
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi.

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 61

Design of an Agent Based Context Driven Focused Crawler
Naresh Chauhan1 and A.K. Sharma2

Abstract - A focused crawler downloads web pages that are
relevant to a user specified topic. Most of the existing
focused crawlers are keyword driven and do not take into
account the context associated with the keywords. This leads
to retrieval of a large number of web pages irrespective of
the fact whether they are logically related. Thus, the keyword
based strategy alone is not sufficient for the design of a
focused crawler as context relevance is more important as
far as the user’s requirement is concerned. This paper
proposes the design of a context driven focused crawler
(CDFC) that searches and downloads only highly related
web pages, thereby reducing the network traffic. It also
employs a category tree which is a flexible user interface
showing the broad categories of the topics on the web. Since
CDFC downloads only the relevant and credible documents,
a very small number in comparison, the proposed design
significantly reduces the storage space at the search engine
side.

Index Terms - Search engine, Crawler, Hypertext
Document System, Category Tree, Software Agents

1. INTRODUCTION
The World Wide Web (WWW) is a continuously expanding
large collection of hypertext documents [1]. It represents a very
large distributed hypertext system, involving hundreds of
thousands of individual sites. It is a client-server based
architecture that allows a user to initiate search by providing
keywords to a search engine, which in turn collects and returns
the required web pages from the Internet. Due to extremely
large number of pages present on the web, the search engine
depends upon crawlers for the collection of required pages. A
Crawler [2] follows hyperlinks present in the documents to
download and store web pages for the search engine.
Current commercial search engines maintain large number of
web pages [3,7] and easily find several thousands of matches
for an average query. Therefore, a search engine may present a
list of thousands of web pages in response to user’s particular
keyword possibly consisting of irrelevant web pages also. The
web search engines try to cover the whole web and serve
queries concerning all possible topics [4]. In fact, from the
user’s point of view, it does not matter whether the search
returned 10,000 or 50,000 hits because the number of matches
becomes too large to sift, leading to the problem of information
overkill.
1Asst. Prof., Deptt. of Computer Engg., YMCA Institute of
Engineering, Faridabad - 121006, India
 2 Professor & Head, Deptt. of Computer Engg., YMCA
Institute of Engineering, Faridabad - 121006, India
E-Mail: 1nareshchauhan19@yahoo.com and 2ashokkale2@
rediffmail.com

The search quality of web pages can be improved by focused
crawling [5,6,12] which aim to search and retrieve only the
subset of the WWW that pertains to a specific topic of
relevance. Focused crawler, therefore, offers a potential
solution to the problem of information overkill. The existing
focused crawlers [6,7] adopt different strategies for computing
the words’ frequency in the web documents. If higher
frequency words match with the topic keyword, then the
document is considered to be relevant. But the current crawlers
are not able to analyze the context of the keyword in the web
page before they download it. For instance, the word ‘spider’
has various interpretations. To a web programmer, it is the
name of a software program used in search engines; to a
general computer user it denotes a game of cards and to a
layman it is simply name of an insect. Thus, the topical
relevance is not the only issue for focused crawlers but context
relevance should also be considered [10]. If the user issues one
keyword then its relevant context must also be known.
In this paper, the design of a Context Driven Focused Crawler
(CDFC) is being proposed that provides the context of the
keywords to the user in a flexible and interactive category tree
[5]. The agent-based design not only overcomes the complex
time-consuming computations of existing focused crawlers but
also reduces network traffic significantly. In line with the
demands of a focused crawler that the relevant information
should be collected and retrieved by the user in the least
amount of time possible, the proposed architecture reduces the
search time for a document and the information database on the
search engine side becomes more easily manageable.

