
BIJIT - BVICAM’s International Journal of Information Technology
Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi.

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 7

Genetic Algorithm: A Versatile Optimization Tool
Prof. Swati V. Chande1 and Dr. Madhavi Sinha2

Abstract – Genetic Algorithms are a powerful search
technique based on the mechanics of natural selection and
natural genetics that are used successfully to solve problems
in many different disciplines.
The good robustness of these algorithms on problems of high
complexity has led to an increasing number of applications in
the fields of artificial intelligence, numeric and combinatorial
optimization, business, management, medicine, computer
science, engineering etc.
In this paper we present a cross section of current genetic
algorithm applications from diverse fields and lay a special
emphasis on use of genetic algorithms in one of the most
important optimization problems in computer science,
database query optimization.

Index Terms - Genetic Algorithms, Query Optimization.

1. INTRODUCTION
‘Genetic Algorithms’ is one of the most useful, general-
purpose problem-solving techniques available to developers. It
has been used to solve a wide range of problems such as
optimization, data mining, games, emergent behavior in
biological communities etc.
Like other computational systems inspired by natural systems,
Genetic Algorithms have been used in two ways, as techniques
for solving technological problems, and as simplified scientific
models that can answer questions about nature. [1]
In this paper we focus on the applications of Genetic
Algorithms in problem solving. This paper is organized as
follows: section 2 contains introductory material providing
some general working principles of Genetic Algorithms,
section 3 offers a view of the use of Genetic Algorithms to
some real world problems, section 4 deals with applications of
Genetic Algorithms to database query optimization and finally
section 5 provides some concluding remarks and summary of
the survey.

2. GENETIC ALGORITHMS
Genetic Algorithms, invented by John Holland, is an
ABSTRACTion of biological evolution and is thus a method
for moving from one population of chromosomes (strings of
bits) to a new population by using a kind of natural selection
together with the genetics inspired operators of recombination,
mutation and inversion. Each chromosome consists of genes
(bits) which are instances of allele (1 or 0) [1].
A Genetic Algorithm functions by generating a large set of
possible solutions to a given problem. It then evaluates each of
1Principal (Computer Science), International School of
Informatics and Management, Jaipur
2Reader, AIM and ACT, Banasthali Vidyapith

those solutions, and decides on a "fitness level" for each
solution set. These solutions then breed new solutions. The
parent solutions that were more "fit" are more likely to
reproduce, while those that were less "fit" are more unlikely to
do so. In essence, solutions are evolved over time [2]. This way
there is evolution of the search space scope to a point where a
solution can be found.
Figures 1 and 2 show the generic pseudocode and flow diagram
of the complete genetic process respectively.
The steps of a general Genetic Algorithm are,
2.1 Representation:
An initial population is created from a random selection of
solutions (which are analogous to chromosomes). It involves
the representation of an individual (a possible solution or
decision or hypothesis) in the form of its genetic structure (a
data structure depicting a string of genes called chromosomes).
At each point of the search process, a generation of individuals
is maintained.
The initial population ideally has diverse individuals. This is
necessary because the individuals learn from each other. Lack
of diversity in population leads to sub-optimal solutions. The
initial diversity may be arranged by uniformly random, grid
initialization, non-clustering or local optimization methods [3].

2.2 Evaluation:
A value for fitness is assigned to each solution (chromosome)
depending on how close it actually is to solving the problem
(thus arriving to the answer of the desired problem). The fitness
function is a measure of the objective to be obtained
(maximum or minimum values). Fitness function is optimized
using the genetic process [4] and evaluates each solution to
decide whether it will contribute to the next generation of
solutions [5].
Since it selects which individuals can reproduce and create the
next generation of population, it is designed with care.

