation results it can be concluded that ripple constraint 
handling method based on the modified selection rule of DE 
shows better performance than that obtained using DE with 
ripple constraint method based on penalty function. Thus this 
method is seen as an efficient alternative method for ripple 
constraint handling with DE algorithm for FIR filter design.  In 
future the population size of the DE algorithm can be varied 
and statistically better results are expected.  
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