2. RELATED WORK
A similarity based crawler that orders URLs having target
keyword in anchor text or URL, was probably one of the first
efforts towards focused crawling [9]. The basic focus was to
crawl more important pages first i.e. to look at various
measures of importance for a page such as similarity to a
driving query, number of pages pointing to this page (back
links), page rank, location, etc. The Page Rank algorithm [11]
computes a page’s score by weighing each in-link to the page
proportionally to the quality of the page containing the in-link.
Thus, a web page will have a high page rank, if the page is
linked from many other pages, and the scores will be even
higher if these referring pages are also good pages, i.e. having
high Page Rank scores. In the HITS (Hyper-link-induced- topic
search) algorithm [8], an authority page is defined as a high
quality page related to a particular topic or search query and a
hub page is one that provides pointers to other authority pages.
Based upon this, a web page is associated with an Authority
Score and a Hub Score that is calculated to identify the web
page context.
Another focused crawler [7] employs seed keywords which are
used to find seed URLs from some standard search engine like

Design of an Agent Based Context Driven Focused Crawler

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 62

Google. The seed URLs are used to fetch seed pages with the
help of TF.IDF algorithm, based on iteratively calculating word
frequency. This algorithm is used to find out some more
number of keywords from seed web pages to represent the
topic. Afterwards, vector similarity is computed between web
page and topic keywords to see whether the page is relevant to
the topic.
Diligenti et al [6] uses a general search engine to get the web
pages linking to a specific document and builds up a context
graph for the page. The graph is then used to train a set of
classifiers to assign documents to different categories based on
their expected link distance to the target. In fact, graphs and
classifiers are constructed for each seed document with layers
being built up to a specified level. Thus, the crawler gains
knowledge about topics that are directly or indirectly related to
the target topic.
A critical look at the available focused crawlers [5-9,11]
indicates that these crawlers suffer from the following
drawbacks :
I. The problem of iterative computation of word frequency

for every web document renders the search process
expensive.

II. The relevance of web page is not known until it is
downloaded.

III. Associated context of the web page is unknown prior to
search initiation.

IV. The user interface of a search engine with keyword search
is not flexible.

The proposed work paper effectively addresses the above-
mentioned issues. A Context driven focused crawler has been
designed, which uses augmented hypertext document structure
coupled with a category tree for providing user interface at the
search engine side.
1.1 Augmented Hypertext Documents
The information on WWW is organized in the form of a large,
distributed and non-linear text system known as Hypertext
Document system. HTTP and HTML provide a standard way
of retrieving and presenting the hyper-linked documents. The
XML offers more flexibility by allowing web page creators to
use their own set of mark-up tags. This feature can be used to
make augmentations in the hypertext documents for the
suitability of web crawling [14]. The crawlers designed in
PARCAHYD project [13] and [16,17] aim to enhance the
performance and quality issues of crawlers using the concept of
augmented hypertext documents. For instance, to manage the
volatile information, variable information of a document is
marked through volatile tags [15], which in turn are extracted
out from the document along with their associated volatile
information. The tags and their contents are then stored in a file
having same name as document but different extension (.TVI).
The hypertext documents that support .TVI and other related
augmentations [14-17] are known as Augmented hypertext
documents.

1.2 Category Tree
A category tree [5] is used as a graphical user interface in the
search engine. It is a pre-defined canonical topic taxonomy
with example keywords. To run a specific instance, initial input
has to be provided in two forms. The user has to select and/or
refine specific topic nodes in the taxonomy, and may also need
to provide additional example keywords. The user, then, selects
the example keywords of his interest in corresponding topic or
category node. Subsequently, these selections are submitted to
the search engine.

3. THE PROPOSED DESIGN OF CONTEXT DRIVEN

FOCUSED CRAWLER(CDFC)

Figure 1: Sample Augmented XML cod

For the proposed work, the context of the required information
has been augmented to the hypertext document wherein the tag
names called ‘keyword’ and ‘context’ are explicitly marked at
the time of creation of a hypertext document by the author. As
an example, consider the sample XML code shown in Fig. 1.

