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Abstract - This paper proposes a New Extended Kalman filter 
(NEKF) approach to improve local mean power estimation. 
The method is being validated using a GUI system model and 
then compared to existing methods, Kalman Filter (KF) with 
Gaussian and Non-Gaussian noise environments. Our 
analysis is showing that NEKF is a more accurate method in 
most situations. NEKF can accurately estimate the 
parameters and predict states in discrete nonlinear state-
space for modeling shadow power. 
 
Index Terms – Extended Kalman Filter; Fading Channel, 
Handoff, Kalman Filter, local mean, multipath, power 
estimation, shadowing, state space. 
 
1.0 INTRODUCTION 
High performance shadow/fading power estimation methods 
are very important for use in power control of mobile device 
and base station handoff.  Wireless mobile communications has 
become an essential part of life, creating the need for research. 
Mobile communication performance is affected to a large 
degree by fading. Fading is defined as the variation in 
attenuation of a signal over a particular transmission medium. 
There are two main causes of fading between a mobile station 
(MS) and a base station (BS) [1-3]. One is multipath 
propagation, where the received signal strength fluctuates due 
to multiple paths, and shadowing (Local Mean), where the 
transmitted signal is lost through physical phenomena, such as 
absorption, refraction (Figure 1), scattering and diffraction. 
Shadowing is caused by obstacles, such as buildings or trees 
along the path of a signal from the base station (BS) to the 
mobile station [1-3]. Signal is affected by objects along the 
path of the signal as it gets reflected thus taking different paths 
changing the amplitude and phase, resulting in increased or 
decreased power at the receiver. As the mobile device (Figure 
1) is moving relative to the base station the Doppler shift 
(Figure 2) is causing the received frequency to change in 
comparison to the emitted frequency. Improving the shadow 
power estimation and reducing the estimation error more users 
can be accommodated in the system. 
For mobile users, frequently occurring fading dips will cause 
unnecessary and capacity degrading, retransmissions. To  
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achieve a high throughput over fading channels, adaptive 
methods for adjustment of (e.g. the modulation alphabet, and 
the coding complexity) can be used [4-6]. 
These techniques require accurate shadow power estimation 
and prediction to combat time-variability. 
Weighted sample average estimators of local mean power, are 
currently used in many wireless communication system 
providers [4, 30, 31, 34]. 
Window based estimators work best under the assumptions 
that the shadow power process is constant over the duration of 
the averaging window [1]. In reality shadow power varies with 
time due to fading, which causes deterioration of these 
estimates as the window size increases beyond a certain value. 
The window size depends on several variables. One variable is 
the vehicles velocity v, and sampling period Ts. There are 
other shadow fading characteristics that affect the optimal 
window size [23]. 
The Kalman Filter (KF) algorithm can be used for linear 
systems. There are continuous and discrete KF methods. KF is 
an optimal recursive estimator, for stochastic linear dynamic 
systems are minimized by the Mean Squared Error (MSE) 
method. Wiener-Kolmogorov filter was the predecessor that 
Kalman filter [2]. While KF can be applied to linear systems is 
not a good solution for systems with nonlinearities. NEKF 
Techniques have been proposed to modify KF to be applied to 
nonlinear systems. For example, NEKF has been proposed in 
nonlinear systems estimations by linearizing the estimated 
variables through deriving Jacobian matrices [2]. However, 
NEKF may not be a good choice in system with high 
nonlinearity, or systems that are very difficult to calculate their 
Jacobian matrices. 
This paper has been organized as follows. Section 1 is an 
introduction. Section 2 explains the new method of Extended  
Kalman Filter (NEKF) used for determining Shadow power in 
mobile station. Section 3 explains the non linear state space 
model theory. Section 3.1 Multipath and Linear Kalman Filter 
1st order. Section 4 is the measurements, simulations and 
results. Section 5 is the conclusion. Section 6 is future work. 
Although statistical methods for parameter estimation of linear 
models in dynamic mobile communication systems have been 
developed, the estimation of both states and parameters of non 
linear dynamic systems remains also challenging and is being 
addressed in this paper. 
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Figure 1: MS Refraction from BS 

 

 
Figure 2: Doppler shift effect 

 
2.0 EXTENDED KALMAN FILTER THEORY 
KF is a form of a linear algorithm for the optimal recursive 
estimation of system state with specific set of output equations. 
Kalman filter equations can be separated into two parts [6]; the 
time update equations and the measurement update equation. 
The Process state is estimated at some time with feedback 
using measurements that contain noise as it can be shown in 
equation 4. The time update equations can also be called 
predictor equations while the measurement equation can be 
called corrector equations. 

