
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi (INDIA)

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 623

Additional Fault Detection Test Case Prioritization
Ritika Jain1 and Neha Agarwal

Submitted in April, 2013; Accepted in August, 2013

2

Abstract - Regression testing is used to confirm that previous
bugs have been fixed and that new bugs have not been
introduced. Thus regression testing is done during
maintenance phase and applied whenever a new version of a
program is obtained by modifying an existing version. To
perform a regression testing a set of new test cases and old
test cases that were previously developed by software
engineers are reused. This test suite is exhaustive in nature
and it may take long time to rerun all test cases. Thus
regression testing is too expensive and the number of test
cases increases stridently as the software evolves. In present
work, an additional fault detection test case prioritization
technique is presented that prioritizes test cases in regression
test suite based on number of concealed faults detected by test
cases. Both noncost cognizant and cost cognizant
prioritization of test cases have been performed using
proposed technique and efficiency of prioritized suite is
assessed using APFD and APFDc metric respectively.

Index Terms – APFD, APFDc, Cost-cognizant, Regression
testing, Test case prioritization.

1.0 INTRODUCTION
A software product goes through requirement elicitation phase,
design phase, implementation phase and testing phase before
being fully operational and ready for use [1]. At the coding
time developers often saves the set of test cases to test the
module written and to reuse them later whenever software
undergoes changes. When testing phase starts testing team
creates a separate test suite, test environment and test oracle to
validate the whole software system against customer
satisfaction. Most of the time it is assumed that the software
life cycle end after its delivery. But a long lasting maintenance
phase starts after the deployment of the software to the
customer’s site. During this long life software evolves through
numerous modifications and additions based on faults, change
of user requirements, change of working platform or
environments, change of government policies, and so forth.
With the evolution of software product, maintaining its quality
becomes more difficult and harder due to its numerous released
versions, which goes on incrementing with every new set of
changes to the previous version. These modifications into the
existing software or addition of new features to the software
may create new faults or may cause it to work improperly.

1, 2Department of Computer Science and Engineering, Amity
School of Engineering and Technology, Amity University,
Noida-201303, India
E-mail: 1jritika27@gmail.com and 2

nagarwal2@amity.edu

Thus assuring the quality of software product along with these
modifications and additions is the challenging task of
maintenance phase. Sometimes the quality may become worse
than before. On the other hand, users hope that the new version
of the software should be easy to use, has more features, and
has better quality than before.
Regression testing is used to confirm that fixed bugs have been
fixed and that new bugs have not been introduced. Regression
testing refers to that portion of test cycle in which a program P’
is tested to ensure that not only does the newly added or
modified code behaves correctly, but also the code that carried
over unchanged from the previous version P continues to
behave correctly. Thus regression testing is done during
maintenance phase and applied whenever a new version of a
program is obtained by modifying an existing version.
Regression testing is sometimes referred to as “program
revalidation”. The term “corrective regression testing” refers to
regression testing of a program done after making corrections
to the previous versions. Another term “progressive regression
testing” refers to a regression testing of a program done when
new features are added to the previous version. To perform a
regression testing a set of new test cases and old test cases that
were previously developed by software engineers are used.
This test suite is exhaustive in nature and it may take long time
to rerun all test cases. Thus regression testing is too expensive
and the number of test cases increases stridently as the software
evolves.
Researchers [2-3] have provided effective regression testing
techniques. The simplest one is to reuse all test cases that were
run before the modification of previous version of the software.
But it might waste time and resources due to execution of
unnecessary tests. Therefore it is desirable to run only a subset
of test suite, which can be chosen by using regression test
selection techniques. The drawback of test subset selection
techniques is that some important and crucial test cases might
be evaluated as worthless and might not be selected for
execution, which might cause some effected portion of the
software to be remained untested. Another approach is to
permanently remove the number of test cases from the test suite
by eliminating redundant test cases and thus reducing the test
suite size, which can be accomplished by using test suite
reduction techniques. The downside of this is that it might
degrade the fault detection capability with the reduction of test
suite size. The above discussed problems can be solved by test
case prioritization techniques, in which test cases in a test suite
are rearranged in an attempt to make sure that faults get
revealed at earlier stage of testing process. Test case
prioritization techniques schedule test cases in an order such
that those with higher priority, according to some objective
criteria, are executed before than those with lower priority, to
meet some performance goal. Test case prioritization can be

