
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM)., New Delhi

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 67

A Mobile Transaction System for Open Networks
R. B. Patel1 and Anu2

Abstract - The evolution of mobile computing devices and
wireless network has created a new mobile computing
environment. Users equipped with portable devices can
access, retrieve and process information while in mobility.
Mobile devices like laptops; mobile phones have become more
powerful data processing elements. Traditional transaction
model has moved forwarding to mobile transaction system.
Autonomous decentralized systems represent examples of
environments for which the use of mobile codes is quite
convenient. For example, designing highly scalable
distributed systems in a massive, heterogeneous and multi
organizational distributed environment seems to benefit much
from mobile codes, given their ability to decentralize
processing; to adapt to the autonomy of systems; to flexibly
allow the management of installed code; and their support to
the interaction with human users. This paper presents a
hierarchical transaction model for the execution of
distributed transactions with mobile code on open networks.
The developed transaction model is built upon the concept for
fault tolerance of mobile code based executions. The
presented transaction model is an open nested transaction
model. This model supports those parts of a distributed
transaction which is executed asynchronously in relation to
other parts of the same global transaction. Furthermore, the
model is able to recover the execution of a transaction when a
sub-transaction of this transaction becomes unavailable for a
long period of time and the results of a comparison of
developed model, with some existing ones, are also reported.
We have also suggested and implemented an efficient naming
and locating mechanism for tracing/finding the status of a
transaction whenever fault(s) arises in the transaction
processing system/network or processing of a sub-transaction
is delayed.

Index Terms - MH, Transaction, ACID, TPS.

1. INTRODUCTION
Technological advancements in networking and distributed
processing are enabling the emergence of new types of
distributed processing environments. Exemplified by electronic
service markets or virtual enterprises, such environments are
highly complexed distributed systems that support corporations
needs for integrating systems and that allow new forms of
automated cooperation. Many types of mobile computing
devices such as laptops, personal digital assistants (PDA) are
available. The capacities of these mobile devices have become
more powerful. They have more processing speed and longer
1,2Dept of Computer Engineering, M. M. Engineering
College, Mullana-133203, Haryana, INDIA
E-Mail: 1patel_r_b@indiatimes.com and
2anurawal2k@yahoo.com

operating time. Mobile computing devices are becoming the
major work processing equipments in daily activity. Combining
with the expanding of the high-speed network like the Internet,
mobile computing applications are growing rapidly. Some of
the characteristics of such systems are: they are composed by a
multitude of autonomous organizations cooperating or
competing to achieve their own goals; massive geographical
distribution; they encompass a huge diversity of types
(qualities) of communication links; the execution of inter-
organizational activities are typical in such environments; a
multitude of services are offered to a multitude of clients of
such services; different type of services exist and they may
range from totally automated services to services executed by
human beings, high dynamism with no global control, high
heterogeneity and coexistence of different types of hosts such
as laptops, personal computers, powerful workstations or
mainframes). Environments with these properties will be called
here open networks, i.e., Internet.
A transaction is a collection of operations on the physical and
abstract Application State [1, 28, 29]. Transaction processing
systems provides a means to record all states and effects of
execution of program in computing resources. Transaction not
only relates to operation on database system but also involves
in many daily applications upon many computing resources
like telephone call, email system, flight reservation. Mobile
transaction is more complicated than conventional transaction
in both of design and execution states. When a mobile host
(MH) moves from one region to another, many computing
activities like establish new communication channel, forward
the state of transaction to new base host (BH) [15] are
involving. The execution of mobile transactions is not only
unpredictable in time but also depends on their location.
A computation processing is considered as a transaction or
conventional transaction if it satisfies ACID [1] [2] (Atomicity,
Consistency, Isolation, and Durability) properties.
1. Atomicity: an executable program, assumed that this

program will finally terminate, has one initial state and one
final state. If it appears to the outside world that this
program is only at one of these two states then this
program satisfy the atomicity property. If there are
intermediate results or message needs to be displayed, then
they are not displayed or they are displayed in final state of
the program. If the program achieves its final state it is
said to be committed, otherwise if it is at the initial state
after some execution steps then it is aborted or rollback.

2. Consistency: if a program produces consistent result only
then it satisfies the consistency property and it will be at
the final state or committed. If the result is not consistent
then a transaction program should be at the initial state, in
other word the transaction is aborted.

3. Isolation: if a program is executing and if it is only process
on the system then it satisfies the isolation property. If

A Mobile Transaction System for Open Networks

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 68

there are several other processes on the system, then none
of the intermediate state of this program is viewable until it
reaches its final state.

4. Durability: if a program reaches to its final state and the
result is made available to the outside world then this
result is made permanent. Even a system failure cannot
change this result. In other words, when a transaction
commits its state is durable.

A mobile transaction is a set of relatively independent
(component) transactions which can interleave in any way with
other mobile transactions. A component transaction can be
further decomposed into other component transactions, and
thus mobile transactions can support an arbitrary level of
nesting.
Let us assume that S is a two level mobile transaction that has
N component transactions, T1,…,TN. Some of the components
are compensatable; each such TJ has a compensating
transaction cmst_TJ that semantically undoes the effects of TJ
but doesn’t necessarily restore the database to the state that
existed when TJ started executing. Component transactions can
commit without waiting for any other component or S to
commit, i.e., component transactions may decide to commit or
abort unilaterally. However, if S aborts, a component
transaction that has not yet committed is aborted.
Mobile transactions, components or otherwise, are
distinguished into 4 types:
a) Atomic transaction: these are associated with the

significant events {Begin, Commit, Abort} having the
standard abort and commit properties. Compensatable and
compensating transactions are atomic transactions with
structure- induced inter-transaction dependencies. A
compensatable component of S is a component of which
can commit its operations even before S commits, but if S
subsequently aborts, the compensating transaction cmst_TJ
of the committed component TJ must commit.
Compensating transactions need to observe a state
consistent with the effects of their corresponding
components and hence, compensating transaction must
execute (and commit) in the reverse order of the
commitment of their corresponding components.

b) Non- compensatable transactions: these are component
transactions that are not associated with a compensating
transaction. Non- compensatable transactions can commit
at any time, but since they cannot be compensated, they
are not allowed to commit their effects on objects when
they commit. Non- compensatable transactions are
structured as sub transactions (as in nested transaction)
which at commit time delegate all the operations that they
have invoked to S.

c) Reporting transactions: a reporting component TJ can share
its partial results with S, i.e., a reporting component
delegating some of its results at nay point during its
execution. Whether or not a reporting component delegates
all the operations not previously reported to S when it
commits depends on whether or not it is associated with a
compensating transaction.

d) Co-transactions: these components are reporting
transactions that behave like co-routines in which control
is passed from one transaction to another at the time of
sharing of the partial results, i.e., co- transactions are
suspended at the time of delegation and they resume
execution where they were previously suspended. Thus, as
opposed to non-compensatable transactions, co-
transactions retain their state across executions; and as
opposed to reporting transactions, co- transactions cannot
execute concurrently.