2.3 Selection:
Selection of individuals for the next generation to reproduce or
to live on relies heavily on the evaluation function.
Those chromosomes with a higher fitness value are more likely
to reproduce offspring (which can mutate after reproduction).
The offspring is a product of the father and mother, whose
composition consists of a combination of genes from them (this
process is known as "crossing over").
After evaluating the fitness of the individuals, by applying the
evaluation function, selection of ‘fit’ individuals for
reproduction / recombination is done. The selection techniques
that can be used are- deterministic selection, Proportional
fitness, Tournament selection etc. each of the techniques has its
own pros and cons and can be chosen depending on the
problem and population at hand.

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 8

2.4 Recombination:
Recombination or reproduction is as in biological systems,
candidate solutions combine to produce offspring in each
algorithmic iteration called a generation. From the generation
of parents and children, the fittest survive to become candidate
solutions in the next generation. Offsprings are produced by
specific genetic operators, such as mutation and recombination.
Recombination is randomly picking one or more pairs of
individuals as parents and randomly swapping segments (of
genes) of the parents.
Solutions thus combine to form offspring for the next
generation. Sometimes they pass on their worst information,
but if recombination is done in combination with a forceful
selection technique, then better solution results are obtained.
Recombination may be performed using different methods such
as 1-point recombination, n-point recombination and uniform
recombination.
Mutation is the most basic way to alter a solution for the next
generation. Operators from the local search techniques may be
used to slightly twiddle with the solution and introduce new,
random information.
It is thus brought about by randomly changing one or more
digits (genes) in the string (chromosomes) representing an
individual. In binary coding this may simply mean changing a
1 to a 0 and vice versa [6].
Elitism: There is a chance that the best chromosome may be
lost when a new population is created by recombination and
mutation. The best chromosome(s) may hence be copied to the
new population. The rest is done in a classical way. This can
rapidly increase the performance of the genetic algorithm,
because it prevents the loss of the best-found solutions [7].
If the new generation contains a solution that produces an
output that is close enough or equal to the desired answer then
the problem has been solved. If this is not the case, then the
new generation will go through the same process as their
parents did. This will continue until a solution is reached.

Create initial population
 Repeat
 Evaluate each individual’s fitness
 Select best-ranking individuals to
reproduce
 Mate pairs at random among
selected individuals
 Apply recombination operator
 Apply mating operator

 Until termination condition

Figure 1: Pseudocode for a generic Genetic Algorithm

3. APPLICATION OF GENETIC ALGORITHMS TO
SOME REAL WORLD PROBLEMS
3.1. Nutritional Counselling:
Nutrition counseling an important part of lifestyle counseling
systems.

3.1.1. Gaál et al describe the method used by MenuGene, an
intelligent menu planner that generates personalized dietary
weekly menu plans with the emphasis on the prevention of
Cardiovascular Diseases. The task of weekly dietary menu
planning is considered a multi-objective optimization problem
which is solved by a multi-level genetic algorithm. The
algorithm decomposes the search space to sub-spaces
according to the structure and nutritious content of the menu
plan. [9]
3.1.2. Alkhalifa A.Y., Niccolai M.J., Nowack W.J. have
developed a component of an information system for selection
of a nutritionally, culturally, economically and geographically
appropriate diet using Genetic Algorithm. [10]
3.2. Stylometry:
Holmes and Richard have applied genetic algorithms to create
a set of rules for determining authorship and then let the most
useful, or fit rules survive. They combine stylometry, the
science of measuring literary or linguistic style, usually to
written language, and genetic algorithms to determine
authorship. [11]
3.3. Parametric Design of aircraft:
Marle F.Bramlette and Eugene E.Bonehard have discussed
optimizing aircraft design when the task is posed as that of
optimizing a list of parameters. They used real number
representation for Genetic Algorithms and generated a large
number of initial population members and worked only with
the best ones. [12]
3.4. Robot trajectory generation:
This application demonstrates the application of Genetic
Algorithm techniques to the task of planning the path which a
robot area in moving from one point to another. Yuval Davidor
uses variable-length chromosomes in this solution, & devises
some novel & interesting crossover operators. [13]
3.5. Strategy acquisition for simulated airplanes:
A genetic algorithm (SAMUAL) that learns techniques for
maneuvering a simulated airplane in order to evade simulated
missiles has been described by John J. Grefenshelte. The
SAMUEL system tries to discover rules by which a slower but
more maneuverable aircraft can evade a faster but less agile
missile until the missile runs out of fuel. [14]
3.6. Redistricting:
For a fair and equitable congressional redistricting of Texas,
Michael Larson has given a simplified model based on the
genetic algorithm technique using the TSP approach. [15]
3.7. Problem solving and in- circuit emulators. (Embedded

