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Abstract – Genetic Algorithms are a powerful search 
technique based on the mechanics of natural selection and 
natural genetics that are used successfully to solve problems 
in many different disciplines. 
The good robustness of these algorithms on problems of high 
complexity has led to an increasing number of applications in 
the fields of artificial intelligence, numeric and combinatorial 
optimization, business, management, medicine, computer 
science, engineering etc. 
In this paper we present a cross section of current genetic 
algorithm applications from diverse fields and lay a special 
emphasis on use of genetic algorithms in one of the most 
important optimization problems in computer science, 
database query optimization. 
  
Index Terms - Genetic Algorithms, Query Optimization. 
 
1. INTRODUCTION 
‘Genetic Algorithms’ is one of the most useful, general-
purpose problem-solving techniques available to developers. It 
has been used to solve a wide range of problems such as 
optimization, data mining, games, emergent behavior in 
biological communities etc. 
Like other computational systems inspired by natural systems, 
Genetic Algorithms have been used in two ways, as techniques 
for solving technological problems, and as simplified scientific 
models that can answer questions about nature. [1] 
In this paper we focus on the applications of Genetic 
Algorithms in problem solving. This paper is organized as 
follows: section 2 contains introductory material providing 
some general working principles of Genetic Algorithms, 
section 3 offers a view of the use of Genetic Algorithms to 
some real world problems, section 4 deals with applications of 
Genetic Algorithms to database query optimization and finally 
section 5 provides some concluding remarks and summary of 
the survey. 
 
2. GENETIC ALGORITHMS 
Genetic Algorithms, invented by John Holland, is an 
ABSTRACTion of biological evolution and is thus a method 
for moving from one population of chromosomes (strings of 
bits) to a new population by using a kind of natural selection 
together with the genetics inspired operators of recombination, 
mutation and inversion. Each chromosome consists of genes 
(bits) which are instances of allele (1 or 0) [1]. 
A Genetic Algorithm functions by generating a large set of 
possible solutions to a given problem. It then evaluates each of  
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those solutions, and decides on a "fitness level" for each 
solution set. These solutions then breed new solutions. The 
parent solutions that were more "fit" are more likely to 
reproduce, while those that were less "fit" are more unlikely to 
do so. In essence, solutions are evolved over time [2]. This way 
there is evolution of the search space scope to a point where a 
solution can be found. 
Figures 1 and 2 show the generic pseudocode and flow diagram 
of the complete genetic process respectively. 
The steps of a general Genetic Algorithm are, 
2.1 Representation: 
An initial population is created from a random selection of 
solutions (which are analogous to chromosomes). It involves 
the representation of an individual (a possible solution or 
decision or hypothesis) in the form of its genetic structure (a 
data structure depicting a string of genes called chromosomes). 
At each point of the search process, a generation of individuals 
is maintained. 
The initial population ideally has diverse individuals. This is 
necessary because the individuals learn from each other. Lack 
of diversity in population leads to sub-optimal solutions. The 
initial diversity may be arranged by uniformly random, grid 
initialization, non-clustering or local optimization methods [3]. 
 
2.2 Evaluation: 
A value for fitness is assigned to each solution (chromosome) 
depending on how close it actually is to solving the problem 
(thus arriving to the answer of the desired problem). The fitness 
function is a measure of the objective to be obtained  
(maximum or minimum values). Fitness function is optimized 
using the genetic process [4] and evaluates each solution to 
decide whether it will contribute to the next generation of 
solutions [5]. 
Since it selects which individuals can reproduce and create the 
next generation of population, it is designed with care. 
 