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 624

used in conjunction with test subset selection and test reduction
techniques to prioritize test cases in selected or minimized test
suite [4-6].
In this paper, a new test case prioritization algorithm has been
proposed that prioritizes the test cases in the test suite based on
the maximum number of faults detected which has not been
revealed by any other test case executed so far. In first
experiment, test cost and fault severities are considered as unity
and then test cases are prioritized using proposed algorithm.
The efficiency of prioritized suite is then measured using
APFD metric. In second experiment, test cost and fault
severities are incorporated while prioritizing test cases and
measured using APFDc metric. In the end experimental results
are analyzed and compared.
The rest of this paper is structured in the described format. In
Section 2, a brief description of test case prioritization
technique is given followed by literature survey in Section 3.
The new algorithm to test case prioritization is presented in
Section 4. The experimental studies along with the obtained
results and their analysis are given in Section 5. Finally, some
conclusions are drawn in Section 6.

2. TEST CASE PRIORITIZATION
Test case prioritization problem is defined as finding a
permutation of test cases to maximize an objective function,
which reflects the prioritization goal. The formal definition of
this problem can be expressed as follows [3, 7-9].

2.1 Problem Statement
Given: T, a test suite; PT, the set of permutations of T; f, a
function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that (∀T′′) (T′′ ∈ PT) (T′′≠ T′) [f
(T′) ≥ f (T′′)]
Here, PT represents the set of all possible prioritizations
(orderings) of T, and f is a function that, applied to any such
ordering, yields an award value for that ordering. The
definition assumes that higher award values are preferred over
the lower ones.

2.2 Measuring Efficiency
In order to measure the effectiveness of test case ordering
obtained through test case prioritization technique, a metric
APFD (Average Percentage of Fault Detected) has been
defined in the literature [3]. This metric measures average
percentage of faults detected (rate of fault detected) against
average percentage of test suite executed. Its value ranges from
0% to 100%. Higher APFD value reveals higher rate of fault
detection and lower value reveals lower rate of fault detection.
This metric provides a mean to compare efficacies of various
prioritization techniques. In a formulaic presentation of the
APFD metric, let T be a test suite containing n sequential test
cases, and F be a set of m faults revealed by T. Let T’ be some
ordering of T. Let TFi

 be the first test case in T’ that reveals
fault i. The APFD for T’ is:

 (1)

The limitation of APFD metric is that it treats all test cases with
equal cost and all faults with equal severity. However,
practically these factors possess distinct value for different test
case and drastically affect the effectiveness of test case
ordering. In such cases, the APFD metric provides
unsatisfactory results. To triumph over the weakness of APFD
metric a new metric APFDc (Average Percentage of fault
Detected per Cost) has been suggested in the literature [3]. This
metric measures average percentage of test case cost incurred
against average percentage of fault severity detected. The
APFDc metric can be quantitatively described as follows: let T
be a test suite containing n test cases with cost t1, t2,……., tn. Let
F be a set of m faults revealed by T, and let f1,f2…..,fm be the
severities of those faults. Let TFi be the first test case in an
ordering T’ of T that reveals fault i. The weighted (cost-
cognizant) average percentage of faults detected during the
execution of test suite T’

 is given by the equation:

 (2)

3. LITERATURE SURVEY
Researchers [7, 9-10] have provided variety of test case
prioritization techniques. Most of these techniques prioritize
test cases based on their coverage information such as
statement coverage, branch coverage, loop coverage, function
coverage, condition coverage, and fault detected. Different
prioritized suite of test cases are then obtained based on
different coverage techniques and evaluated using APFD
metric in order to contrast them. However, these code coverage
based prioritization techniques have two limitations.
First, these techniques consider the value of test cost and fault
severity as equivalent. On the contrary, factors allied to test
cost and fault cost radically affect the ordering of test cases in
prioritized suite and so its efficacy. As a consequence,
researchers work out different ways to compute test cost and
fault cost and provide cost cognizant test case prioritization
techniques [2-3, 8, 11] that include these factors while
prioritizing test cases. The efficacy of cost cognizant test case
prioritization techniques can be measured through APFDc
metric.
Literature [12-13] also proposed historical value based
approach for cost cognizant test case prioritization in which a
historical value model is used to calculate historical value of
test cases based on the historical test case cost and the
historical fault severities.
Second limitation is that, testers needed source code to assess
coverage information of test cases and if source code is not
available then applying this technique will be very difficult. In
order to beat this difficulty, history-based test prioritization
techniques were proposed and studied [14-15] that uses
historical execution data of test cases in order to determine
their priority. In addition, some researchers [16-17] had

