
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 743

A Methodology to Find the Cycle in a Directed GraphUsing Linked List

Shubham Rungta1, Samiksha Srivastava2, Uday Shankar Yadav3and Rohit Rastogi

Submitted in July 2013, Accepted in September 2014

4

Abstract - In computer science, cycle detection is the
algorithmic problem of finding a cycle in a sequence of
iterated functionvalues. The analysis of cycles in network has
different application in the design and development in
communication systems such as the investigation of
topological features and consideration of reliability and fault
tolerance. There are various problems related to the analysis
of cycles in network among which the most important one is
the detection of cycles in graph. In this paper, we proposed
SUS_dcycle method which is a detection algorithm for
detecting cycle in a directed graph, with the help of linked list
in order to discover new lists in run time. This algorithm is
used to detect the cycle in any type of directed graph. The
proposed algorithm differs from other existing algorithms
through its ability to count the total number of cycles present
in any type of directed graphs. Also the study of earlier works
says that this is a novel approach for the prescribed task and
complex problems may use it as a subroutine application for
effective results. In advanced computing, time-space trade-off
is an important factor to efficiently deal with the problems.
This method may solve the above said purpose.

Index Terms – Directed graph, Cycle, Linked list, Graph
theory, and Data structure.

1.0 INTRODUCTION
1.1 Cycle
A cycle is repeating part in the sequence. In computer
science, cycle detection is the algorithmic problem of finding a
cycle in a sequence of iterated function values [1]. Suppose in a
function f(x), if x repeats the same sequence of values once
again, then there exist a cycle.

Figure 1: Example of a cycle with 1, 2, 3, 4, 5, and 6 as
vertices of the graph.

1, 2, 3 B. Tech. CSE-IV Year, ABES Engineering College,
Ghaziabad (U.P.), India.
4 Sr. Asst. Professor, CSE Deptt. ABES Engineering College,
Ghaziabad (U.P.), India.
E-mail: 1shubhamrungta93@gmail.com,
2samikshasrivastava607@gmail.com,
uday4792@gmail.com and 4

2.1 Floyd's cycle-finding algorithm, also called the "

rohit.rastogi@abes.ac.in

Here f(x) is the function and [x: x is 1, 2, 3, 4, 5, 6, y… in
sequence, where y is 2, 3, 4, 5, and 6 in sequence and is
repeated], here cycle exists because x repeats the value 2, 3, 4,
5, 6 repeatedly. This paper proposes a SUS’s cycle detection
algorithm to detect cycles and to find number of cycles in any
directed graph whether it is simple or multi digraph. This
algorithm is also helpful in fetching out the number of cycles in
the whole graph.

2.0 EARLIER WORKS IN THIS FIELD

tortoise
and the hare" algorithm, is a pointer algorithm that uses only
two pointers, which move through the sequence at different
speeds. The algorithm is named for Robert W. Floyd, who
invented it in the late 1960s.[9]
The key insight in the algorithm is that, for any integers i ≥ μ
and k ≥ 0, xi = xi + kλ, where λ is the length of the loop to be
found. In particular, whenever i = mλ ≥ μ, it follows that xi =
x2i. Thus, the algorithm only needs to check for repeated values
of this special form, one twice as far from the start of the
sequence as the other, to find a period ν of a repetition that is a
multiple of λ. Once ν is found, the algorithm retraces the
sequence from its start to find the first repeated value xμ in the
sequence, using the fact that λ divides ν and therefore that xμ =
xμ + 2ν. Finally, once the value of μ is known it is trivial to find
the length λ of the shortest repeating cycle, by searching for the
first position μ + λ for which xμ + λ = xμ.
The algorithm thus maintains two pointers into the given
sequence, one (the tortoise) at xi, and the other (the hare) at x2i

2.2

.
At each step of the algorithm, it increases i by one, moving the
tortoise one step forward and the hare two steps forward in the
sequence, and then compares the sequence values at these two
pointers. The smallest value of i> 0 for which the tortoise and
hare point to equal values is the desired value ν.