Compensatable and non- compensatable components can be
further considered as a vital transaction in that S is allowed to
commit only if its vital components commit. If a vital
transaction aborts, S will be aborted. Transaction S can commit
even if one of its non- vital components aborts but S has to wait
for the non- vital components to commit or abort.
The simplest form of transaction is flat transaction. A flat
transaction can be considered as a sequential correctness
computer program. Every execution step is after one another.
Flat transaction has many disadvantages. For example, it
cannot support long transaction efficiently. If failure happens
during its execution then it has to rollback to its initial state and
wastes all useful computation. Nested transaction model is a
more flexible transaction model. This model is a tree of
transactions. A big transaction is refined into many smaller
(flat) transactions called sub-transactions. These sub-
transactions can execute concurrently in different processes in
different processing hosts. The ACID properties are more
relaxed in this nested transaction model. Autonomous
decentralized systems represent examples of environments for
which the use of mobile codes [20] is quite convenient. For
example, designing highly scalable distributed systems in a
massive, heterogeneous and multi organizational distributed
environment seems to benefit much from mobile codes, given
their ability to decentralize processing; to adapt to the
autonomy of systems; to flexibly allow the management of
installed code and their support to the interaction with human
users.
In this paper we present a model for the execution of
distributed transactions with mobile code on open networks.
The developed transaction model is built upon the concept for
fault tolerance of mobile code based executions [20]. The
presented transaction model is an open nested transaction
model. The model supports those parts of a distributed
transaction which are executed asynchronously in relation to
other parts of the same global transaction. Furthermore, the
model is able to recover the execution of a transaction when a
sub-transaction of this transaction becomes unavailable for a
long period of time. Open nested transaction model has been
proposed for coping with long running activities and with the
autonomy of systems in multi databases and thus take into
consideration aspects of open networks. We have also
suggested and implemented an efficient naming and locating
mechanism for tracing/finding the status of a transaction
whenever fault(s) arises in the transaction processing
system/network or processing of a sub-transaction is delayed.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 69

The rest of the paper is organized as follows. Section 2 gives
overview of the currently agreed mobile computing
environment. Section 3 discusses some of the limitations of
exiting transaction models. Section 4 describes issues in
Mobile Transaction Processing. Section 5 presents System
Model. Section 6 gives model of the Transaction Processing
System (TPS). Transaction model is presented in Section 7 and
Section 8 gives implementation and performance study
compared with the existing one. Related works is presented in
Section 9 and conclusion of this work is given in Section 10.

2. MOBILE COMPUTING ENVIRONMENT
It is important to identify and define the mobile computing
environment. Based on that defined mobile environment,
requirements as well as characteristics will be identified.
Mobile computing environment includes: a wired network with
fixed work-stations or fixed hosts (FH), mobile hosts (MH) and
base host (BH) [15] which is similar to mobile support stations
(MSS) [3] [4] [8] [9] as shown in Figure 1.
Connection between MH and BH is wireless network; this
network has characteristics low bandwidth, error-prone and
frequently disconnection. These characteristics are discussed in
detail in the next subsection 2.1. BH and FH communicate with
each other via reliable high speed connection networks, which
can be wired or wireless network within limited range, such as
inside a building. The BH is motionless. MHs can include
broad types of mobile devices, typically laptop computers with
high-speed modems. Works can be shared between MH and
FH. The role of BH is not only as processing element but also it
is acting as an interface to help MH getting contact with
relevant FH.
Each BH is being responsible for all the tasks which occur in a
region. One MH can only connect to one BH at any given time
but at overlap region during the handoff it connects to two
BHs. A MH is moving from one region to another when
computation task is in processing, and sometimes MH requests
to connect to a database or computing resource resided from a
FH on fixed network. This work will be done with the help of
BH. The BH will receive requests from MH, forward the
requests to the responsible FH and return the answer from the
FH to the MH. When a MH is leaving a region controlled by a
BH, this BH will perform a handoff operation to transmit or
forward all information related to this MH to next BH. The
next BH in new region will be ready to support the MH.
Databases and other computing resources are stored on the FH
or wired network, this environment allow mobile environment
inherits from the current existing distributed computing
environment. Normally, power supply and storage device limits
MH computing capacity.
However, with the current technology, the power of mobile
computers can last for several hours and the storage devices
can store a large amount of data [5]. Then MHs can become
major hosts for data processing.
The main features of mobile computing environment are
communication, mobility, portability [6] and heterogeneity [3].

There are many research issues that are arising from these
features.

Fixed
Network

Ad hoc network
FH

FH

FH

FH

Mobile Host

Ad hoc network

BH

BH

BH

Figure 1: General Architecture of Mobile Computing

Environment
2.1 Communication- MHs are connected with BH through
wireless network. It is obvious that this wireless network does
not have capacity as fixed wired network. First, the wireless
bandwidth is very low, for example cellular network has
bandwidth in the order of 10Kbps or wireless local area
network has bandwidth of 10Mbps- 1000Mbps [5], Second,
wireless network are having high error rate and frequent
disconnection [3] [5], the same network data package may
require retransmit many times. When MH is moving from one
region to another, the current connection with BH will need to
be changed to new connection. This process requires two steps:
disconnecting from the current connection and establishing a
new connection. The above disadvantages result in taking more
time to transfer a same amount of data from the MH to FH and
vice versa. Retransmit data causes unnecessary processing
power, which is already very limited on the MH. The situation
is more complicated if two MHs need to exchange data during
cooperative task. Messages cannot be delivered directly
between two MH but can be via one or more BH. Because of
larger overhead in communication time, the longer time
requires for MH to perform computation. Caching mechanism
is currently the major method to ease the problem.
2.2 Mobility- Mobility is the most frequent activity of a MH.
When MH is moving from one region to another in wireless
network, the connection will need to be changed because one
BH can only support MHs within its limited area. This cause
frequently need of reconfiguration network topology and
protocols. The more mobility causes the more time spends on
reestablish communication between MH and BH. Because the
activities of MH need support from its BH, therefore location
management is another problem caused by the mobility of MH.
MHs need to track BH in order to obtain data from the FH or
other MH. In other hand, BH also needs to keep track on MH
in order to transmit the result from the FH or to update the state
of current MH profile. Mobility of MH raises the question on
location dependent data [10]. The same query will have
different results depending on the location of MH.
2.3 Portability- The availability of mobile devices depends on
their power supply. A mobile phone can live up to five days but
the laptop can only be for few hours. The more complicated