 Kalman Gain 
 Environment noise covariance 
System noise covariance 

: Error covariance 

1x  =f(x ) +g(x ,u )k k k k    
(1) 

y  =h(x )k k      
(2) 

 
2.1 Time Update “Predicted” 
 
Project the state ahead  

1 1x̂  ˆ=J x +J uk x k u k


      
(3) 

Project the error covariance ahead 

1k

T
x k xP J P J Q

      
(4) 

 
2.2 Measurement Update “Corrected” 
 
Compute the Kalman gain 

1 = P ( P + R )  T T

k k k k k k kK H H H  

   
(5) 

Update estimate with measurement kz  

 = + K - ( )k k k k kx x z h x
    

 
 

   (6) 

Update the error covariance   

= (I - K )  k k k kP H P

      
(7) 

Initial estimates for 1ˆkx   and 1kP   

where: 
 Kalman Gain 

 Environment noise covariance 
System noise covariance 

: Error covariance 
 
The Extended Kalman Filter (NEKF) is the non linear 
extension of Kalman Filter (KF). NEKF is therefore suitable to 
take into account the non-linearity of the shadow power system 
model [7-9]. NEKF is a well known method and standard that 
has been considered in the theory of nonlinear state estimation 
[10]. KF and NEKF are known to be recursive data processing 
algorithms that estimate current mean and covariance.  NEKF 
is reprocessing data at every time step without the need of 
storing previous measurements.  The state distribution along 
with the mean and the covariance are being propagated 
analytically using a first order linearization. The predicted state 
estimation ˆ kx   for a linearized nonlinear process is expressed 

as follows: 

1 1x̂  ˆ= J x + J uk x k u k


       (8) 

The following expression is representing the error covariance 

kP  of the predicted state estimation: 

1 1x̂  ˆ=J x +J uk x k u k


        (9) 

where
1kQ 
 is the process noise, and

1( )f kJ x 


, 
1( )T

f kJ x 


 

are the Jacobian matrix and its transpose respectively. As it can 
be seen below Jf is the Jacobian matrix with partial derivative 
of all the state estimates: 
 

 

        (10) 

      

      

        (11) 

Jacobian Jf andJy matrices are shown in 10 and 11. Kk the 
weighting gain is defined by taking into account the 
measurement error that are due to the process noise as it can be 
seen in equation (3).The measurement matrix Hk is the 
Jacobian and Rk is the measurement noise.  The gain Kk is 
directly proportional to Hk and inversely proportional to the 
measurement noise Rk. Expression (5) shows that the gain 
decreases to minimize the weight of the noise on the next 
estimate when the measurement noise increases while other 
factors are negligible. The predicted state estimation ˆ kx  is 

corrected by taking the effect of the measurements into 
account.  The actual measurement zk is compared to the 
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predicted measurement ˆ(x )kh   and scaled by the relevant 

component of the measurement information, and inversely 
proportional to the measurement noise R k

. This expression (4) 

is significant. It shows that the gain decreases to minimize the 
weight of the noise on the next estimate, when the 
measurement noise grows and other factors are negligible. 

ˆ kx  is the predicted state estimation. It’s corrected by taking 

the effect of the measurements. zk is the defined as the actual 
measurement and it is compared to the predicted measurement 

ˆ( )kh x  and adjusted by scaled Kk weighting gain (4).Equation 

(5) is expressing the correction phase of the algorithm. The 
error covariance is updated as shown in equation (6). The 
parameters of the model were varied in order to test robustness. 
 
3.0 NONLINEAR STATE-SPACE MODEL THEORY 
In control theory nonlinear state-space Model (NSSM) is a 
powerful tool for modeling of an unknown noisy system [10]. 
Nonlinear dynamical factor analysis (NDFA) scales only 
quadratic ally with the dimensionality of the observation space, 
so it is also suitable for modeling systems with fairly high 
dimensionality [10]. In NSSM, the observations have been 
generated from the hidden state yi. 
Linearization of the state-space equation by making the first 
order Taylor expansion around the current estimate xi|i-1. 
We have a linear state-space model of xi. The state xi can be 
estimated recursively using the solution of a normal linear 
state-space model. 
 
3.1 Multipath and Non-Linear section Kalman Filter 2nd 
order 
The Non-Linear KF 2nd order model is based on the following 
equations: 
Prediction step: 
       
          (16) 
 
                                                                   (17) 
 
KALMAN GAIN: 
          (18) 
 
UPDATE STEPS: 
      
         (19) 
 
       

    (20) 
 
 
          (21) 
 
 
S*  Is the optimal estimate of the second order shadow process 

In order to stabilize continuous and discrete-time systems one 
has to use time-dependent or discontinuous feedback controls. 
On the other hand, the criterion of stabilization in the class of 
         piecewise-constant feedbacks is established. The piece 
wise-constant (figure 3) feedback is associated with a piece 
wise-constant function of the form u – u(x) where x � R. 
Piecewise constant is used in the nonlinear form (figure 4) for 
the coefficient α. 
The coefficient α is given by the following equations: 
          (22) 
 
 
          (23)               
                                                                (24) 
 
where a1 and a2 are shadow power coefficients. 
,         is zero mean white Gaussian noise with variance      that 
equals to             . 
 
where the mean   decreases monotonically as n increases. 
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Figure 3: Linear as coefficient constant. 
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Figure 4: Nonlinear as coefficient piecewise constant. 