Richard P. Brent et al. described an alternative cycle
detection algorithm that, like the tortoise and hare algorithm,
requires only two pointers into the sequence.[10] However, it is
based on a different principle: searching for the smallest power
2i that is larger than both λ and μ. For i = 0, 1, 2, etc., the
algorithm compares x2

i
−1

Brent

 with each subsequent sequence value
up to the next power of two, stopping when it finds a match. It
has two advantages compared to the tortoise and hare
algorithm: it finds the correct length λ of the cycle directly,
rather than needing to search for it in a subsequent stage, and
its steps involve only one evaluation of ƒ rather the indices of
saved sequence than three.

[10] already describes variations of his technique in which
values are powers of a number R other than two. By choosing
R to be a number close to one, and storing the sequence values

2 1

3

4

6 5

http://en.wikipedia.org/wiki/Computer_science�
http://en.wikipedia.org/wiki/Algorithm�
http://en.wikipedia.org/wiki/Sequence�
http://en.wikipedia.org/wiki/Iterated_function�
http://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare�
http://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare�
http://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare�
http://en.wikipedia.org/wiki/Robert_W._Floyd�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-1�
http://en.wikipedia.org/wiki/Richard_Brent_(scientist)�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-brent-2�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-brent-2�

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 744

at indices that are near a sequence of consecutive powers of R,
a cycle detection algorithm can use a number of function
evaluations that is within an arbitrarily small factor of the
optimum λ+μ.

2.3Sedgewick, Szymanski, and Yao

[12] [13]

[14] provide a method that
uses M memory cells and requires in the worst case only

function evaluations, for some
constant c, which they show to be optimal. The technique
involves maintaining a numerical parameter d, storing in a table
only those positions in the sequence that are multiples of d, and
clearing the table and doubling d whenever too many values
have been stored.
Several authors have described distinguished point methods
that store function values in a table based on a criterion
involving the values, rather than (as in the method of
Sedgewick et al.) based on their positions. For instance, values
equal to zero modulo some value d might be stored.[15][16] More
simply, Nivasch[11] credits D. P. Woodruff with the suggestion
of storing a random sample of previously seen values, making
an appropriate random choice at each step so that the sample
remains random.

2.4 Nivasch [11] describes an algorithm that does not use a fixed
amount of memory, but for which the expected amount of
memory used (under the assumption that the input function is
random) is logarithmic in the sequence length. An item is
stored in the memory table, with this technique, when no later
item has a smaller value. As Nivasch shows, the items with this
technique can be maintained using a stack data structure, and
each successive sequence value need be compared only to the
top of the stack. The algorithm terminates when the repeated
sequence element with smallest value is found. Running the
same algorithm with multiple stacks, using random
permutations of the values to reorder the values within each
stack, allows a time–space tradeoff similar to the previous
algorithms. However, even the version of this algorithm with a
single stack is not a pointer algorithm, due to the comparisons
needed to determine which of two values is smaller.
Any cycle detection algorithm that stores at most M values
from the input sequence must perform at least

function evaluations.

a) START

[17] [18]

3.0 PROPOSED IDEA
3.1 Proposed SUS_dcycle Algorithm

b) SUS_dcycle algorithm has parameters as information field,
variables with their data types and identifiers for starting,
processing the paths, temporary allocation and exchanging
of the data, variables for counting the cycles in test graph,
holding temporary data and functional mechanism to free
the unused space.

c) Initialize the variables as per the mechanism chosen and
allocate the data in them.

d) Define the vertices information and edges as per the
mechanism/ approach chosen.

e) Put each and every node in a list say ‘LIST0’.
f) Take out any node from LIST0 as a starting node (if any

node exists.)
g) Get/start with the first vertex, let A and hold its storage

location.
h) Now, if there are n directed paths from the first vertex A,

then the possible new paths from here are n-1, so create the
n-1 data structures (chosen by you) to hold these possible
paths. Also remove these discovered node from List0.And
whenever a new node discovered during traversal remove
it from LIST0.

i) Define a mechanism to store the information of all next
vertex traversed from the previous vertex and hold it
anyhow.