2.3 Selection: 
Selection of individuals for the next generation to reproduce or 
to live on relies heavily on the evaluation function. 
Those chromosomes with a higher fitness value are more likely 
to reproduce offspring (which can mutate after reproduction). 
The offspring is a product of the father and mother, whose 
composition consists of a combination of genes from them (this 
process is known as "crossing over").  
After evaluating the fitness of the individuals, by applying the 
evaluation function, selection of ‘fit’ individuals for 
reproduction / recombination is done. The selection techniques 
that can be used are- deterministic selection, Proportional 
fitness, Tournament selection etc. each of the techniques has its 
own pros and cons and can be chosen depending on the 
problem and population at hand. 
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2.4 Recombination: 
Recombination or reproduction is as in biological systems, 
candidate solutions combine to produce offspring in each 
algorithmic iteration called a generation. From the generation 
of parents and children, the fittest survive to become candidate 
solutions in the next generation. Offsprings are produced by 
specific genetic operators, such as mutation and recombination. 
Recombination is randomly picking one or more pairs of 
individuals as parents and randomly swapping segments (of 
genes) of the parents. 
Solutions thus combine to form offspring for the next 
generation. Sometimes they pass on their worst information, 
but if recombination is done in combination with a forceful 
selection technique, then better solution results are obtained. 
Recombination may be performed using different methods such 
as 1-point recombination, n-point recombination and uniform 
recombination. 
Mutation is the most basic way to alter a solution for the next 
generation. Operators from the local search techniques may be 
used to slightly twiddle with the solution and introduce new, 
random information.  
It is thus brought about by randomly changing one or more 
digits (genes) in the string (chromosomes) representing an 
individual. In binary coding this may simply mean changing a 
1 to a 0 and vice versa [6]. 
Elitism: There is a chance that the best chromosome may be 
lost when a new population is created by recombination and 
mutation. The best chromosome(s) may hence be copied to the 
new population. The rest is done in a classical way. This can 
rapidly increase the performance of the genetic algorithm, 
because it prevents the loss of the best-found solutions [7]. 
If the new generation contains a solution that produces an 
output that is close enough or equal to the desired answer then 
the problem has been solved. If this is not the case, then the 
new generation will go through the same process as their 
parents did. This will continue until a solution is reached. 
 

Create initial population 
 Repeat 
  Evaluate each individual’s fitness 
  Select best-ranking individuals to 
reproduce 
  Mate pairs at random among 
selected individuals 
  Apply recombination operator 
  Apply mating operator 

 Until termination condition 
 

Figure 1: Pseudocode for a generic Genetic Algorithm 
 
3. APPLICATION OF GENETIC ALGORITHMS TO 
SOME REAL WORLD PROBLEMS 
3.1. Nutritional Counselling: 
Nutrition counseling an important part of lifestyle counseling 
systems. 

3.1.1. Gaál et al describe the method used by MenuGene, an 
intelligent menu planner that generates personalized dietary 
weekly menu plans with the emphasis on the prevention of 
Cardiovascular Diseases. The task of weekly dietary menu 
planning is considered a multi-objective optimization problem 
which is solved by a multi-level genetic algorithm. The 
algorithm decomposes the search space to sub-spaces 
according to the structure and nutritious content of the menu 
plan. [9] 
3.1.2. Alkhalifa A.Y., Niccolai M.J., Nowack W.J. have 
developed a component of an information system for selection 
of a nutritionally, culturally, economically and geographically 
appropriate diet using Genetic Algorithm. [10] 
3.2. Stylometry: 
Holmes and Richard have applied genetic algorithms to create 
a set of rules for determining authorship and then let the most 
useful, or fit rules survive. They combine stylometry, the 
science of measuring literary or linguistic style, usually to 
written language, and genetic algorithms to determine 
authorship. [11] 
3.3. Parametric Design of aircraft: 
Marle F.Bramlette and Eugene E.Bonehard have discussed 
optimizing aircraft design when the task is posed as that of 
optimizing a list of parameters. They used real number 
representation for Genetic Algorithms and generated a large 
number of initial population members and worked only with 
the best ones. [12] 
3.4. Robot trajectory generation: 
This application demonstrates the application of Genetic 
Algorithm techniques to the task of planning the path which a 
robot area in moving from one point to another. Yuval Davidor 
uses variable-length chromosomes in this solution, & devises 
some novel & interesting crossover operators. [13] 
3.5. Strategy acquisition for simulated airplanes: 
A genetic algorithm (SAMUAL) that learns techniques for 
maneuvering a simulated airplane in order to evade simulated 
missiles has been described by John J. Grefenshelte. The 
SAMUEL system tries to discover rules by which a slower but 
more maneuverable aircraft can evade a faster but less agile 
missile until the missile runs out of fuel. [14] 
3.6. Redistricting: 
For a fair and equitable congressional redistricting of Texas, 
Michael Larson has given a simplified model based on the 
genetic algorithm technique using the TSP approach. [15] 
3.7. Problem solving and in- circuit emulators. (Embedded 

systems). 
An in-circuit emulator is a hardware debugging tool that 
through its on-board, modified processor, lets one emulate a 
line processor or family of processors on a target system. 
One feature of an ICE is the ability to provide a program clock, 
essentially the heartbeat of the hardware being designed and 
tested. The setting up of the clock is done using genetic 
algorithm. [16]. 
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Figure 2: Flow diagram of the genetic algorithm process 
Adapted [16] 

3.8. Acoustics: 
Sato et al used genetic algorithms to design a concert hall with 
optimal acoustic properties, maximizing the sound quality for 
the audience, for the conductor, and for the musicians on stage. 
[17]. 
3.9. Aerospace engineering: 
As telecommunications technology continues to improve, 
humans are increasingly dependent on Earth-orbiting satellites 
to perform many vital functions, and one of the problems 
engineers face is designing their orbital trajectories.  