 Figure 3: Modified Category tree for Search Engine

At the time of saving the document, all the keyword tags along
with context and keyword tags are extracted out and stored
separately in a file having same name but with different
extension (say .TOC). The .TOC file extracted from the sample
code of Fig. 1 is shown in Fig. 2. It may be noted that the TOC
(Table of Contexts) is definitely much smaller in size as
compared to the whole document.

head>
<title>Crawler Information</title>
<meta name = “context” content = “General
Information about Crawler”/>
<meta name = “keywords” content = “Crawler, Web
pages, Search Engine, Spiders, Wanderers, Worms”/>
</head>
<body>
A Crawler is a program that retrieves web pages commonly
for use by a search engine. It traverses the web by
downloading the documents and following links from page
to page. Web crawlers are also known as spiders
</Keyword> or wanderers, or worms etc.
</body>

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 63

Figure 2: TOC file for sample code of Fig. 1

The category tree has also been suitably modified for the
proposed design such that the context is also displayed with
category examples. As shown in Fig. 3, the user selects a
Category node (say Internet), and then its related examples are
displayed. When the user selects an example (say Crawler), the
two associated contexts are shown and finally, the user selects
the context (say General information). In fact, the modified
Category tree is a pre-specified collection of various categories
in a graphical interface showing the various examples under
these categories with their contexts. The user can choose any of
the associated contexts by selecting Category Examples
Contexts in the order. Nevertheless, if needed, new examples
can be inserted by the user, which may later on linked to the
contexts by the crawler.
For the purpose of crawling the web, CDFC employs three
agents namely User agent, Matcher agent and Dbase agent as
listed in Table 1. A brief discussion on these agents and their
related components is given below:

Table 1: Agents and their Responsibilities 1. User Agent:
The user agent is responsible for the following activities:
1. It accepts the user selection of category node and related

keywords from the category tree. It sends this information
to the matcher agent to retrieve the associated contexts and
their links from the database.

2. On getting associated contexts and their links from
matcher agent, the user agent displays the list of contexts
to the user in category tree.

3. The user agent accepts the context selected by the user and
displays its all corresponding links.

4. On selection of a link by the user, user agent sends this
link to Retrieve_Doc_Process to retrieve the document
from the database. If the document is not present in the
database, it passes the link to crawler to download the
document.

Figure 4: Interaction between User agent and Matcher agent

Context General Information about Crawler
Keywords Crawler, Web pages, Search engine, Spiders,

Wanderers, Worms

Agent Responsibilities
User agent Acts as interface between the user and

the system. Accepts user selections of
keywords and context and displays
documents to the user

Matcher Agent Matches the user keyword with the
keywords in the database, retrieves
their contexts & URLs and sends them
to user agent

Dbase Agent Acts as interface between database and
the external world. Stores and updates
the TOC files and documents
downloaded by the crawler in the
database

Category
Tree

Keyword,Context
& URL

Keyword,Context
& URL

Doc
Doc

Doc

Context
+ URLs

Keyword

Keyword

Selected
Context

Contexts

Keyword
User

Agent

Matcher
Agent

Keyword_Buf

Get_
Context

Request_
Serviced

Con_URL_Buf

Database

Context
+ URLs

Retrieve_
Doc_

Process

Retrieve_Doc

Request_Serviced
Doc_Buffer

Key_Con_Url_
Buffer

Signal

Data

Design of an Agent Based Context Driven Focused Crawler

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 64

Request_
Serviced

URL set corresponding to selected contexts

User
User Agent

Matcher Agent
Category &
Keyword Keyword

Contexts &
URLs

Contexts

Selected
Contexts

Displays web
pages

Downloaded web pages

Downloaded

TOCs

2. Matcher Agent: The matcher agent is responsible for the
following activities:

1. It gets the keyword from the user agent and searches the
keyword in the database to retrieve the corresponding
contexts and their URLs.

2. The contexts and their associated URLs are sent to the user
agent.

3. Retrieve_Doc_Process: It is responsible to search and
retrieve the document in the database corresponding to a
URL.

The interaction of user agent with matcher agent and
Retrieve_Doc_Process (shown in Fig. 4) is described as
follows:
1. It accepts the user selection of category node and related

keywords from the category tree, stores the keyword in
Keyword_Buffer and sends the message Get_Context to
Matcher agent.