A Mobile Transaction System for Open Networks

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 70

application requires more processing power. Refining
computation process into smaller partition (fined grain) or
shifting heavy process from MH to FH for processing can save
energy. Communication in MHs requires a lot of power.
Compressing data or data distilling before transmission can
reduce communication time. Caching also help MH tasks in
disconnected period. Portability of MHs requires more
sophisticated software applications. MH has smaller user
interface like display screen, keyboard [6]. Many PDA support
handwriting, therefore handwriting recognition software is
required.
2.4 Heterogeneity- One BH needs to support broad types of
mobile devices which operate in its region. Identifying what
kind of hardware of the MH is important. Different MH
requires different applications and data representations. When
MH requests communication with other MH, the heterogeneous
problem needs to be taken into account. How does BH solve
this problem? A Composite Capabilities/Preference Profiles
(CC/PP) can be used to provide a description of mobile device
[14]. Different BH are in different heterogeneous network and
these BH need to cooperate and communicate with each other
for exchanging data. A standard interface is needed between
BH. Java technologies or a middleware like CORBA [16] can
be used to solve the heterogeneous problems.

3. LIMITATIONS OF EXISTING TRANSACTION

MODELS
A computation that accesses shared data in a database is
commonly structured as an automatic transaction in order to
preserve data consistency in the presence of concurrency and
failures. However, a mobile computation that accesses shared
data cannot be structured using atomic transaction. This is
because atomic transactions are assumed to execute in isolation
that prevents them from splitting their computation and sharing
their states and partial results. As mentioned above, practical
considerations unique to mobile computing require
computations on a MH to be supported by a MSS for both
communication and computation purposes. This means that a
mobile computation needs to be structured as a set of
transactions some of which execute on the MSS.
In addition, Mobile computations are expected to be lengthy
due first to the mobility of both data sources and data
consumers, and second to their interactive nature, i.e., pause for
input from the user. Thus, another requirement of mobile
computations that atomic transactions cannot satisfy is the
ability to handle partial failures and provide different recovery
strategies, thus minimizing the effects of failures.
Nested transactions [21], where a (parent) transaction spawns
(child) transactions, provide some more flexibility than atomic
transactions in supporting both splitting of their computation
and partial failures. However, nested transactions do not share
their partial results while they execute. Nested transactions
support procedure-call semantics and commit in a bottom-up
manner through the root, i.e., when a child transaction
commits, the objects modified by it are made accessible to its
parent transaction while the effects on the objects are made

permanent in a database only when the root transaction
commits. This also means that the state of the mobile
computations must be retained until the root transaction
completes its execution. Consider the case in which the root
executes on the MH whereas the child transactions execute on
the MSS. If sub transactions do not retain their state after
completing their execution, then the state of the whole
computation needs to be maintained at all times on the MH in
spite of its limited resources. On the other hand if sub
transactions retain their state, the state of the computation is
spread among MSS along the path of the MH making atomic
commitment expensive.
Open- nested transactions such as Sagas [24], Split
transactions[22] and Multi-transactions[23] relax some of the
restrictions of nested transactions by supporting adaptive
recovery, i.e. , allowing their partial results be visible outside a
transaction. This is because, in open nested model, component
transactions may decide to commit or abort unilaterally. It is
interesting to note that most open- nested transaction models
have been proposed in the context of multi database systems. A
mobile database environment can be viewed as a special multi
database system with special requirements. For example, the
notion of local autonomy in mobile environments is manifested
in the ability of the MHs to continue to operate in an
independent fashion when they are disconnected.
Yet two specific requirements of transactions in mobile
environment cannot be satisfied by current open transaction
models. First, the ability of transactions to share their partial
results with each other while in execution, and second to
maintain part of the state of a mobile computation on a MSS in
a way that minimizes the communication delays between a MH
and MSS.

4. ISSUES IN MOBILE TRANSACTION PROCESSING
Mobile transactions are long-lived, bound to many different
types of mobile devices, involved in heterogeneous database
and network and execution time is varying. This section
focuses research challenges in mobile transaction mainly on
mobile database, service handoff and scheduling.
4.1 Mobile Database
Currently, the mobile transaction is developed on the top of
currently existing database system. Most of mobile transaction
models are based on the earlier discussed mobile environment.
In this environment, the database resides, replicated and
distributed on the fixed hosts in wired network. However, the
capacity of mobile computing device is expanding and a MH
can become a host for data processing or a place to store the
native data. In this case, the physical location of database
system is changing. Identify the location of the MHs which
stores the required data is one of the major issues in mobile
database [5]. To obtain optimization on query processing,
databases are replicated or fragmented in MH. Because of the
disconnection and mobility of MH, maintaining data
consistency between MH is more complicated. Location
dependent data also needs to be considered.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 71

4.2 Service Handoff
When a MH moves into a new region, a new BH is assigned to
this MH. Information about current transaction state is saved
and transferred from old BH to next BH. This operation
sometimes is unnecessary because not all the time MH requires
assistant. Figure 2 illustrates the situation. MH M is moving
from region A to region C through region B. However, in
region C the MH does not need any assistant from BH in region
B. The information about transaction state should directly
forward to BH in region C. This information package also
includes the hardware profile of MH, context of application and
environment. If this information is stored at MH then the MH
can become an active element, which can initiate a connection
when needed. The question is how a MH finds out what BH it
should connect to. Currently, when a MH wants to exchange
information with another MH then it has to rely on the support
from at least one BH. How can one MH directly obtain
communication channel with other MH?
4.3 Scheduling
Execution time of mobile transaction is varying. Mobile
transaction can easily miss its required deadline due to its
mobility and portability. It is not applicable in mobile
transaction if a missing deadline transaction is always aborted.
Missing deadline causes inconsistency in global state of
transaction and blocks other transaction’s execution. Enforcing
technique like earliest-deadline-first [3] can be applied. Mobile
transaction requires flexible scheduling mechanism. Scheduling
a transaction in a FH is different from MH. Schedule in mobile
transaction should take into account the mobility of MH in both
location and time. MH should be able to reschedule its
execution plan according to its physical state (power,
communication bandwidth).