j) Loop starts up to all the existing and uncovered paths.
k) In a particular path p, compare the new vertex presently

being traversed with the all of previously traversed vertices
starting from the first vertex in p and check whether the
present information is being repeated.

l) If yes, then
We are sure that a cycle exists.
Store the vertices information comprising this cycle
and may print their values as per need.
Increment the counter by one.

m) If no vertex is repeated, then
We can declare that there is not a cycle in that traversed
path p.

n) So, go to next possible path starting from first vertex.
Continue this process till all the paths are covered.
Loop Ends

o) After working with every path from Starting node (‘A’).
Check LIST0 if any node is present there, if yes then once
again take out any node from remaining node and follow
step 8 to 14.

p) Print the counter value as the no. of cycles in the test graph
and as per need can print the vertices contained in those
cycles respectively.

q) END

3.2 Proposed SUS_dcycle Algorithmwith the Linked List
Implementation
SUS_dcycle (INFO, LINK, START1, START2, LIST0,
LIST1, LIST2, PTR1, PTR2, PTR3, ITEM, Counter,
FREE(x), TEMP)
INFO-Stores the information field of the node in linked list.
LINK-Address field of the node that contains the address of
the next node in the linked list.
LIST0- List to store all the nodes of a graph. Use of this list is
to find out the unreachable nodes (if exist) from a starting node
(that we choose randomly from LIST0) in a digraph.
LIST1-Linked list to store the base address of all the linked
lists formed during runtime.
LIST2-Linked list to store nodes discover during traversal.

http://en.wikipedia.org/wiki/Cycle_detection#cite_note-4�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-4�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-6�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-7�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-7�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-nivasch-3�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-nivasch-3�
http://en.wikipedia.org/wiki/Stack_(data_structure)�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-fich-9�
http://en.wikipedia.org/wiki/Cycle_detection#cite_note-fich-9�

A Methodology to Find the Cycle in a Directed Graph Using Linked List

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 745

START1-Pointer which points to the first node of linked
LIST1.
START2-Pointer which points to the first node of linked
LIST2.
Counter-A global variable to count the number of cycle.
SAVE, PTR, PTR2, PTR3,PTR4, and TEMP: They are the
pointer variables.
ITEM-It contains the info character.
FREE(x)-This function will remove the node x.
Start with:
1. Put each and every node in a LIST0.
2. Take out any node from LIST0 as a starting node (if any

node exists.).
3. Whenever a new node discovered during traversal just

remove it from LIST0.

Step1: Insert the first node in linked list LIST2. (Let the first
node be A.)

Fig: 2 Insertion of first

Step2: Put the base address of the LIST2 in LIST1.

Figure 3: Insertion

Step3:Now, if there are n directed paths from A, then total
number of new linked list will be n-1 and they all will be
duplicate of LIST2.

Figure 4: Example of n directed path from A

Step-4: Now put each next node of the graph directed from the
last node into separate linked lists.

Figure 5: Insert 1 in LIST2 and others in the copies in

LIST2

Step-5: Put the base address of each newly created list into the
LIST1 in a consecutive manner.

// Iteration of outer loop
Step-6: Repeat Step (7) to (10) while (START1! = NULL)
/*Compare the element at last node of LIST2 with all its
previous nodes starting from starting node.*/

Step 7: [Initialize the value of pointer PTR and SAVE with the
value of pointer START2.]

PTR<-START2
SAVE<-START2

Step 8: [Repeat Steps (a) to (b) until (PTR! =NULL)]
 a) PTR<-LINK [PTR]

b) TEMP<-INFO [PTR]
Step 9: [Initialize PTR2 with START2]

PTR2<-START2

/*Compare the last element with all the elements of LIST2.*/

Step10: [Repeat the following steps (a) to (b) and 11 to 13 until
(PTR2! =NULL)]
 SAVE=PTR2
 IF (TEMP=INFO [SAVE])
 THEN

i. Counter<- Counter+1

/*If the counter is incremented then drop the wholeLIST2 list if
cycle exist in addition, the node with the base address of the
dropped list is removed from List1 and START1 points the
next node to the deleted node in List1*/

ii. [Display the detected cycle by repeating the following step
until PTR3! =NULL]

a) ITEM=INFO [START2]
b) DISPLAY [ITEM]
c) PTR3=LINK [START2]