2. Matcher agent extracts the keyword from the
Keyword_Buf and matches it with the keywords stored in

the database. If the keyword is found, it retrieves its related
contexts and URLs, stores them in Con_URL_Buffer and
sends the signal Request_Serviced to the User agent.

3. User agent extracts the contexts and their URLs from the
buffer and displays them to the user in category tree.

4. The user selects one of the contexts in the category tree.
The user agent stores the keyword, its selected context and
corresponding URL in Key_Con_Buffer and sends the
message Retrieve_Doc to the Retrieve_Doc_Process.

5. Retrieve_Doc_Process extracts the keyword, context and
URL from the buffer and searches the database for the
document corresponding to URL. If the document is found,
it stores the document in Doc_Buffer and sends the
message Request_Serviced to the user agent.

6. The user agent extracts the document from the buffer and
displays it to the user.

4. Dbase Agent: It is responsible for storing and updating the
database whenever a new document or TOC is downloaded by
the crawler.

Figure 5: Interaction between User agent and Dbase agent & Crawler

TOC/
Doc

Url

TOC/
Doc

Download Robot.txt
& web pages

Url Doc

TOC/
Doc

User
Agent

Database

Dbase
Agent

Downloaded_TOC_
Doc_Buf

Crawler

Download_Doc
Update_Database

Internet
URL_Buffer

Signal

Data

Crawler Dbase Agent

Figure 6: Sequence interaction diagram for various active components of CDFC

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 65

5. Crawler: The crawler continuously downloads the TOC
files from the WWW in the background and stores them in the
database. It also downloads the documents from the web on the
request from the user agent and stores them in the database.
The interaction between the user agent, Dbase agent and
crawler (shown in Fig. 5) is described as follows:
1. If the user agent needs a new document to be downloaded

by the crawler, it stores the URL of that document in the
URL_Buffer and sends the message Download_Doc to the
crawler.

2. The crawler extracts the Url from the buffer and
downloads the document from the web. Thereafter, it
stores downloaded document in the
Downloaded_TOC_Doc_Buffer and sends the message
Request_Serviced to the user agent. Simultaneously it
sends the message Update_Database to the Dbase agent to
store the downloaded document in the database.

3. The user agent extracts the document from the buffer and
displays it to the user.

4. Dbase agent also extracts the document from the buffer
and stores it in the database.

The interactions between various active components of CDFC
have been shown along the time line axis (see Fig. 6).

4. PERFORMANCE BENEFITS
The performance benefits of the proposed crawler are evaluated
based on the following parameters:
1. Harverst Ratio: It is the rate at which relevant pages are

acquired and how effectively irrelevant pages are filtered
off. Since all web pages are retrieved according to the
context selected by the user in CDFC, number of irrelevant
pages is almost zero. Thus, the harvest ratio is high.

2. Precision: It is the ratio of number of relevant pages to the
number of acquired pages. This is also high in CDFC as
almost all pages are relevant to the user.

3. Storage Requirements: In CDFC, no document is
downloaded if the user has not requested it. Therefore it
does not index the documents which will never be used.
Moreover the number of documents downloaded is very
less in number as only related web pages are downloaded.
Thus, storage requirement is very less as compared to other
conventional crawlers.

4. Search Time: Since, the database size is very less in
CDFC; it does not take much time to present the search
results to the user.

5. Network Traffic: Since only highly related web pages are
downloaded, which are very less in number and the size of
TOC files being very less (5% of the original document), a
significant amount of network traffic is reduced in CDFC.

Thus, the proposed crawler presents a flexible and interactive
user interface in the form of category tree so that the user is
guided in selecting the proper keywords along with their
contexts for the web search. CDFC downloads only highly
related documents, which are very less in number, thereby
reducing the problem of information overkill faced by the user.