Region A

Region B

Region C

M

M

BH

BH
BH

Figure 2. Service Handoff between BH

4.4 Caching
Caching of data at MUs can improve performance and facilitate
disconnected operation. Much research has been performed in
the area of MU caching [26]. Caching issues are complicated
by the use of Location dependent data (LDD). Because of the
fact that data which is cached can be viewed as a temporal
replica of spatial data, as a MU moves into new data regions
the cached data may become obsolete. This data is not stale
because it is incorrect, but may not be desired because it is
from a foreign region. Replacement policies need to be re-
examined to include location information. For example, data

from a foreign region should perhaps be replaced before data
from the current home region even though the foreign data is
more recently used. However, this is further complicated by the
fact that ongoing or future queries could be bound to foreign
regions. The MU mobility is such that the MU could very
quickly move back into the home region for this data, making
the re- placement policy also subject to movement of the MU.
All of these issues are beyond the scope of this paper, but
certainly need to be studied.

5. SYSTEM MODEL
A transaction submitted from a MH is called mobile transaction
[3]. The MH, which issues transaction, and the MH, which
received the result, can be different. For example, a user
queries for a bus timetable from its laptop and requests the
answer will send to mobile phone via SMS. A MH is a mobile
computer which is capable of connecting to the fixed network
via a wireless link. A FH is a computer in the fixed network
which is not capable of connecting to a MH. A BH is capable
of connecting with a MH and is equipped with a wireless
interface. BHs, therefore, act as an interface between MH and
FH. The wireless interface in the BHs typically uses wireless
cellular networks because of the characteristics of mobile
environment; mobile transaction has several additional
requirements:
1. As MH has less processing capacity as FH, so mobile

transaction should be able to split into a set of smaller
transactions. These shorter sub-transactions can execute on
FH or other MH. If possible, most of the computation on
the MH should be shifted to FH for processing. When
computing tasks are moving to FH, the FH have more
computing power and shorter processing time. In addition,
the computing resources are closer in FH. If the tasks
require extra computing resources, wired network
bandwidth is faster for resource allocating than wireless
network. MH can save energy by disconnecting their
connection while waiting for the results from the FH.

2. Mobile transaction has longer processing time or long-
lived. Because of the communication overhead and
frequent disconnection, the time required for exchanging
needed data between MH and BH is longer. A part from
this, MH has slower processing speed therefore a same
transaction on MH will require longer time for completing
than on the FH.

3. Mobile transaction should be executable when MH is in
mobility and disconnected from the computing resources.
It is not possible for MH staying connected all the time
with the data resources. After the needed data has been
caching into mobile storage device then MH can operate in
autonomous mode. Data inconsistency in short time should
be allowed. When the connection is established the new
data item will be updated to the main database.

4. Mobile transactions require being able to operate in
distributed heterogeneous environment. Different types of
MH cooperate in mobile environment and different
database systems are accessed during execution state of

A Mobile Transaction System for Open Networks

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 72

mobile transaction. Mobile application should take into
account the representation of data format in different
system.

Mobile transaction is a collection of BH which traps a
transaction in a region. For this purpose it runs a region
manager (a transaction processing system in a region is called
region manger), other nodes in this region may be mobile or
fixed, i.e., network may be ad-hoc/ fixed. The BH works like a
manager when a transaction leaves from a network domain, it
may be managed by domain manager server (DMS). A DMS is
basically a transaction processing system.
Some of the techniques developed in conventional transaction
such as two phases commit (2PC) protocol, caching mechanism
is needed to be extended or modified to be able to apply in
mobile transaction. Another issue is to make the intermediate
states of mobile transactions available to others. This will
release locks on data item earlier and avoid blocking other
transactions. DMS looks apart BH and BH looks apart a set of
nodes lying in an inter-network, the system is a hierarchical.

6. TRANSACTION PROCESSING SYSTEM FOR

DISTRIBUTED DATABASES
A transaction processing system (TPS) uses the transaction as a
basic unit of task. It typically consists of a transaction manager,
resource managers, and clients as shown in Figure 3. Client
applications start particular transactions, within whose scope
they forward data requests to registered resource managers, and
commit or abort the transactions. Resource managers are
entities, which store and manage data objects manipulated by
transactions. They ensure durability of transactions. A database
system is an example of a resource manager. The transaction
manager enables clients to create, start, and finish transactions,
monitors the lifecycle and distribution of executed transactions,
and is responsible for ensuring the ACID properties of
executed transactions.
For ensuring transaction’s ACID properties the transaction
manager employs two other entities that are usually not visible
from clients – the lock manager and log manager. A lock
manager is responsible for transaction isolation and achieves it
by locking. The lock manager locks data objects if they are
manipulated by a transaction. To ensure transaction isolation,
all locks are held until the transaction is committed. Each
resource manager usually has its private lock manager that
manages transaction-aware locking, i.e., locks are associated
with transactions (e.g., this is the case with traditional relational
databases). To achieve atomicity and consistency, the
transaction manager orchestrates recovery in case of a TPS
failure. A failure could be a crash of one of the participating
hosts, a hard disk failure, a network disconnection, a power
failure, or a software fault. Recovery is based on ensuring
durability of the committed transactions’ effects and discarding
the effects of transactions that were being executed at the time
of the failure and thus will be aborted.

Client’s
Application

Resource
manager

Transaction
manager

Register
Prepare
Commit
Start

Requests

Begin
Commit
Abort

Figure 3: Basic Model of Transaction Processing System

Logging is the principal service that is used to support
recovery. The log manager keeps track of every operation
executed on behalf of a transaction. It writes the information
needed for data recovery in case of transaction abort or TPS
restart to a file called log file or simply log. It uses the
following techniques for ensuring that the log is always in a
consistent state: two copies of the log file are kept in persistent
storage, the log is always written before data in a persistent
storage is modified, all writes to the log are covered by
appropriate locks and as part of the commit, the log is always
written to the persistent storage (the force-log-at-commit rule).
These techniques are usually combined with checkpointing,
which periodically writes the TPS state to a persistent storage
to speed up the potential restart.
Since its parts are distributed over different nodes of the
network, the TPS provides transaction-aware communication
where connecting, authorization, and delivery of data requests
take place. Every data request is executed on behalf of a
particular transaction and is associated with the transaction
identifier. We say that data requests are executed in the context
of a transaction or simply in a transaction context. Several
resource managers can be involved in a particular transaction.
The transaction manager allows registering of particular
resource managers with a transaction and manages transaction
commit. Each resource manager executes its local transactions;
each of them does not cross the resource manager’s boundary.
Since the resource manager is responsible for ensuring the
ACID properties of its local transactions, it usually has its own
private transaction manager, lock manager, and log manager.
All participating transaction managers form a hierarchy, where
every local transaction managed by the participating resource
manager is associated with a global transaction managed by the
topmost transaction manager, which is called the root
transaction manager or commit coordinator. A non-root
transaction manager controls the local transactions executed on
the corresponding resource manager, or it is responsible for
coordinating transactions on the corresponding subtree of
participating transaction managers is shown as shown in Figure
4.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 73