Additional Fault Detection Test Case Prioritization

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 625

employed genetic algorithm to history–based test case
prioritization. They collect data such as test cost, fault
severities, and detected faults of each test case from the latest
regression testing and apply genetic algorithms to acquire
better prioritized suite.

4. PROPOSED TECHNIQUE
In present communication, a new regression test suite
prioritization algorithm is presented, that prioritizes the test
cases in the regression test suite with the goal of finding the
maximum number of faults at the early phase of the testing
process. It is presumed that the desired execution time to run
the test cases, the faults they reveal, and the fault severities are
known in advance. This technique considers total number of
concealed faults detected by each test case, to prioritize them.
First the total number of faults detected by each test case is
found. From this, the one which detects maximum faults is
selected and then the fault coverage data of each unselected test
case is adjusted to indicate their new fault coverage data (faults
detected by each test case that are not yet discovered). Then the
test case which covers maximum faults is selected. If there is
more than one test case which covers maximum number of
faults then choose them randomly and again adjust the fault
coverage data of unselected test cases. This process is repeated
until all faults have been covered. When all faults have been
covered, same process is repeated for the remaining test cases.
To make this technique accustomed to the situation where test
costs and fault severities vary, instead of summing the
number of new faults covered by a test case t to calculate the
worth of t, the number of new faults f covered by t is multiplied
by the criticality-to-cost adjustment g(criticalityt;costt

) for t.
The notion behind the use of this computation is to reward
those test cases that have greater cost adjustments when
weighted by the additional faults they cover.

Algorithm 1: when test cost and fault severity are unity
Input: Test suite T, fault trace history
Output: Prioritized test suite T
1: begin

’

2: set T’

3: initialize values of vector as “uncovered"
 empty

4. While T is not empty do
5: for each test case t ЄT do
6: calculate total number of faults f covered by t using and

7: end for
8: select test t that cover maximum number of faults
9: append t to T
10: update based on the faults covered by t

’

11: if all faults has been covered
12: initialize values of vector as “uncovered"
13: end if
14: remove t from T
15: end while
16: end

Algorithm 2: when test cost and fault severity are different
Input: Test suite T, fault trace history , test criticalities ,
test costs
Output: Prioritized test suite T
1: begin

’

2: set T’

3: initialize values of vector as “uncovered"
 empty

4. While T is not empty do
5: for each test case t Є T do
6: calculate total number of faults f covered by t using and

7: calculate award value of t as f * g (criticalityt; costt

8: end for

) using
 and

9: select test t with the greatest award value
10: append t to T
11: update based on the faults covered by t

’

12: if all faults has been covered
13: initialize values of vector as “uncovered"
14: end if
15: remove t from T
16: end while
17: end

 is a vector having values “covered" or “uncovered" for
each fault in the system. The vector record the faults that have
been covered by previously selected test cases. is the
criticality of test case measured by summing the severities of
all faults covered by test case.

4.1 Comparative Techniques
No prioritization. As an experimental control, one comparator
technique that we consider is no prioritization, where no
prioritization technique is applied and test cases are executed in
sequential order.
Random ordering. Another comparator technique that we
consider is the random ordering of the test cases in the test
suite.