3.9.1. Williams, Crossley and Lang 2001 applied genetic 
algorithms to the task of spacing satellite orbits to minimize 
coverage blackouts. [19] 
3.9.2 Lockheed Martin has used a genetic algorithm to evolve a 
series of maneuvers to shift a spacecraft from one orientation to 
another within 2% of the theoretical minimum time for such 
maneuvers. The evolved solution was 10% faster than a 
solution hand-crafted by an expert for the same problem. [19] 
3.10. Bandwidth optimization in near video on demand 

system: 
Kriti Priya Gupta has employed Genetic Algorithm technique 
for minimizing the average bandwidth requirement in near 
video on demand system. Near video on demand system enable 
customers requesting the same movie to be grouped together in 
batches & then the broadcasted to them, using multicasting in a 
simple transmission stream. [20]  
3. 11. Medical  
Genetic Algorithms can be used throughout the medical field. 
Genetic Algorithms can help develop treatment programs, 
optimize drug formulas, improve diagnostics, and much more. 
Plasma X-ray Spectra Analysis: X-ray spectroscopic analysis is 
a powerful tool for plasma diagnostics. Golovkin et al use 
genetic algorithms to automatically analyze experimental X-ray 
line spectra and discuss a particular implementation of the 
genetic algorithm suitable for the problem. Since spectroscopic 
analysis may be computationally intensive, they also 
investigate the use of case injected genetic algorithms for 
quicker analysis of several similar (time resolved) spectra. [21] 
3.12. Scheduling: 
Genetic Algorithms can be used for numerous scheduling 
problems. Using a Genetic Algorithm for difficult scheduling 
problems enables relatively arbitrary constraints and objectives 
to be incorporated painlessly into a single optimization method. 
3.12.1. Organizers of the Paralympics Games, 1992, used 
genetic algorithms to schedule events. [22] 
3.12.2. School Timetabling:Geraldo Ribeiro Filho and Luiz 
Antonio Nogueira Lorena have given a constructive approach 
to the process of fixing a sequence of meetings between 
teachers and students in a prefixed period of time, satisfying a 
set of constraints of various types, known as school timetabling 
problem. Pairs of teachers and classes are used to form 
conflict-free clusters for each timeslot. Binary strings 
representing pairs are grouped based on dissimilarity 
measurement. Teacher preferences and the process of avoiding 
undesirable waiting times between classes are explicitly 
considered as additional objectives. [23] 
3.13. Musical Composition 
An approach of evolving form in musical composition is 
presented by Ayesh and Hugill. They use of genetic algorithms 
for this. The approach presented for genetic composition uses 
samples of musical ideas (one note or more) and not individual 
MIDI notes. The focus of the approach is on evolving musical 
form rather than attempting to compose musical sequences. 
The selection process is guided by the responses of the users 
within an interactive process. [24] 
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3.14. Finance: 
3.14.1. Mahfoud and Mani 1996 used a genetic algorithm to 
predict the future performance of 1600 publicly traded stocks. 
Specifically, the Genetic Algorithm was tasked with 
forecasting the relative return of each stock, defined as that 
stock's return minus the average return of all 1600 stocks over 
the time period in question, 12 weeks (one calendar quarter) 
into the future. [25]. 
3.14.2. Naik 1996 reports that LBS Capital Management, an 
American firm headquartered in Florida, uses genetic 
algorithms to pick stocks for a pension fund it manages. [22] 
3.14.3. Coale 1997 and Begley and Beals 1995 report that First 
Quadrant, an investment firm in California, uses Genetic 
Algorithms to make investment decisions for all of their 
financial services. [26, 27] 
3.15. Identifying criminal suspects: 
The "FacePrints" software, helps witnesses identify and 
describe criminal suspects. It uses a genetic algorithm that 
evolves pictures of faces based on databases of hundreds of 
individual features that can be combined in a vast number of 
ways. The program shows randomly generated face images to 
witnesses, who pick the ones that most resemble the person 
they saw; the selected faces are then mutated and bred together 
to generate new combinations of features, and the process 
repeats until an accurate portrait of the suspect's face 
emerges.[22] 
3.16. Seeking Routes 
Texas instrument is drawing on the skills that salmon use to 
find spawning grounds to produce a Genetic Algorithm that 
shipping companies can use to let packages “seek” their own 
best route to their destination.[22] 
 