[In addition freeing the displayed nodes]
d) FREE (START2)
e) START2=PTR3

iii. [Remove the node containing the base address
ofLIST2 list in which cycle occurs or null node appears]
a) PTR4=LINK [START1]
b) FREE (START1)
 c) START1=PTR4
 ELSE

START2

A NULL

START1

START3 NULL

A

1

2 3 4 n

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 746

 PTR2=LINK [PTR2]
ENDIF

Step 11: [Enter the next node directed by the last node in
LIST2 using Step (3)-(12) until NULL node encountered] [If
NULL is encountered then GOTO STEP 11-(ii)]
After working with every path from Starting node (‘A’). Check
LIST0 if any node is present there, if yes then once again take
out any node from remaining node and follow Step 1 to 11.

If no node is left in LIST0 then GOTO Step12.

Step12: [The final value of counter will result in total number
of cycles in the test graph].

DISPLAY [Counter]
Step 13: END

3.3 Example
Let’s take a directed graph with n (V) =5

Figure 6: A directed graph with A, B, C, D and E as its
vertices.

Let us take two-linked list LIST1, LIST2 withSTART1,
START2 as their pointers to their base address respectively.
And LIST0 for storing each and every node of digraph (Figure
6)
Start with:

Figure 7: LIST0 storing all the nodes of digraph (Figure 6)

Take out any node from LIST0 as a starting node (if any node
exists.).
Remember, whenever a new node discovered during traversal
just remove it from LIST0.

Step-1: Insert the first node in linked list LIST2. Let it be node
A. Remove ‘A’ from LIST0.

Figure 8: Linked list LIST2 with A in its first info field.

In addition, put the base address of this linked list LIST2 in
LIST1 in its info field.

In addition, put the base address of this linked list LIST2 in
LIST1 in its info field.

Figure 9: START1 points to the base address of LIST1 with
base address of LIST2 in its info field.

Step-2: Now, there are four directed paths from A i.e.
B,C,Eand Dso, total number of new linked lists will be three
(4-1=3).And they will be duplicate of lastly implemented
linked list. Now Put each next node of the graph directed from
the last node (B,C,E&D) into separate linked lists and put the
base address of each newly created linked lists into the LIST1
in a consecutive manner. Also, Remove B, C, E & D from
LIST0.

Figure 10: Insert B in LIST2 and C, E and D in the newly

created copies of LIST2.

Figure 11: Insertion of base address of the above-created

lists in LIST1

Step-3:Repeat step (4)-(9) until START1! = NULL
Step-4: Take PTR as a temporary variable.
PTR=INFO [START1] (Here, PTR = B200)
Step-5:Now as PTR points to the LIST2, compare the element
at last node of LIST2 with all its previous nodes from starting.
Step-6: Since, cycle is not detected; insertion of node directed
by B in LIST2 will take place. Since B directs only one node
(D), there is no need to discover new lists, if there will be two
say x & y then new nodes will be formed with A linked with B
and B linked with x and second list will be A linked with B and
B linked with y.

A B E C D

A

B
C

D E

START1

B200 NULL

START

B200 C200 E200 D200 NULL

A Methodology to Find the Cycle in a Directed Graph Using Linked List

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 747

Figure 12: Insertion of D node in the LIST2

Step-7: use Step-5 and 6 for further traversing path.

Figure 13: Insertion of node A in List2

Step-8: Use step-5 and check it has cycle or not.
Here, there is a cycle hence counter incremented and the list
displayed and then deleted. In addition, if first info field of the
LIST1 detects NULL then there is no cycle, counter does not
incremented but list deleted.

Step-9: Now, PTR should points to next node of LIST1.
PTR =LINK [PTR]

Step-10: Since, there are no nodes left in LIST0, displaying
counter results in number of cycle in the graph.