systems).
An in-circuit emulator is a hardware debugging tool that
through its on-board, modified processor, lets one emulate a
line processor or family of processors on a target system.
One feature of an ICE is the ability to provide a program clock,
essentially the heartbeat of the hardware being designed and
tested. The setting up of the clock is done using genetic
algorithm. [16].

Genetic Algorithms: A Versatile Optimization Tool

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 9

Figure 2: Flow diagram of the genetic algorithm process
Adapted [16]

3.8. Acoustics:
Sato et al used genetic algorithms to design a concert hall with
optimal acoustic properties, maximizing the sound quality for
the audience, for the conductor, and for the musicians on stage.
[17].
3.9. Aerospace engineering:
As telecommunications technology continues to improve,
humans are increasingly dependent on Earth-orbiting satellites
to perform many vital functions, and one of the problems
engineers face is designing their orbital trajectories.

3.9.1. Williams, Crossley and Lang 2001 applied genetic
algorithms to the task of spacing satellite orbits to minimize
coverage blackouts. [19]
3.9.2 Lockheed Martin has used a genetic algorithm to evolve a
series of maneuvers to shift a spacecraft from one orientation to
another within 2% of the theoretical minimum time for such
maneuvers. The evolved solution was 10% faster than a
solution hand-crafted by an expert for the same problem. [19]
3.10. Bandwidth optimization in near video on demand

system:
Kriti Priya Gupta has employed Genetic Algorithm technique
for minimizing the average bandwidth requirement in near
video on demand system. Near video on demand system enable
customers requesting the same movie to be grouped together in
batches & then the broadcasted to them, using multicasting in a
simple transmission stream. [20]
3. 11. Medical
Genetic Algorithms can be used throughout the medical field.
Genetic Algorithms can help develop treatment programs,
optimize drug formulas, improve diagnostics, and much more.
Plasma X-ray Spectra Analysis: X-ray spectroscopic analysis is
a powerful tool for plasma diagnostics. Golovkin et al use
genetic algorithms to automatically analyze experimental X-ray
line spectra and discuss a particular implementation of the
genetic algorithm suitable for the problem. Since spectroscopic
analysis may be computationally intensive, they also
investigate the use of case injected genetic algorithms for
quicker analysis of several similar (time resolved) spectra. [21]
3.12. Scheduling:
Genetic Algorithms can be used for numerous scheduling
problems. Using a Genetic Algorithm for difficult scheduling
problems enables relatively arbitrary constraints and objectives
to be incorporated painlessly into a single optimization method.
3.12.1. Organizers of the Paralympics Games, 1992, used
genetic algorithms to schedule events. [22]
3.12.2. School Timetabling:Geraldo Ribeiro Filho and Luiz
Antonio Nogueira Lorena have given a constructive approach
to the process of fixing a sequence of meetings between
teachers and students in a prefixed period of time, satisfying a
set of constraints of various types, known as school timetabling
problem. Pairs of teachers and classes are used to form
conflict-free clusters for each timeslot. Binary strings
representing pairs are grouped based on dissimilarity
measurement. Teacher preferences and the process of avoiding
undesirable waiting times between classes are explicitly
considered as additional objectives. [23]
3.13. Musical Composition
An approach of evolving form in musical composition is
presented by Ayesh and Hugill. They use of genetic algorithms
for this. The approach presented for genetic composition uses
samples of musical ideas (one note or more) and not individual
MIDI notes. The focus of the approach is on evolving musical
form rather than attempting to compose musical sequences.
The selection process is guided by the responses of the users
within an interactive process. [24]

Recombination

Yes

Evaluation

Start
Describe problem

Generate
Initial solutions

Test:
Is best solution
good enough?