4.2 Estimating Test Cost and Fault Severity
For cost cognizant prioritization it is required to obtain cost of
each test case and severity of faults each test case reveal. [3,
13] makes available some measures to compute test cost and
fault severity. Test costs are greatly diversified in software
testing. Depending on the criteria, a test cost can be computed
over several factors such as machine time, human time, test
case execution time, monetary value of the test execution, and
so forth. Similarly, fault severity can also be measured by
depending upon criteria such as test criticality (the criticality of
the test case that detects a fault) and function criticality (the
criticality of the function in the code that is covered by the test
case).In our approach, test cost is refined as the test case
execution time of a test case and Fault severity is refined to test
case criticality, which is devoted to each test case by summing
up the severities of each fault that test case reveal.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 626

4.3 Award Value Calculation
In cost cognizant prioritization the test cases are prioritized
based on award value. The award value of a test case is
calculated using the formula

,

Where criticalityt is the total severity of faults detected by test
case t, costt is the cost of test case t, and g is a function that
maps the criticality and cost of t into a value. (Function g
simply divides criticalityt by costt

.). Greater the award value
more will be the chances of the test case to be selected for
execution.

5. RESULTS AND DISCUSSION
Table 1 shows test cost and fault severity of test cases and
faults respectively [11]. The proposed technique is examined
on data given in Table 1 and comparative analyses are drawn.

Fault

/ test

case

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T1

0

Fault

sever

ity

F1 $ $ 6

F2 $ $ $ 6

F3 $ $ $ 6

F4 $ $ 10

F5 $ 8

F6 $ $ 10

F7 $ $ $ 4

F8 $ $ 20

F9 $ $ $ 12

F10 $ $ 6

Num

ber of

faults

2 2 2 3 2 3 1 4 2 2

Time 9 8
1

4
9

1

2

1

4

1

1

1

0

1

0
13

Table 1: Time taken to find out the fault and the severity
value [11]

5.1 Experiment 1
Test cases are prioritized based on the total number of
concealed faults detected by each test case. Here test cost and
fault severity is considered as unity. From Table 1 as it can be
seen, test case T8 has revealed maximum number of faults, thus
the first test case to be executed in prioritized suite is T8. The

new fault coverage data of remaining test cases adjusted to T8
are shown in Table 2.

Fault /

test case
T1 T2 T3 T4 T5 T6 T7 T9 T10

F2 $ $ $

F3 $ $ $

F4 $ $

F7 $ $ $

F8 $ $

F9 $ $ $

Number

of faults
1 2 2 3 2 3 1 0 2

Table 2: Fault coverage data of test cases adjusted to test
case T8

Now there are two test cases that expose three new faults. Next
test case to be executed is T4. In this way, the prioritized suite
is produced by applying the additional fault detection
technique. Table 3 shows test suite prioritized order both for
comparative techniques and proposed technique.

Prioritization technique Prioritization order
No prioritization T1-T2-T3-T4-T5-T6-T7-T8-T9-T10

Random ordering T5-T3-T9-T1-T8-T6-T2-T10-T7-T4

Additional fault detection T8-T4-T2-T1-T6-T3-T9-T5-T10-T7

Table 3: Prioritization order based on additional fault
detection without considering cost

The efficiency of this prioritized order is measured through
APFD metric and its value is given in Table 4.

Prioritization technique APFD (%)
No prioritization 53
Random prioritization 60

Additional fault detection 75

Table 4: APFD Value of prioritized suite

It is seen that proposed prioritization technique increases the
rate of fault detection capability of regression test suite upto
75% from 53% when there is no prioritization. The APFD
value of prioritization order obtained through proposed
technique is also greater than random ordering which makes it
clear that random prioritization is never reliable. The proposed
technique is also compared with the technique given by
Kavitha and Sureshkumar [11]. It can be presented that the
APFD value obtained by proposed technique is 75% whereas it
is reported to be 70% for the same test data by Reference [11].
APFD graphs of unprioritized suite, random ordered suite, and
additional fault detection prioritized suite is demonstrated in
Figure 1a, 1b, and 1c respectively. The horizontal line in the
graph represents average percentage of test suite executed and

Additional Fault Detection Test Case Prioritization

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 627

vertical line represents average percentage of total faults
detected.