HERE, there are 7 cycles in the graph (Figure 5)
Therefore, using the algorithm we can find the node that forms
the cycles and number of cycle in any digraph.

3.4 Complexity
3.4.1 Worst Case

Figure 14: Example of complete directed graph in order to

calculate the worst case of algorithm.
Let n be the number of vertices in the directed complete graph.
=>T (n) =Pointers assigning+ New lists+ Cycle detection
=>T (n) =O (n-1) +O ((n-1) ^ (n-1)) +O (n-1)
=>T (n) =O (nn

)

3.4.2 Best Case
=>T (n) = Pointers assigning+ Cycle detection
=>T (n) =O (1) +O (n-1)
=>T (n) =O (n)

Figure 15: Example of the directed graph in order to find
the best case of algorithm

4.0 APPLICATIONS OF CYCLE
a) Cycle detection may be helpful as a way of

discovering infinite loops in certain types of

b) Use of wait-for graphs to detect deadlocks in concurrent
system [3].

computer
programs [2].

c) Periodic configurations in

d) In

cellular automaton simulations
may be found by applying cycle detection algorithms to
the sequence of automaton states [4].

 cryptographic applications, the ability to find two
distinct values xμ−-1 and xλ+μ−-1 mapped by some
cryptographic function ƒ to the same value xμ may indicate
a weakness in ƒ. For instance, Quisquater and Delescaille
[5] apply cycle detection algorithms in the search for a
message and a pair of Data Encryption Standard keys that
map that message to the same encrypted value; Kaliski,
Rivest, and Sherman [6] also use cycle detection
algorithms to attack DES. The technique may also use to
find a collision in a

e)
cryptographic hash function.

Analysis of electrical networks, periodic scheduling,
analysis of chemical and biological pathways.

5.0 RECOMMENDATION
The proposed SUS’s cycle detection method is not only an
easier method to detect cycle in any digraph but also very
helpful in finding number of cycles in the graph. So,
thisalgorithmcan be used in detecting infinite loops in various
computer programs, analysis of electrical networks, periodic
scheduling and in many more places where there is a need to
detect cycle.

6.0 LIMITATION
In this paper, the cycle detection done with the help of linked
list. However, this method is easier to implement, in worst case
its complexity reaches to O (n^n), which is much higher and
because of the formation of new lists in run time it needs large
space to act upon. Although, this algorithm removes that linked
lists in which traversal is completed, computers with large
space used here to execute the proposed algorithm.

n

1

2

3 4

5

n

1

2

3 4

5

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 748

7.0 FUTURE SCOPE
The above-proposed algorithmhelps in detecting cycle in any
digraph takes much space to execute and its complexity is
much higher in case of worst case. Therefore, using this
method and logic, in future new logics may define to overcome
the complexity and space problems.

8.0 CONCLUSION
In this paper, we have developed a new technique to detect the
number of cycles in a directed graph and showed the entire
traversed node that forms cycle by displaying it at the time of
using counter that incremented at the time of detecting cycle. In
addition, when the cycle detects, the same time traversed list is
deleted hence, that saved the space. Insertion of nodes from
directed graph inserts in the singly linked list. The procedure of
this algorithm is much easier to implement and execute for
digraph and directed multigraph. This algorithm can be
beneficial in detecting infinite loops in certain computer
program [2].The proposed algorithm expected to be of great
interest in theory and practice alike.

9.0 NOVELTY IN THIS PAPER
In this paper, we have not only presented the new way to detect
the cycle in any simple or strongly connected digraph but also
presented the new way to count number of cycles in the graph.
We used here an efficient data structure named linked list to
form new nodes in run-time. It is also used in storing the base
address of the newly form linked list in run-time. Hence, we
can say that all the application of this algorithm executes in
run-time.

10.0 ACKNOWLEDGEMENT
The completion of this paper would not have been possible
without the help and guidance of our rev. HOD Prof.
Dr.R.Radhakrishnan who was always there to support us and
correct us at every step. We would also like to thank our Prof.
Rohit Rastogi who guided us on this work. Next, we would like
to thank our friends, family and seniors for their motivation and
encouragement. Last but definitely not the least we would
thank the almighty god without whose grace this paper would
not have achieved success.