Select parents to reproduce

Apply recombination process
and create a set of offspring
Apply random mutation

Stop

Selection

No

Evaluation

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 10

3.14. Finance:
3.14.1. Mahfoud and Mani 1996 used a genetic algorithm to
predict the future performance of 1600 publicly traded stocks.
Specifically, the Genetic Algorithm was tasked with
forecasting the relative return of each stock, defined as that
stock's return minus the average return of all 1600 stocks over
the time period in question, 12 weeks (one calendar quarter)
into the future. [25].
3.14.2. Naik 1996 reports that LBS Capital Management, an
American firm headquartered in Florida, uses genetic
algorithms to pick stocks for a pension fund it manages. [22]
3.14.3. Coale 1997 and Begley and Beals 1995 report that First
Quadrant, an investment firm in California, uses Genetic
Algorithms to make investment decisions for all of their
financial services. [26, 27]
3.15. Identifying criminal suspects:
The "FacePrints" software, helps witnesses identify and
describe criminal suspects. It uses a genetic algorithm that
evolves pictures of faces based on databases of hundreds of
individual features that can be combined in a vast number of
ways. The program shows randomly generated face images to
witnesses, who pick the ones that most resemble the person
they saw; the selected faces are then mutated and bred together
to generate new combinations of features, and the process
repeats until an accurate portrait of the suspect's face
emerges.[22]
3.16. Seeking Routes
Texas instrument is drawing on the skills that salmon use to
find spawning grounds to produce a Genetic Algorithm that
shipping companies can use to let packages “seek” their own
best route to their destination.[22]

4. DATABASE QUERY OPTIMIZATION USING

GENETIC ALGORITHMS
Optimization of queries can be done through two approaches,
one consisting of algebraic manipulations or transformations
and the other including strategies to take advantage of the
storage of the relations. The algebra based optimization
approach is to first represent each relational query as a
relational algebra expression and then transform it to an
equivalent but more efficient relational algebra expression. The
transformation is guided by heuristic optimization rules [28].
The basic idea of the cost-estimation-based approach is - For
each query, enumerate all possible execution plans. For each
execution plan, estimate the cost of execution plan [28]. Finally
choose the execution plan with the lowest estimated cost [29].
Enumerative strategies can lead to the best possible solution,
but face a combinatorial explosion for complex queries (e.g., a
join query with more than ten relations. Join operation is not
only frequently used but also expensive [30].). In order to
investigate larger spaces, randomized search strategies have
been proposed [31] to improve a start solution until obtaining a
local optimum. Examples of such strategies are simulated-
annealing [Ioannidis 87] and iterative-improvement [Swami
88]. With the same objective, genetic search strategies
[Goldberg 89] can be applied to query optimization, as a