Moreover, network traffic is reduced, as irrelevant web pages
are not download

5. CONCLUSION
The proposed design of context driven focused crawler (CDFC)
is based on the augmented hypertext document wherein the
context of the keywords is stored in the form of TOC (Table of
Contexts). The TOC coupled with a category tree provides
context of the keywords. This design not only avoids the
expensive complex computations for deriving the context of the
user keywords but also reduces the network traffic
significantly. Moreover, the quality of downloaded documents
is in conformance with the topic and context of the user choice.

REFERENCES
[1] Raj Kamal -- Internet and Web Technologies; Tata

McGraw Hill, 2003
[2] Junghoo Cho, Hector Garcia-Molina, “ Parallel

Crawlers”, Proceedings of the 11th International World
Wide Web Conference, Technical Report, UCLA
Computer Science, 2002

[3] Mike Burner. , “Crawling towards eterneity: Building an
archive of the worldwide web ”, Web Techniques
Magazine, 2(5), May 1998.

[4] Martin Ester, Matthias Grob, Hans-Peter Kriegel,
“Focused Web Crawling: A Generic Framework for
specifying the user interest and for Adaptive crawling
strategies”, Proc. of 27th International Conference on
Very Large databases(VLDB ’01), 2001

[5] S. Chakrabarti, M. Van Den Berg, B. Dom, “Focused
Crawling: A New Approach to Topic specific web
resource discovery”, Proc. Of 8th International WWW
conference, Toronto, Canada, May,1999

[6] Diligenti M., Coetzee F.M., Lawrence S., Giles C.L.,
Gori M., “Focused Crawling using context graphs”,
Proc. International Conference on Very Large
Databases (VLDB ’00), 2000,pp. 527-534

[7] Yang Yongsheng, Wang Hui, “Implementation of
Focused Crawler”, COMP630D Course Project Report

[8] J.Kleinberg, “Authoritative Sources in a Hyperlinked
Environment”, Proceedings of the 9th ACMSIAM
Symposium on Discrete Algorithms, San Francisco,
California, USA, 1998.

[9] Junghoo Cho, Hector Garcia-Molina, L.Page, “Efficient
crawling through URL ordering”, Proc. of 7th
International WWW conference, Brisbane, Australia,
April, 1998

[10] Steve Lawrence, “Context in Web Search”, IEEE Data
Engineering Bulletin, Volume 23, Number 3, pp. 25-32,
2000

[11] S. Brin, L. Page, “ The Anatomy of a Large-Scale
Hypertextual Web Search Engine”, Proc. of the 7th
International World wide web Conference, Brisbane,
Australia, 1998.

[12] F. Crimmins, “Focused Crawling review”, 2001

Design of an Agent Based Context Driven Focused Crawler

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 66

[13] A.K. Sharma, J.P. Gupta, D.P. Agarwal, “PARCAHYD:
An architecture of Parallel Crawler based on augmented
hypertext documents” Communicated to IASTED
Journal of Computers and Applications, June 2005

[14] A.K. Sharma, J.P. Gupta, D.P. Agarwal, “Augmented
Hypertext Documents suitable for parallel crawlers”,
Proc. Of WITSA-2003, a National workshop on
Information Technology Services and Applications,
Feb’2003, New Delhi

[15] A.K. Sharma, J.P. Gupta, D.P. Agarwal, “A Novel
Approach towards Efficient management of Volatile
Information”, Journal of Computer Society of India
(CSI), July-Sep. 2003

[16] A.K. Sharma, Naresh Chauhan, Amit Goel, “An Agent
based Crawler for Management of Volatile Information
on World Wide Web”, In Proceedings of National
Conference on Communication & Computational
techniques (NCCT ’06), Dehradun, Feb. 2006

[17] A.K. Sharma, Naresh Chauhan, “Demand Crawling
based Efficient Web Search for Mobile Clients”, In
Proceedings of National Conference on Information &
emerging Technologies, Ropar, Punjab, Feb. 2006

[18] Naresh Chauhan, A.K. Sharma, “A Comparative
Analysis of Focused Crawling Techniques”,
Proceedings of National Conference on IT, Panipat,
March 2006