11.0 REFERENCES
[1]. Piotr Puczynski, “The cycle detection algorithms”,

Wroclaw University of Technology, Faculty of
Management.

[2]. Van Gelder, Allen (1987), "Efficient loop detection in
Prolog using the tortoise-and-hare technique", Journal of
Logic Programming 4 (1): 23–31,

[3].

doi: 10.1016/0743-
1066(87)90020-3.
Silberschatz, Abraham; Peter Galvin, Greg Gagne
(2003). Operating System Concepts. John Wiley &
Sons, INC. p. 260. ISBN

[4]. Nivasch, Gabriel (2004), "Cycle detection using a
stack",

0-471-25060-0.

 Information Processing Letters 90 (3): 135–
140,

[5].
doi: 10.1016/j.ipl.2004.01.016.

Quisquater, J.-J.; Delescaille, J.-P., "How easy is
collision search? Application to DES", Advances in
Cryptology – EUROCRYPT '89, Workshop on the
Theory and Application of Cryptographic Techniques,
Lecture Notes in Computer Science

[6].

434, Springer-
Verlag, pp. 429–434.
Kaliski, Burton S., Jr.; Rivest, Ronald; Sherman, Alan T.
(1988), "Is the Data Encryption Standard a group?
(Results of cycling experiments on DES)", Journal of
Cryptology 1 (1): 3–36, doi:

[7]. H.D. Rozenfeld et al. Statistics of cycles: how loopy is
your network? J.Phys. A: Math.Gen. 38:4589, 2005.

10.1007/BF00206323.

[8]. M. Medard and S. S. Lumetta. Network reliability and
fault tolerance. In J. Proakis, editor, Wiley
Encyclopaedia of Engineering.

[9]. Floyd describes algorithms for listing all simple cycles
in a directed graph in a 1967 paper: Floyd, R.W. (1967),
"Non-deterministic Algorithms", J. ACM14 (4): 636–
644, doi:10.1145/321420.321422.

[10]. Brent, R. P. (1980), "An improved Monte Carlo
factorization algorithm", BIT20 (2): 176–184, doi:
10.1007/BF01933190.

[11]. Nivasch, Gabriel (2004), "Cycle detection using a
stack", Information Processing Letters90 (3): 135–140,
doi: 10.1016/j.ipl.2004.01.016.

[12]. Schnorr, Claus P.; Lenstra, Hendrik W. (1984), "A
Monte Carlo Factoring Algorithm With Linear Storage",
Mathematics of Computation (American Mathematical
Society) 43 (167): 289–311, doi:10.2307/2007414,
JSTOR 2007414.

[13]. Teske, Edlyn (1998), "A space-efficient algorithm for
group structure computation", Mathematics of
Computation67 (224): 1637–1663, doi: 10.1090/S0025-
5718-98-00968-5.

[14]. Sedgewick, Robert; Szymanski, Thomas G.; Yao,
Andrew C.-C. (1982), "The complexity of finding cycles
in periodic functions", SIAM Journal on Computing11
(2): 376–390, doi: 10.1137/0211030.

[15]. Van Oorschot, Paul C.; Wiener, Michael J. (1999),
"Parallel collision search with cryptanalytic
applications", Journal of Cryptology12 (1): 1–28, doi:
10.1007/PL00003816.

[16]. [16] Quisquater, J.-J.; Delescaille, J.-P., "How easy is
collision search? Application to DES", Advances in
Cryptology – EUROCRYPT '89, Workshop on the
Theory and Application of Cryptographic Techniques,
Lecture Notes in Computer Science 434, Springer-
Verlag, pp. 429–434.

[17]. Fich, Faith Ellen (1981), "Lower bounds for the cycle
detection problem", Proc. 13th ACM Symp. Theory of
Computation, pp. 96–105, doi: 10.1145/800076.802462.