 Transaction monitor

Transaction
manager

Lock manager

Log manager

Database

Resource Manager

Transaction
manager

Lock manager

Log manager

Database

Resource Manager

Transaction
manager

 Lock Manager

Log manager

Database

Resource Manager

Transaction
manager

Lock manager

Log manager

Database

Resource Manager

Transaction
manager

Lock manager

Log manager

Database

Resource Manager

Transaction
manager

Lock manager

Log manager

Database

Figure 4: Architecture of Distributed TPS

In large distributed TPSs, a transaction monitor often plays the
role of a central entity that controls global transactions. The
transaction monitor (TM) is an application capable of
integrating different heterogeneous TPSs and databases, and
controlling several resources and terminals. The TM allows
clients to initiate new transactions and to distribute transactions
to several TPS on the network. They are also able to manage
the ACID properties of executed transactions and, in particular,
to perform recovery procedures. The TMs are designed to
provide high reliability and performance. To achieve high
throughput, they provide automatic load balancing [17], data
request queuing, and other advanced features. If a TM is
involved, clients never send their requests directly to the
participating resource managers; instead, the transaction
monitor mediates all the client’s requests. The transaction
manager of the TM often acts as the TPS commit coordinator.
The TPS is responsible for a negotiation protocol which
guarantees that all effects of data requests executed on behalf
of a transaction on registered resource managers are committed
or aborted. In other words, all local transactions associated with
a single global transaction are either committed or aborted.
Usually, transaction managers support the two-phase commit
protocol. In the first phase, the commit coordinator sends the
PREPARE message to subordinate transaction managers. This
is done recursively so that every transaction manager receives
the PREPARE message. Each transaction manager votes yes or
no indicating whether it is about to commit or abort. This is
again provided in a hierarchical manner: a transaction manager
coordinating its subtree’s commit sends its vote message (vote
for short) after it receives votes from all of its subordinate
transaction managers. If all the transaction managers in the
subtree are about to commit, then they vote yes and the subtree
coordinator sends the yes vote to its parent commit coordinator.
If any transaction manager in the subtree is about to abort, it
sends no to the subtree coordinator, which then sends no to its
parent coordinator. At the top level, if the commit coordinator
receives yes from all of its subordinate transaction managers, it
starts the second phase of the commit protocol by sending the

COMMIT message to them. The message is then recursively
sent to all the transaction managers and the transaction is
committed. If the commit coordinator receives no from at least
one of its subordinate transaction managers during the first
phase of the commit protocol, it starts the second phase by
sending the ABORT message to all of its subordinate
transaction managers. The message is then propagated to all
transaction managers in the hierarchy and the global transaction
is aborted. The top-level transaction coordinator waits for
messages acknowledging that all of the transaction managers
have finished the second phase of the commit protocol.
Several optimizations of the two-phase commit protocol have
been proposed in literature. For example, if a transaction is
read-only (i.e., it does not provide any modifications of data
objects), it can be committed in one phase. Advanced resource
managers provide heuristic decisions on committing: a
particular resource manager is able to heuristically commit or
abort before the two-phase commit negotiation is completed.
This can be efficient in situations when transaction managers
have some advanced knowledge about the probability of
commit or abort. If a particular transaction manager
heuristically finishes a local transaction, and if his heuristic
decision is wrong and does not correspond to the final vote of
the global transaction, then the transaction manager has to
provide an extra policy, which usually results in a human
intervention. Several variants of the two-phase commit protocol
is our next goal of this research that will support different
communication topologies or to increase reliability in case of a
commit coordinator or a participating transaction manager
failure.

7. TRANSACTION MODEL
We have assumed that the open network environment is
divided into network domains, regions (sub networks) and local
sites of the clients as shown in Figure 5. The TPS are
geographically distributed at different network domain, region
and sites. There is a domain management server (DMS) in
each network domain, which has information about all other
DMS in the open network. One TPS running in a network
domain considered as DMS. A transaction that is submitted to
be performed over the open networks is called a global
transaction. A global transaction is composed of a set of sub
transactions. Each sub transaction may by its turn also contain
sub transactions. The global transaction, therefore, has the form
of a tree, called the transaction tree. The DMS of this tree is
called the root transaction. The term transaction will be used
hereafter to denote both the root transaction and sub
transactions. Other common terms for hierarchical structures
will also be used hereafter, such as client (leaf) transaction,
parent transaction, etc.
The transaction running on the DMS is an open nested
transaction. Each of the sub transactions of it can be either a
flat ACID transaction or an open transaction. Open sub
transactions of the DMS transaction have the same structure as
the DMS transaction, thus applying the transaction structure

A Mobile Transaction System for Open Networks

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 74

recursively. Each of the flat transactions represents a client of
the transaction tree.
Transaction running on the gateway corresponds to a
combination of its sub transactions, forming a potentially
complex control flow. The control flow of a transaction
running on the gateway may include, for example, the
specification of parallel and sequential execution of sub
transactions, dynamic creation of sub transactions (instances)
during the execution of a transaction and the definition of sets
of alternative sub transactions (i.e., transactions that are
equivalent, according to application semantics).
Each transaction has associated with it a set of input and output
parameters, allowing a definition of data flow between
transactions. Additionally, each transaction has a set of internal
data which represents its private variables (its private state
space).
The control flow of a transaction may be determined with the
use of values of internal data and output parameters or outcome
of previously executed transactions. The control flow is
however, restricted in the basic transaction model so that for
each transaction: (1) Open sub transactions can execute in
parallel (2) The execution of flat sub transactions must be a
sequence (3) No flat and open sub transactions can execute in
parallel.
All transactions in this model are compensatable. Each
transaction, with exception of the DMS transaction, has a
corresponding compensating transaction. In case the effects of
compensatable transaction must be cancelled after its
commitment, its compensating transaction is executed. A
compensating transaction cancels the effects of the
compensated- for transaction according to application
semantics. Compensation is performed in the reverse order of
execution of the compensated - for transactions.
The compensating transaction of a local transaction of a client
transaction is another flat transaction defined by the transaction
specifier. The compensating transaction of an intermediary
(i.e., transactions on the gateway) transaction corresponds to
another open transaction that compensates the committed sub
transactions of the compensated- for transaction. The
compensating transaction for an intermediary transaction is
defined automatically at runtime, depending on the sub
transactions that have committed. Values for parameters of
compensating transactions are defined by the application when
the compensated- for transaction is committed or can be
determined at the moment the compensating transaction
executes.