generalization of randomized ones [Eiben 90]. Randomized or
genetic strategies do not guarantee that the best solution is
obtained, but avoid the high cost of optimization. As an
optimizer might face different query types (simple vs.
complex) with different requirements (ad-hoc vs. repetitive), it
should be easy to adapt the search strategy to the problem [32].
The major issue in query optimization is that, the search space
is complicated and genetic algorithms are theoretically and
empirically proven to provide robust search in complex spaces.
These algorithms are computationally simple yet powerful in
their search for improvement. They are not fundamentally
limited by restrictive assumptions about search space [6]. The
use of Genetic Algorithm approach in addressing the Query
Optimization issue, therefore seems apt.
Genetic algorithms may be employed in obtaining an optimal
solution for each of the two approaches. They may contribute
towards the selection of an efficient relational algebra
expression and may also find near-optimal execution plans
through efficient cost estimation.
All query optimization algorithms primarily deal with joins.
Most studies on the use of Genetic Algorithms in Query
Optimization also thus focus on joins. Selection of appropriate
index for query execution is also one of the major concerns and
hence substantial research has also been done in the use of
Genetic Algorithms for index selection.
Bennett et al [1991] have studied genetic algorithms for join
query optimization. They have given a method for encoding
arbitrary binary trees as chromosomes and describe several
recombination operators for such chromosomes. Their
performance results show that genetic algorithms can
effectively identify high quality query execution plans, and the
selected plans are in general comparable to or better than the
current best--known method for query optimization
particularly, the output quality and the time needed to produce
such solutions [33].
Farshad Fotouhi and Carlos E. Galarce [1991] of Wayne State
University Computer Science Department, have proposed using
genetic algorithms to search for near-optimal indexing. They
have used a single table and their gene is a binary vector with a
position for each of the attributes in the table. A 1 means the
column is indexed; 0 means it's not. There is no attempt to
accept only genes with the primary key indexed. The idea is to
let the genetic process find a solution without any help.
This same chromosome pattern can also be used to represent a
type of query. A 1 in a "query chromosome" means that the
corresponding column is to be returned; 0 means it's not. This
correspondence makes it simple to simulate query runs. The
payoff formula is based on hitting or missing an index in a
query. The optimal score is to ask for only indexed columns,
which makes sense because there's a chance that a non-indexed
column would require a sequential search of the table. Fotouhi
and Galarce ran a series of random queries with a known
statistical distribution against the test database of one million
rows. The genes with the highest scores were saved from
("survived") that test run and used to build the next test run
("generation"). The performance of the system was measured in

Genetic Algorithms: A Versatile Optimization Tool

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 11

terms of average query-response times. The system leveled out
in about ten generations with a 5-bit chromosome, but took
longer with a 10-bit chromosome.
The Fotouhi-Galarce experiment gave encouraging results but
was based on a single table, a rare occurrence in the real world.
Celko [1993] extended the Fotouhi-Galarce experiment to work
on multiple tables. He combined columns to make tables using
normal forms built from Functional Dependencies. He used a
sample database, identified the functional dependencies for the
database and created a query chromosome structure having
genes based on attributes. To show each possible 3NF schema,
he built tables where functional dependencies for the database
were the key. Once the tables were defined, queries were
applied against the whole database schema.
A table chromosome was made up of a subset of the original
functional dependencies. Two rules were to be obeyed by the
tables. First, no combination that violates the 3NF condition
was allowed; second, all columns must be present in some table
in the schema;
The database schemas were made up of more than one table,
and one or more tables were mutated at a time. The payoff
function considered joins between tables, the number of tables
accessed, etc.
Since the operations on the schema were complex than those
used for indexes on a single table by Fotouhi and Galarce,
tables had to combine or split. The goal was to have the
smallest number of tables used in the queries to avoid the cost
of joins. Once the tables were determined for the set of queries,
the index genetic algorithm was applied to the tables [34].
Kratica, Ljubi´c and To¡si´c [2003] have proposed a genetic
algorithm for solving the ISP (Index Selection Problem) i.e. the
problem of minimizing the response time for a given database
workload by a proper choice of indexes. Their Genetic
Algorithm is based on binary encoding, data structures for the
evaluation of the objective function, on the uniform crossover,
and simple mutation. They have tested the algorithm on the
class of challenging instances known from the literature and
demonstrate that the results obtained indicate its efficiency and
reliability [35].
Utesch’s [1997] model attempts to find the solution of the QO
problem similar to a traveling salesman problem (TSP). He has
used Postgres Query Optimizer for the research. In this module
possible query plans are encoded as integer strings, each string
represents the join order from one relation of the query to the
next. Parts of the GEQO module are adapted from D. Whitley's
Genitor algorithm. Specific characteristics of the GEQO
implementation in Postgres are, usage of a steady state Genetic
Algorithm (replacement of the least fit individuals in a
population, not whole-generational replacement) allows fast
convergence towards improved query plans, this is essential for
query handling with reasonable time; usage of edge
recombination crossover which is especially suited to keep
edge losses low for the solution of the TSP by means of a
Genetic Algorithm; mutation as genetic operator is deprecated
so that no repair mechanisms are needed to generate legal TSP
tours. The GEQO module allows the Postgres query optimizer