[18]. Allender, Eric W.; Klawe, Maria M. (1985), "Improved
lower bounds for the cycle detection problem",

http://en.wikipedia.org/wiki/Directed_graph�
http://en.wikipedia.org/wiki/Robert_W._Floyd�
http://doi.acm.org/10.1145/321420.321422�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1145%2F321420.321422�
http://dx.doi.org/10.1145%2F321420.321422�
http://en.wikipedia.org/wiki/Richard_Brent_(scientist)�
http://wwwmaths.anu.edu.au/~brent/pd/rpb051i.pdf�
http://wwwmaths.anu.edu.au/~brent/pd/rpb051i.pdf�
http://wwwmaths.anu.edu.au/~brent/pd/rpb051i.pdf�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1007%2FBF01933190�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1016%2Fj.ipl.2004.01.016�
http://dx.doi.org/10.1016%2Fj.ipl.2004.01.016�
http://en.wikipedia.org/wiki/Claus_P._Schnorr�
http://en.wikipedia.org/wiki/Hendrik_Lenstra�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.2307%2F2007414�
http://en.wikipedia.org/wiki/JSTOR�
http://www.jstor.org/stable/2007414�
http://www.jstor.org/stable/2007414�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1090%2FS0025-5718-98-00968-5�
http://dx.doi.org/10.1090%2FS0025-5718-98-00968-5�
http://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)�
http://en.wikipedia.org/wiki/Andrew_Yao�
http://en.wikipedia.org/wiki/Andrew_Yao�
http://en.wikipedia.org/wiki/Andrew_Yao�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1137%2F0211030�
http://dx.doi.org/10.1137%2F0211030�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1007%2FPL00003816�
http://www.springerlink.com/content/0wnq56dava5nnm17/�
http://www.springerlink.com/content/0wnq56dava5nnm17/�
http://www.springerlink.com/content/0wnq56dava5nnm17/�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1145%2F800076.802462�
http://dx.doi.org/10.1145%2F800076.802462�
http://en.wikipedia.org/wiki/Eric_Allender�
http://en.wikipedia.org/wiki/Maria_Klawe�

A Methodology to Find the Cycle in a Directed Graph Using Linked List

Copy Right © BIJIT – 2014; July - December, 2014; Vol. 6 No. 2; ISSN 0973 – 5658 749

Theoretical Computer Science36 (2–3): 231–237, doi:
10.1016/0304-3975(85)90044-1.

[19]. Pollard, J. M. (1975), "A Monte Carlo method for
factorization", BIT15 (3): 331–334, doi:
10.1007/BF01933667.

[20]. Pollard, J. M. (1978), "Monte Carlo methods for index
computation (mod p)", Math. Comp. (American
Mathematical Society) 32 (143): 918–924, doi:
10.2307/2006496, JSTOR 2006496.

[21]. Kaliski, Burton S., Jr.; Rivest, Ronald L.; Sherman, Alan
T. (1988), "Is the Data Encryption Standard a group?
(Results of cycling experiments on DES)", Journal of
Cryptology1 (1): 3–36, doi: 10.1007/BF00206323.

Mr. Shubham Rungta is from Ghughli, a town
in district Maharajganj (U.P-India). He had
received his high school education from Don
Bosco School, Nainital (Uttarakhand-India) and
intermediate from Gorakhpur (U.P.). At present,
he is an IV year student of Computer Science
Engineering in ABES Engineering College,

Ghaziabad (U.P. - India). His area of interests includes several
languages such as C, JAVA, Web Technologies and several
subjects such as DBMS, Data Structure, Graph theory,
Software Engineering. He is an author certified with two top
most journals namely, Springer and IEEE. He is a
philanthropist as an active member of NGO named Help Us to
Help Child (HUHC).

Ms. Samiksha Srivastava is currently pursuing
her graduation in B.Tech in Computer Science
and Engineering (IV year)from ABES
Engineering College, Ghaziabad (U.P.-India),
affiliated to Uttar Pradesh Technical
University.Her field of interest includes network

security,DBMS, Website Designing, Date Compression and
Data Structures. She is an active member of NGO named.