DMS (root) also has information about all the regions in
the network domain. DMS is responsible for maintaining
uniqueness of names of regions, which are part of that network
and helps to identify the region in which a transaction is
present. Each DMS maintains a Domain Transaction Database
(DTD), for information about the current location of all the
transactions which were created in that domain or transited
through it. Mobile transactions might have to split their
computations into sets of operations, some of which operate on
a MH while others on a FH. Frequent disconnection and

mobility results in mobile transactions sharing their states and
partial results violating the principle of atomicity and isolation
which is traditional problem in existing transaction models.
Mobile transactions require computations and communications
to be supported by FH. Transaction execution may have to be
migrated to a FH if disconnection is predicted in order to
prevent the transaction from being aborted. The DMS behaves
like a proxy and executes the transaction on behalf of the
disconnected MH. The MH may either fully delegate authority
to the DMS to commit or abort the transaction as it sees fit or
may partially delegate authority, in which case the final
decision to commit or abort the transaction would be made by
the MH upon reconnection.
Each entry of DTD of the form ()rFDTx ,, represents that

transaction xT can be found in region r of the foreign network

domain FD (foreign Network domain), or it has transited from
that network domain or region r. For DTD and RTD (Region
Transaction Database), the primary key is the transaction
name xT . With the help of these naming schemes we check the
fault tolerance by maintaining the status report of mobile
transaction which keeps the updated information of all the
transactions. Transaction is migrated from one network domain
to another through the DMS. During inter domain migration the
transaction has to update location information in the DTD of
the present domain and register in the DTD of the target
network domain. Every region maintains information about all
TPS that are part of that region. A TPS can be a member of an
existing region or can start in a new region. In each region, a
RTD is present at a TPS which runs at the gateway of a sub
network. It contains location information about each mobile
transaction that was created in that region or transited through
it. This host acts, as the Transaction Name Server (TNS) [25],
which manages the RTD. TPS is responsible for maintaining
uniqueness of names of all transactions, created in that region.
Generally a transaction name comprises of User Assigned
Name, Birth Host, Region, and Network Domain. When a new
transaction is created, the user assigns a name to it by
registering in the RTD of its birth region. Each entry of RTD of
the form ()NilrTx ,, represents the region r where

transaction xT was found or transited through it. Similarly

()TPSNILTx ,, represents transaction xT , which exists in that

region at TPS. For intra region migration, it has to update its
location information in the RTD of that region. This is an Intra
Region Location Update. During inter region migration, the
transaction has to update the location information in the RTD
of present region and register in the RTD of the target region,
specifying the host in that region to which it is migrating.
DAD
Tuple

Meaning RAD
Tuple

Meaning

(Tx,
FD, r)

Transaction Tx
is in region r of

(Tx,r,
NIL)

Transaction Tx is in
present network

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 75

DAD
Tuple

Meaning RAD
Tuple

Meaning

the foreign
network
domain (FD)

domain and in region
r

 (Tx
NIL,TP
S)

Transaction is in
present network
domain and region at
site TPS

Table 1. DTD and RTD Tuples

Any location protocol for mobile transactions deals with three
aspects: name binding, migration and location, each related
to a particular phase in the transaction’s lifetime. We have
defined four atomic operations which are incorporated on DTD
and RTD
1. bind operation is performed when a name is assigned to a

newly created transaction, whose birth location is also
stored. This operation causes the insertion of a new tuple
in the database. As the transaction name has to be unique,
this operation fails if a tuple with the same name already
exists in the database.

2. newloc operation is performed when the transaction
changes its location, by migrating to a new one. This
operation updates the tuple already present in the database.

3. find operation is performed when a transaction has to be
located in order to interact with it. For a given transaction
name, this operation returns the current location of the
transaction.

4. unbind operation is performed when a transaction name is
no longer used (i.e., the transaction has been disposed off).
This operation causes the deletion of the relative tuple
from the database.
Since locating the transaction requires following a long

path before reaching it. It follows a part of the link the
transaction has left on the registers of the visited region and the
network and parent domains. The updating operations
performed during the migration phase are designed in order to
shorten this path, thus increasing interaction efficiency and
reducing the overhead. The steps for locating a target
transaction iT are as follows:
1. Extract birth network domain and birth region name

from iT .
Domain_name ← Birth_Domain_Name;
Region_Name ← Birth_Region_Name;

2. Contact relative DMS.
3. If query to DMS results in a tuple ()iii RFDT ,, {target

transaction is not in that domain}
Domain_Name ← iFD ;

Region_Name ← iR ;
Get the domain name from the tuple and go to Step 2.

4. Else contact relative RTD //Transaction exists in the given
Region_Name

5. Get the query result tuple ()iii TPSRT ,,

Region_Name ← iR ;

 TPS_Name ← iTPS ;

6. If iR is Nil target transaction is located at iTPS , else go
to Step 4.

Network Domain 1

DMS

Base Host
(Gateway)

TPS (Client)

Subnetwork/
Region

TPS

DTD

RTD

Network
domain

Region

Internet

Figure 5: A Hierarchical Mobile Transaction Model for

Open Network.
It is up to the binding and migration phases to maintain
consistency of location information in the databases in such a
way as to always allow transaction finding (unless a system or
network crash occurs). When the network domain, in which the
transaction is present, is found, the DTD is locked. Similarly
the RTD is locked when the region is traced. The lock is reset
only if the transaction does not reside in that region. It should
be noted that keeping the RTD locked prevents the transaction
from further migration so that communication with it is
possible. This is required when direct or synchronous
transaction - transaction communication is needed. For
asynchronous transaction - transaction communication a
message is dropped in the mailbox at the gateway/DMS and the
transaction receives this message when it wants. Other possible
case is drop and delayed transaction- transaction direct
communication. In this technique transaction multicast
message to all the gateways of a network domain and when it
finds acknowledgement that transaction is found in particular
region. The transaction waits for the message-receiving
transaction to contact this transaction for making the dialogue.
Each transaction is either vital or non-vital. A vital transaction
is a transaction the failure of which determines immediately the
failure of its parent transaction. A failure of a non-vital
transaction does not have direct effects on the outcome of its
parent transaction.
Each client transaction is restricted to be executed entirely at
the same TPS, i.e., only service components at the same TPS
are accessed as part of a client transaction. The control flow of
a client transaction represents a combination of accesses to
services at that TPS. A compensating transaction for a client

A Mobile Transaction System for Open Networks

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 76

transaction is considered to be executed at the same TPS where
the compensated- for transaction executed.
The general recovery semantics of the basic transaction model
is as follows. In the occurrences of failures the recovery
process of a transaction tries to perform forward recovery. A
recovery process is performed which resets the execution to a
consistent state and the transaction continues to be executed
from that state on, trying to achieve a successful termination
state. Backward recovery i.e., the cancellation of the effects of
a transaction, however, may also occur. Backward recovery is
performed when a vital transaction aborts. In this case the
parent transaction of the vital transaction will be backward
recovery.