to support large join queries effectively through non-exhaustive
search [36].
Lanzelottel and Patrick Valduriez [1991] have given a solution
to the extensibility of the query optimizer search strategy. This
solution is based on the object-oriented modeling of the query
optimizer, where the search space and the search strategy are
independently specified. It is illustrated by applying different
search strategies including the genetic algorithm approach [32].
Steinbrunn, Moerkotte and Kemper [1997] have studied
different algorithms that compute approximate solutions for
optimizing join orders. They extensively scrutinized optimizers
from the three classes, heuristic, randomized and genetic
algorithms. From their study it turns out that randomized and
genetic algorithms are well suited for optimizing join
expressions. They generate solutions of high quality within a
reasonable running time. The benefits of heuristic optimizers,
namely the short running time, are outweighed by merely
moderate optimization performance. This study concentrates on
the generation of low-cost join nesting orders while ignoring
the specifics of join computing.
Steinbrunn et al studied several algorithms for the optimization
of join expressions and inferred that randomized and genetic
algorithms are much better suited for join optimizations;
although they require a longer running time, the results are far
better.
For adequate solution space, they found that, with the
exception of the star join graph, the bushy tree solution space is
preferable in spite of the fact that "pipelining" (avoiding to
write intermediate results to secondary memory) can be carried
out mainly by left-deep processing trees.
Another consideration is the extensibility of randomized and
genetic algorithms: both can be designed to optimize not
merely pure join expressions, but complete relational queries.
In addition, some of them (namely Iterative Improvement and
genetic algorithms) can be easily modified to make use of
parallel computer architectures [37].
The authors of this paper, motivated by the applicability of
genetic algorithms in a wide range of problems and in
optimization in particular, are working on the implementation
of genetic algorithms to database query optimization. A
Genetic Algorithm involving representation of joins as
chromosomes, functions for evaluation of fitness and crossover
and mutation operators is considered for minimizing the
response time for a given database query.

5. CONCLUSION
Genetic Algorithms are good at taking larger, potentially huge
search spaces and navigating them looking for optimal
combinations of things and solutions which we might never be
able to find. The use of genetic algorithms to solve large and
often complex computational problems has given rise to many
new applications in a variety of disciplines. They have
discovered powerful, high quality solutions to difficult practical
problems in a diverse variety of fields.
The few examples surveyed in this paper illustrate the diversity
of approaches and point to some of the considerations that have

BIJIT - BVICAM’s International Journal of Information Technology

Copy Right © BIJIT – 2009; January – June, 2009; Vol. 1 No. 1; ISSN 0973 – 5658 12

proved important in making applications successful. The use of
Genetic Algorithms, for example, in difficult scheduling
problems, enables somewhat arbitrary constraints and
objectives to be incorporated relatively easily into a single
optimization method. With genetic algorithms, the focus lies on
evolving forms, rather than on creating new solutions.
The choice of appropriate encoding scheme and fitness
function determine the success of a genetic algorithm.
Dembski[2002] has said that the ‘fitness function guides an
evolutionary algorithm into the target.[38]
In recent years, relational database systems have become the
standard in a variety of commercial and scientific applications.
This has augmented the demand for new, cost-effective
optimization techniques for minimizing the response time for
query. With genetic algorithms becoming a widely used and
accepted method for very difficult optimization problems, their
application to database query optimization seems apt. Genetic
algorithms thus seem to offer an extremely effective, general
purpose, means of dealing with both complexity and scale.

FUTURE SCOPE
Genetic Algorithms are of major significance to the
development of the new generation of IT applications. The
potential which they offer over existing techniques is
enormous. They find application in biogenetics, computer
science, engineering, economics, chemistry, manufacturing,
mathematics, physics and other fields. And the list will
continue to grow especially if Genetic Algorithms are
combined with other optimization methods.
Current query optimization techniques are inadequate to
support some of the emerging database applications. Genetic
algorithms however, are ideally suited to the processing,
classification and control of complex queries for very-large and
varied data.