Test case order T1-T2-T3-T4-T5-T6-T7-T8-T9-T10

Percentage total test suite executed

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
ta

ge
 to

ta
l f

au
lt

de
te

ct
ed

0

20

40

60

80

100

APFD = 53%

(a)
Test case order T8-T4-T2-T1-T6-T3-T9-T5-T10-T7

Percentage total test suite executed

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
ta

ge
 to

ta
l fa

ult
 d

et
ec

te
d

0

20

40

60

80

100

APFD = 60%

(b)
Test case order T8-T4-T2-T1-T6-T3-T9-T5-T10-T7

Percentage total test suite executed

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
ta

ge
 to

ta
l fa

ult
 d

et
ec

te
d

0

20

40

60

80

100

APFD = 75%

(c)

Figure 1: APFD graph of (a) unprioritized test suite, (b)
random ordering test suite and (c) test suite from proposed
technique

5.2 Experiment 2
Since test cost and fault severity greatly varies for each test
case and fault, ignoring them can never produce appropriate
and satisfactory results. Thus test cost and fault severity is
integrated with test cases and faults respectively to produce a
prioritized suite that detects more and more severe faults by
incurring less cost to execute test cases. Test cases are
prioritized based on award value of each test case. Efficiency
of the prioritized test suite is measured through APFDc metric.
Prioritized suite that is obtained by applying algorithm 2 on the
comparative techniques and on data shown in Table 1 is
presented in Table 5.

Prioritization technique Prioritization order

No prioritization T1-T2-T3-T4-T5-T6-T7-T8-T9-T10

Random ordering T5-T3-T9-T1-T8-T6-T2-T10-T7-T4

Additional fault detection T8-T6-T2-T4-T1-T9-T10-T3-T7-T5

Table 5: Prioritization order based on additional fault
detection considering cost

For these prioritized order their efficiency is measured through
APFDc metric and its value is given in Table 6.

Prioritization technique APFDc (%)

No prioritization 68.24%

Random prioritization 63.95%

Additional fault detection 85.64%

Table 6: APFDc value of prioritized suite

It can be observed from Table 6 that the efficiency of random
ordering can sometimes be less than unprioritized test suite.
Proposed prioritization technique shows highest rate of fault
exposing potential (85.64%). It is also observed that cost
cognizant test case prioritization has considerable higher fault
exposing rate than noncost cognizant prioritization technique.
APFD graph of unprioritized suite, random ordered suite, and
additional fault detection prioritized suite is demonstrated in
Figure 2a, 2b, and 2c respectively. The x-axis represents
weighted “average percentage of test cost incurred” and y-axis
represents weighted “average percentage of fault severity
detected”.

Test case order T1-T2-T3-T4-T5-T6-T7-T8-T9-T10

Percentage total test case cost incurred

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rce

nta
ge

 to
tal

 fa
ult

 se
ve

rity
 de

tec
ted

0

20

40

60

80

100

APFDc = 68.24%

(a)

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 628

Test case order T8-T6-T2-T4-T1-T9-T10-T3-T7-T5

Percentage total test case cost incurred

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
ta

ge
 to

ta
l f

au
lt

se
ve

rit
y

de
te

ct
ed

0

20

40

60

80

100

APFDc = 63.95

(b)

Test case order T8-T6-T2-T4-T1-T9-T10-T3-T7-T5

Percentage total test case cost incurred

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
ta

ge
 to

ta
l f

au
lt

se
ve

rit
y

de
te

ct
ed

0

20

40

60

80

100

APFDc = 85.64

(c)

Figure 2: APFDc graph of (a) unprioritized test suite, (b)
random ordering test suite and (c) test suite from proposed

technique

6. CONCLUSIONS
In present communication, a new prioritization technique for
Regression testing is presented that prioritizes test cases based
on exposure of undetected faults by each test case to improve
the rate of fault detection. The results show that the proposed
technique leads to improve the rate of detection of severe faults
at early stage in comparison to nonprioritized order and random
order of test cases. When test cases are prioritized without
considering the cost of tests and severity of faults, prioritized
suite of proposed technique gives 75% APFD value, which is
very large as compared to no prioritization and random

prioritization. When the same technique is integrated with test
cost and fault severities, prioritized order of proposed
technique gives 85.64% APFD value which is not only larger
than comparative techniques but also larger that APFD value of
noncost cognizant prioritized suite of proposed technique. It is
also observed that the number of test cases required to find all
faults is less in case of proposed prioritization technique. The
important feature of this technique is that it exposes abundance
amount of severe faults in short duration of test suite execution.