()23 TPST

()34 TPST

()47 TPST

()12 TPST

()11 TPST ()11 TPST

()551 TPST

()652 TPST

()761 TPST

()862 TPST
 jT Open transaction

()TPSTi Closed
transaction

 Vital
transaction

jT

5T

6T

 Figure 6: Flow of Transaction based on the Transaction

model shown in Figure 5.
Due to the behavior of the fault tolerance mechanism, upon
which this transaction model is based, partial backward
recovery may also occur. In this case some of the already
committed sub transactions of an open transaction are
compensated as a form of back tracking the execution to a
previous consistent state. Forward execution of the transaction
is then performed from that state on. When the copy of the
transaction at a TPS cancels the effects it produced after having
stored the checkpoint. The basic transaction model enforces
semantic atomicity.
Figure 6 shows an example basic transaction. In this
transaction, the DMS transaction ()jT has 7-sub transactions,

denoted 1T to 7T . Transactions 1T , 2T , 3T , 4T , and 7T are

closed. Transactions 5T and 6T are open. Transactions 1T and

2T should be executed, respectively, at 1TPS .

Transaction 3T , 4T , and 7T should be executed, respectively, at

TPSs 2TPS , 3TPS and 4TPS . The open transaction 5T has

two closed sub transactions, 51T and 52T , to be executed,

respectively, at 5TPS and 6TPS . Similarly open

transaction 6T has two closed sub transactions 61T and 62T , to

be executed, respectively, at 7TPS and 8TPS .

Transactions 2T , 3T , 4T , 7T and all the sub transactions of 5T

and 6T are vital. Each transaction is either vital or non-vital. A
vital transaction is a transaction the failure of which determines
immediately the failure of its parent transaction. If any of them
fails, its parent transaction must be backward recovered. A
failure of a non-vital transaction does not have direct effects on
the outcome of its parent transaction.
Figure 7 shows the control flow defined for the open
transaction jT . As shown in Figure 7, 2T will be executed if

1T succeeds. Transaction 3T is executed if 2T succeeds.

Transaction 4T is executed if 1T fails. Transaction 5T and 6T

are executed in parallel, after either 3T or 4T succeeds.

Transaction 7T will execute after 5T and 6T terminate.
Similar definitions of control flow are supposed to exist for
open transactions 5T and 6T .

()23 TPST

()34 TPST

()47 TPST

()12 TPST

()11 TPST

T5(TPS6)

S
S

S

S

f

jT Open

()TPSTi Closed

Vital
t ti

f

Ti Tj
Tj executes if Ti

S

Ti Tj
Tj executes if Ti

Parallel

Figure 7: A Representation of control flow for root
transaction of Figure 6

8. IMPLEMENTATION
To study the performance of the model suggested in section 6
we have implemented it on 10/100/1000 Mbps switched LAN
that connects 850 workstations and personal computers, and is
used by about 500 researchers and students. Machines are
grouped into eight different networks with their own servers
and servers of each network are connected to the main server of
the institute. For each network there are 100 nodes which are
running TPS, three mobile stations running TPS (DMS). These
DMS are running mobile codes for finding the status of the
different sub-transactions in different networks whenever a
failure is arise. Mobile codes are implemented on PMADE
[20]. We have implemented the transaction for computing the
prime numbers (between 1 and 9999999) on a cluster of PCs
(P-4, 3 GHz machines) using PMADE and j2sdk1.5.1

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 77

8.1 Performance Study
Figure 8 shows the system throughput of two approaches
(developed and Kangaroo Model [9]). The throughput of the
developed scheme is close to the Kangaroo Model in all case.
As the developed model is implemented in Java, the high
execution overhead of Java program results in the lower
throughput when number of the TPSs very high. The real
overhead generated due to DMS (root) controller of the sub-
transactions which monitoring the status of them. The DMS
launches a mobile code in case of a failure arise on any TPS for
recovering the failed sub-transaction.
Figure 9 compares the system throughputs of the developed
system with kangaroo model when temporary faults arising at
different servers randomly. The result shows that the developed
scheme can obviously improve the system throughput when
increasing the number of TPS (servers). In the latter case, the
processing capacities of the TPSs are wasted and no
improvement.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Number of TPSs

Tr
an

sa
ct

io
ns

/s
ec

Kangaroo Model
Developed Model

Figure 8: System throughput

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30 40 50 60

Number of TPSs

Tr
an

sa
ct

io
n/

se
c

Kangaroo Model
Developed Model

Figure 9: System throughputs of the developed scheme and
the Kangaroo model when temporary faults are arising on

different TPSs
8.2 Comparison With Existing System
Because in normal kangaroo transaction model (KT), three
potential problems arise:
1. Resource blocking for other relatively smaller transactions

initiated by the same user while main long lived
transaction (LLT) is waiting for inputs. This is because
most of the available commercial DBMS packages use
conventional two-phase locking protocol [27].

2. Even if resource blocking doesn’t occur due to usage of
independent database resources by transactions, separate
kangaroo transactions has to be initiated in each case the

user initiates even a small transaction while the LLT is
running. This leads to wastage of BS server resources.

3. Failure of a global transaction in a Joey in compensating
mode results in abortion of the entire KT. Thus even if
some transactions are there which are short and not
involved in the failure, they will get aborted unnecessarily.