Mr. Uday Shankar Yadav is currently an IV
year student of Computer Science Engineering
in ABES Engineering College, Ghaziabad (U.P.
- India), presently affiliated to Uttar Pradesh
Technical University. His area of interests
includes DBMS, Data Mining, Pattern

Recognition, Date Compression, Soft Computing, and Data
Structure. Currently, he completely focused upon the field of
Graph theory.

Mr. Rohit Rastogireceived his B.E. degree in
Computer Science and Engineering from
C.C.S.Univ. Meerut in 2003, the M.E. degree
in Computer Science from NITTTR-
Chandigarh (National Institute of Technical
Teachers Training and Research-affiliated to
MHRD, Govt. of India), Punjab Univ.
Chandigarh in 2010.

He was Asst. Professor at IMS College, Ghaziabad in computer
Sc. Dept. His research interests include Data ware Housing and
Data Mining, Design Analysis of Algorithm, Theory of
Computation & Formal Languages and Data Bases.
He is a Sr. Asst. Professor of CSE Dept. in ABES Engineering.
College, Ghaziabad (U.P.-India), affiliated to Gautam Buddha
Tech. University and Mahamaya Tech. University (earlier Uttar
Pradesh Tech. University) at present and is engaged in
Clustering of Mixed Variety of Data and Attributes with real
life application applied by Genetic Algorithm, Pattern
Recognition and Artificial Intelligence.
He has served as the technical reviewer of 7 papers in 3rd
International Conference on Computing, Communications and
Informatics (IC3‐2014) at GCET, Greater Noida, NOIDA,
India on September, 24-27, 2014 And Currently working as the
reviewer for the SPICES-2015 at NIT Kerala, Kojhicode for
international conf. of Signal Processing and Communication…
Also currently working as the reviewer in the technical
reviewer committee for theINDIA-2015 is Second International
Conference on Information System Design
and Intelligent Applications organized by Faculty of
Engineering, Technology and Management, University of
Kalyani, Kalyani-741235, West Bengal, India.
 He has authored/co-authored, participated and presented
research papers in various Science and Management areas in
around 40 International Journals and International conferences
including prestigious IEEE and Springer and 10 national
conferences including SRM Univ., Amity Univ. and Bharti
Vidyapeetha etc. He has guided five ME students in their thesis
work and students of UG and PG in around 100 research
papers. He has developed many commercial applications and
projects and supervised around 30 B.E. students at graduation
level projects.
At present, he is a Sr. Asst. Professor of CSE Dept. in ABES
Engineering. College, Ghaziabad (U.P.-India), affiliated to
Gautam Buddha Tech. University and Mahamaya Tech.
University (earlier Uttar Pradesh Tech. University).
 His research interests include Data ware Housing and Data
Mining, Design Analysis of Algorithm, Theory of Computation
& Formal Languages and Data Bases. At present, He is
engaged in Clustering of Mixed Variety of Data and Attributes
with real life application applied by Genetic Algorithm, Pattern
Recognition and Artificial Intelligence.
Also, He is preparing some interesting algorithms on Swarm
Intelligence approaches like PSO, ACO and BCO etc.

http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1016%2F0304-3975%2885%2990044-1�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1007%2FBF01933667�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.2307%2F2006496�
http://en.wikipedia.org/wiki/JSTOR�
http://www.jstor.org/stable/2006496�
http://www.jstor.org/stable/2006496�
http://en.wikipedia.org/wiki/Ron_Rivest�
http://en.wikipedia.org/wiki/Digital_object_identifier�
http://dx.doi.org/10.1007%2FBF00206323�
http://dx.doi.org/10.1007%2FBF00206323�

	5.0 RECOMMENDATION
	6.0 LIMITATION
	7.0 FUTURE SCOPE
	The above-proposed algorithmhelps in detecting cycle in any digraph takes much space to execute and its complexity is much higher in case of worst case. Therefore, using this method and logic, in future new logics may define to overcome the complexity...
	8.0 CONCLUSION
	10.0 ACKNOWLEDGEMENT