REFERENCES
[1]. K.K. Agarwal, and Y. Singh, “Software engineering,”

IIIrd ed, New age international publishers, 2008.
[2]. P.R. Srivastava, “Test case prioritization,” Journal of

Theoretical and Applied Information Technology, vol. 4
(3), pp. 178-181, 2008.

[3]. A.G. Malishevsky, G. Rothermel, and S. Elbaum, “Cost-
cognizant test case prioritization,” Technical Report TR-
UNL-CSE-2006-0004, Department of Computer Science
and Engineering, University of Nebraska-Lincoln,
Lincoln, Nebraska, U.S.A., 12 March 2006.

[4]. K.K. Aggrawal, Y. Singh, A. Kaur, “Code coverage
based technique for prioritizing test cases for regression
testing,” ACM SIGSOFT Software Engineering, vol. 29,
no. 5, Sep. 2004.

[5]. R. Malhotra, A. Kaur, Y. Singh, “A regression test
selection and prioritization technique,” Journal of
Information Processing Systems, vol.6, no.2, June 2010.

[6]. G. Rothermel and M.J. Harrold, “A safe, efficient
regression test selection technique,” ACM Trans.
Software Engineering and Methodology, vol. 6, no. 2,
pp. 173-210, Apr. 1997.

[7]. G. Rothermel, H. Roland H. Untch, Mary Jean Harrold,
“Prioritizing Test Cases For Regression Testing”, IEEE
Transactions on Software Engineering, vol. 27, no. 10,
October 2001.

[8]. S. Elbaum, A. Malishevsky, G. Rothermel,
“Incorporating Varying Test Costs and Fault Severities
into Test Case Prioritization,” Proc. 23rd

[9]. S. Elbaum, A. Malishevsky, G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies, IEEE
Transactions on Software Engineering, vol. 28, No. 2,
February 2002.

 International
Conference on Software Engineering, May 2001.

[10]. G. Rothermel, R. Untch, C.chu, M. Harrold, “Test case
prioritization:an empirical study,” Proc. International
conference on Software Maintenance, pp. 179-188, Aug.
1999.

[11]. R. Kavitha, N. Sureshkumar, “Test Case Prioritization
for Regression Testing based on Severity of Fault”,
International Journal on Computer Science and
Engineering, vol. 02, No. 05, 2010, 1462-1466.

[12]. H. Park, H. Ryu, J. Baik, “Historical value based
approach for cost cognizant test case prioritization to
improve the effectiveness of regression testing,” 2nd

Additional Fault Detection Test Case Prioritization

Copy Right © BIJIT – 2013; July-December, 2013; Vol. 5 No. 2; ISSN 0973 – 5658 629

International Conference on Secure System Integration
and Reliability Improvement, pp. 39-46, July 2008.

[13]. P. Srivastava, “Performance Evaluation of Cost-
cognizant Test Case Prioritization”, UACEE
International Journal of Computer Science and its
Applications, Volume 1, Issue 1.

[14]. A. Khalilian, M. A. Azgomi, Y. Fazlalizadeh, “An
improved method for test case prioritization by
incorporating historical test case data”, Science of
Computer Programming, volume 78, issue 1, 1
November 2012, pages 93-116.

[15]. J. M. Kim, A. Porter, “A history based test prioritization
technique for regression testing in resource constrained
environment,” In Proc. of the International Conference
on Software Engineering, Orlando, USA, pp. 119-129,
2002.

[16]. Y.C. Huang, C.Y. Huang, J.R. Chang, T.Y Chen,
“Design and Analysis of Cost-Cognizant Test Case
Prioritization Using Genetic Algorithm with Test
History,” IEEE 34th

[17]. Y.C. Huang, K.L. Peng, C.Y. Huang, “A history-based
cost-cognizant test case prioritization technique in
regression testing,” The Journal of Systems and
Software, 85, 2012, 626– 637.

 Annual Computer Software and
Applications Conference, 2010.