4.0 GUI MEASUREMENT SIMULATION AND 
RESULTS 
A Graphical User Interface (GUI) was developed to better assist 
with varying the different parameters. In Figure 5 a flow chart of 
the GUI identifies the different sections of the code. 
Several simulations were executed. After running multiple 
simulations the results can be shown in Figures 6,7,8, 
9.10,11,12,13,14. Clearly the NEKF applied on the incoming signal 
is performing as expected. The results show that the NEKF are very 
close to the incoming signal.  
It’s shown also that NEKF performs satisfactory within the range of 
-5dB to 5dB. Non-Gaussian noise distributions can be modeled as 
additive zero-mean Gaussian distributions.  
Even though the computational complexity of NEKF is higher 
than the KF the results are satisfactory. The assumption made 
when using KF is that the shadow process is driven by white 
Gaussian noise. It’s a window free approach when multipath is 
white [1]. 
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There are two scenarios that are being taken into account. One 
scenario is the suburban were the shadow process coefficient 
can be regarded as constant for a wide range of velocities due 
to a large Xc with Xc being the correlation distance [1].As an 
example, in the case Xc= 500m when the velocity v is in the 
range from 5 to 80km/hr while the sampling period can be 
chosen as Ts=0.01s,in which case a is between [.9841, 
0.9990]. 
The other scenario is the urban (Figure 12) case with a small 
Xc and large range in velocity v. 
Figure 5 is the flow chart of the graphical interface (GUI) 

 

 

Figure 5: GUI Flow Chart. 

 

Figure 6: Simulink GUI estimation mean =0 variance = 3.9 

 

Figure 7: Simulink GUI estimation S(t) = -2.9 db 

Simulink GUI was also created to give us the ability of changing 
the parameters and being able to see the results as in figure 7. 

 

Figure 8: Compare 1st order KF with actual Shadow Power. 

 
Figure 9: NEKF of Shadow Power at low speeds range [100 
500] m. 

Figure 10:. NEKF ofShadow Power at low speedsrange 
[100- 500] m. 
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Figure 11: NEKF of Shadow Power at low speedsrange 
[100- 500] m. 

 

Figure 12: NEKF of Shadow Power at high 
speedsdistance [100 -500] m. 
 

  
 Figure 13: NEKF of Shadow Power at low speeds Time 
 sample[.05 .5] sec. 

 
Figure 14: NEKF of Shadow Power Velocity [20 60] Km/h. 
 
5.0 CONCLUSION 
In this paper, the NEKF method has been proposed to optimize the 
performance of the shadow/fading power estimation. Simulation 
results show that the incoming signal is being tracked in a 
satisfactory manner. Increasing the shadow power variance has a 
direct affect in increasing the noise level seen in the shadow power 
estimate. Having mean =0 and variance = 3.9 then we receive 0 
signal on the average (though there is a probability Shadow can be 
very small according to distribution) increases the noise. The major 
variables that are considered in this paper are;  which is the 
effective correlation distance,  the sampling period, v the vehicle 
velocity, a the correlation coefficient. In a suburban scenario, the 
shadow process coefficient which is a factor of the effects of 
environmental diversity that plays a role in wireless 
communications is regarded as constant for a wide range of 
velocities due to the fairly large .  is the correlation 
distance with v being vehicle velocity and  the sampling 
period. For example, in the case  = 500m when the 
velocity is in the range from 5 to 80km/hr, the sampling period 
can be chosen as Ts= 0.01s, in which case a is between [.9841, 
0.9990].The results have also shown that this method is more 
efficient when implemented in both multipath affected signals. 
NEKF performs significantly better than KF while preserving their 
structures. Parameters have been changed to simulate conditions of 
typical urban areas as well as rural ones. The implementation of 
NEKF in this paper can be used in other wireless communication 
devices besides the cellular phones [32]. 
 
6.0 FUTURE WORK 

1. Apply the approach to larger and more complex nonlinear 
(NL) models and joint state/parameter estimation. 

2. Extend the analysis to higher order non-Gaussian 
channel models. 

3. Assess the impact and effects of path loss including 
multiusers in shadow-fading environment.  
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