REFERENCES
[1] Melanie Mitchell, “An introduction to Genetic

Algorithms”, Prentice Hall of India, 2004
[2] Hsiung Sam, Matthews James, “An introduction to Genetic

Algorithms”, 2000
http://www.generation5.org/content/2000/ga.asp

[3] Singh Marjit M, “Genetic Algorithms: Inspired by
Nature”, Information Technology (it) Magazine, EFY, vol.
13, no.9, July 2004.

[4] Praveen Pathak, Michael Gordon, Weiguo Fan, "Effective
Information Retrieval Using Genetic Algorithms Based
Matching Functions Adaptation," hicss, vol. 02, no. 2,
pp. 2011, February 2000.
csdl.computer.org/comp/proceedings/hicss/2000/0493/02/0
4932011.pdf

[5] Luger G F, “Artificial Intelligence- structure and strategies
for complex problem solving”, 4th edition, Pearson
Education, 2002.

[6] Goldberg David E, “Genetic Algorithms in search,
optimization and machine learning”, Pearson Education,
2003.

[7] Rajasekaran S, Pai G A Vijaylakshmi, “Neural Networks,
Fuzzy Logic and Genetic Algorithms- synthesis and
applications”, Prentice Hall India, 2002.

[8] Turban E, Aronson J E, “Decision Support Systems, 6th
edition, Pearson Education Asia, 2000.

[9] G. Gaál, I. Vassányi, and G. Kozmann, “Automated
Planning of Weekly Dietary Menus for Personalized
Nutrition Counseling”, Proceeding 453, Artificial
Intelligence and Applications 2/14/2005-2/16/2005
Innsbruck, Austria

[10] Alkhalifa, A.Y.; Niccolai, M.J.; Nowack, W.J.,
“Application of the genetic algorithm to nutritional
counseling”, Proceedings of the 1997 Sixteenth Southern,
Biomedical Engineering Conference, 1997

[11] Holmes, David and Forsyth, Richard “The Federalist
Revisited: New Directions in Authorship Attribution”.
Linguistic and Literary Computing, vol. 10, 1995, pp. 111–
127

[12] Bramlette, M., Bouchard, E., 1991, “Genetic algorithms in
parametric design of aircraft”, Handbook of genetic
algorithms, L. Davis, ed., Van Nostrand Reinhold, New
York, pp. 109-123.

[13] Yuval Davidor “A Genetic Algorithm Applied To Robot
Trajectory Generation”, in Lawrence Davis, editor,
Handbook of Genetic Algorithms, chapter 12, pages 144-
165. Van Nostrand Reinhold, New York, New York, 1991.

[14] J. J. Grefenstette “Strategy acquisition with genetic
algorithms”, in L. Davis, editor, Handbook of Genetic
Algorithms, pages 186--201. Van Nostrand Reinhold,
1991.

[15] Michael Larson, ”Genetic Algorithms & optimal
solutions”, Developer 2.0, Dr. Dobb’s journal, June 2004.

[16] Philip Joslin, ”Genetic Algorithms & real world
applications”, Developer 2.0, Dr. Dobb’s journal, June
2004.

[17] Sato, S., K. Otori, A. Takizawa, H. Sakai, Y. Ando and H.
Kawamura. "Applying genetic algorithms to the optimum
design of a concert hall." Journal of Sound and Vibration,
vol.258, no.3, p. 517-526 (2002).

[18] Williams, Edwin, William Crossley and Thomas Lang.
"Average and maximum revisit time trade studies for
satellite constellations using a multiobjective genetic
algorithm." Journal of the Astronautical Sciences, vol.49,
no.3, p.385-400 (July-September 2001).

[19] Gibbs, W. Wayt. "Programming with primordial ooze."
Scientific American, October 1996, p.48-50.

[20] Kriti Priya Gupta, “Genetic Algorithm approach for
bandwidth optimization “, Synergy – ITS journal of I.T. &
management, September 2005.

Continued on page no. 36