Transa
ction

Model

Atomi
city

Consist
ency

Isolat
ion

Dura
bility

Execute In

Kanga
roo

May
be

No No No Fixed
Network

Devel
oped

Yes Yes Yes Yes Both Fixed
and Mobile

Ad hoc
Networks

Table 2: Comparison between Developed Model and
Kangaroo Transaction Model

9. RELATED WORKS
This section will review the transaction-processing concept and
discuss on mobile transaction. Location and time of MH are the
two major factors that effect on mobile transaction processing.
This section outlines three mobile transaction models, which
focus on mobility of MH.
Moflex transaction model [8] allows to model mobile
transaction with extra information such as location, time and
the precondition of mobile transactions. The sub-transaction T
of mobile transaction M can be executable only when its
external precondition predicated is satisfied. Moflex takes into
account which sub-transactions are location-dependent.
Pre-write transaction model [4] allows a transaction on a
mobile host to submit a pre-commit state and the rest of the
transaction can be carried out at the fixed or other mobile hosts
at later time. The main point is making all the updated data
items visible to other transactions. This model can be use to
support mobile hosts which have little power for processing
data. Pre-commit transaction model eases the locking on data
record and avoid longer time blocking other transactions.
However it is not carefully taking into account the risk of
frequent disconnecting and higher error rates of wireless data
transmission.
Kangaroo transaction model [9] is developed beside the
existing multi-database environment. Kangaroo mobile
transaction does not start and end at the same host. In this
model, mobile transaction hops through stationary hosts in
wired network. The whole transaction and related information
are pushing forward to the final committed host. Kangaroo
model is supported by the autonomy of local DBMS. Kangaroo
is one model that captures the movement nature of mobile unit.
Recovery from long term failures of the nodes from where a
transaction is being controlled and mobility of the control flow
of a transaction execution were also considered in the
development of two transaction models, respectively, in the
transaction model of ConTracts[11] and in migrating
transactions[12]. In the ConTracts, if the node from where a
ConTract is being executed fails, it can be re-instantiated at
another node. A ConTract, however, does not move during its

A Mobile Transaction System for Open Networks

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 78

execution. In migrating transactions, the flow of control of a
transaction migrates in a distributed environment. Executing
transactions with mobile codes extends the notion, providing
more flexibility for the distribution of code and for the
movement of the transaction control flow in the environment.
In [13] the fault tolerance protocol and the transaction model
presented here are described in details. In this model aspects of
the presented approach are further discussed, such as:
extensions to the basic transaction model; replication policies
considering the availability properties of agencies; how
autonomy of system is supported by the model; among others.
In [18] a concept is presented for executing open and closed
nested transactions with multiple mobile agents. The paper,
however does not consider long-term failures. In [19] a model
for executing transactions with a single mobile agent is
presented. The transaction model presented supports
compenstable and non- compenstable transactions and the
specification of so-called ACID groups. An ACID group is a
combination of sub transactions that is executed isolated from
other parts of the same transaction and from other parts of the
same transaction and from other agent-based transactions. The
model supports that ACID groups or the set of non-
compenstable transactions span more than a single agency. In
this paper the execution of distributed transactions can be based
on more than a single mobile agent. Additionally, it is not
allowed here that isolated parts of an agent-based transaction
span more than one agency, in order to facilitate recovery from
long term failures.
The developed hierarchical mobile transaction model is fault
tolerance in case of temporary failures arise on the transaction
execution servers and gives better performance than Kangaroo
model.
10. CONCLUSION AND FUTURE WORKS
In this paper we have presented a hierarchical mobile
transaction system. This transaction model is based on mobile
codes that take into considerations properties and requirements
of open networks and their applications. The model represents
a concept that integrates the mobility of the codes with the
execution of control flows with transaction semantics. This
transaction can be used as an approach for providing reliability
and correctness of distributed activity in the open networks that
provides the benefits of mobile codes. The resulting concept
exhibits important features that should be supported by an
underlying infrastructure to fulfill requirements of applications
running in open networks.
The effectiveness of the applicability of mobile codes to open
environments is, however, subjected to or influenced by the
development of appropriate solutions to a set of issues. The
main set of such issues realties to what can be called
controllability of mobile code based activities. Other aspects
are security, accounting and testing. The scope of applicability
of mobile codes will be dependent on the achievements reached
to these issues. The described model represents a step towards
developing controllable mobile code based activities. This
model is currently being extended to incorporate more
functionality and to decrease some of the implied costs.

The mobile computing environment can support MHs to
perform mobile transaction. Users can easily manipulate
information despite of their location and what mobile devices
they have. However, the disadvantage of this environment is
that it cannot provide flexible way to exchange data between
MH. One BH responds for supporting all MH in its region, this
can cause a bottleneck when there are many MH in the same
region and single failure mode if this BH fails. Current mobile
transaction models are based on existing database systems. The
models along with the characteristics of mobile environment
help to analyze the requirement of mobile applications. The
challenge is that when every host in mobile environment is
MH. Different variants of the two-phase commit protocol is our
next goal of this research that will support different
communication topologies or to increase reliability in case of a
commit coordinator or a participating transaction manager
failure
REFERENCES
[1] Jim Gray, Andreas Reuter (1993), Transaction Processing:

Concepts and Techniques, Morgan Kaufmann Publishers,
Inc.

[2] George Coulouris, Jean Dollimore, Tim Kindberg (2001),
Distributed Systems: Concepts and Design. Addison-
Wesley.

[3] V. K. Murthy (2001), Seamless Mobile Transaction
Processing: Models, Protocols and
Software Tools, in Proceedings of the Eight International
Conference on Parallel and Distributed Systems (ICPADS
2001), 26-29 June 2001, KyongJu City, Korea, pp. 147-
156.

[4] Madria, S.K., Bhargava, B (1998), A Transaction Model
for Mobile Computing, in Proceedings of the International
Conference on Database Engineering and Applications
Symposium (IDEAS'98), Cardiff, Wales, U.K., July 08 -
10, 1998, pp. 92-102.

[5] M. Tamer Ozsu, Patrick Valduriez (1999), Principles of
Distributed Database Systems
Prentice Hall.

[6] George H. Forman, John Zahorjan (1994), The Challenges
of Mobile Computing, 27(4): 38 – 47, April.

[7] Karen Furst, William W. Lang and Daniel E. Nolle, See
Furst, Karen, William W. Lang, and Daniel E. Nolle
(1998), Technological Innovation in Banking and
Payments: Industry Trends and Implications for Banks,
Quarterly Journal, Office of the Comptroller of the
Currency, Vol. 17, No. 3, pp. 28, Sept.

[8] Kyong-I Ku; Yoo-Sung Kim (2000), Moflex transaction
model for mobile heterogeneous multidatabase systems, in
Proceedings of the 10th International Workshop on
Research Issues in Data Engineering (RIDE 2000), San
Diego, CA, USA. Feb.28-29, 2000, pp. 39 –45.

[9] Margaret H. Dunham, Abdelsalam Helal, Santosh
Balakrishnan (1997), A Mobile Transaction Model that
Captures Both the Data and Movement behavior, Mobile
Networks and Applications, 2, pp. 149–162.

Continued on page no. 84