4. DATABASE QUERY OPTIMIZATION USING 

GENETIC ALGORITHMS 
Optimization of queries can be done through two approaches, 
one consisting of algebraic manipulations or transformations 
and the other including strategies to take advantage of the 
storage of the relations. The algebra based optimization 
approach is to first represent each relational query as a 
relational algebra expression and then transform it to an 
equivalent but more efficient relational algebra expression. The 
transformation is guided by heuristic optimization rules [28]. 
The basic idea of the cost-estimation-based approach is - For 
each query, enumerate all possible execution plans. For each 
execution plan, estimate the cost of execution plan [28]. Finally 
choose the execution plan with the lowest estimated cost [29]. 
Enumerative strategies can lead to the best possible solution, 
but face a combinatorial explosion for complex queries (e.g., a 
join query with more than ten relations. Join operation is not 
only frequently used but also expensive [30]. ). In order to 
investigate larger spaces, randomized search strategies have 
been proposed [31] to improve a start solution until obtaining a 
local optimum. Examples of such strategies are simulated-
annealing [Ioannidis 87] and iterative-improvement [Swami 
88]. With the same objective, genetic search strategies 
[Goldberg 89] can be applied to query optimization, as a 

generalization of randomized ones [Eiben 90]. Randomized or 
genetic strategies do not guarantee that the best solution is 
obtained, but avoid the high cost of optimization. As an 
optimizer might face different query types (simple vs. 
complex) with different requirements (ad-hoc vs. repetitive), it 
should be easy to adapt the search strategy to the problem [32]. 
The major issue in query optimization is that, the search space 
is complicated and genetic algorithms are theoretically and 
empirically proven to provide robust search in complex spaces. 
These algorithms are computationally simple yet powerful in 
their search for improvement. They are not fundamentally 
limited by restrictive assumptions about search space [6]. The 
use of Genetic Algorithm approach in addressing the Query 
Optimization issue, therefore seems apt. 
Genetic algorithms may be employed in obtaining an optimal 
solution for each of the two approaches. They may contribute 
towards the selection of an efficient relational algebra 
expression and may also find near-optimal execution plans 
through efficient cost estimation. 
All query optimization algorithms primarily deal with joins. 
Most studies on the use of Genetic Algorithms in Query 
Optimization also thus focus on joins. Selection of appropriate 
index for query execution is also one of the major concerns and 
hence substantial research has also been done in the use of 
Genetic Algorithms for index selection. 
Bennett et al [1991] have studied genetic algorithms for join 
query optimization. They have given a method for encoding 
arbitrary binary trees as chromosomes and describe several 
recombination operators for such chromosomes. Their 
performance results show that genetic algorithms can 
effectively identify high quality query execution plans, and the 
selected plans are in general comparable to or better than the 
current best--known method for query optimization 
particularly, the output quality and the time needed to produce 
such solutions [33]. 
Farshad Fotouhi and Carlos E. Galarce [1991] of Wayne State 
University Computer Science Department, have proposed using 
genetic algorithms to search for near-optimal indexing.  They 
have used a single table and their gene is a binary vector with a 
position for each of the attributes in the table. A 1 means the 
column is indexed; 0 means it's not. There is no attempt to 
accept only genes with the primary key indexed. The idea is to 
let the genetic process find a solution without any help. 
This same chromosome pattern can also be used to represent a 
type of query. A 1 in a "query chromosome" means that the 
corresponding column is to be returned; 0 means it's not. This 
correspondence makes it simple to simulate query runs. The 
payoff formula is based on hitting or missing an index in a 
query. The optimal score is to ask for only indexed columns, 
which makes sense because there's a chance that a non-indexed 
column would require a sequential search of the table. Fotouhi 
and Galarce ran a series of random queries with a known 
statistical distribution against the test database of one million 
rows. The genes with the highest scores were saved from 
("survived") that test run and used to build the next test run 
("generation"). The performance of the system was measured in 
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terms of average query-response times. The system leveled out 
in about ten generations with a 5-bit chromosome, but took 
longer with a 10-bit chromosome.  
The Fotouhi-Galarce experiment gave encouraging results but 
was based on a single table, a rare occurrence in the real world. 
Celko [1993] extended the Fotouhi-Galarce experiment to work 
on multiple tables. He combined columns to make tables using 
normal forms built from Functional Dependencies. He used a 
sample database, identified the functional dependencies for the 
database and created a query chromosome structure having 
genes based on attributes. To show each possible 3NF schema, 
he built tables where functional dependencies for the database 
were the key. Once the tables were defined, queries were 
applied against the whole database schema.   
A table chromosome was made up of a subset of the original 
functional dependencies. Two rules were to be obeyed by the 
tables. First, no combination that violates the 3NF condition 
was allowed; second, all columns must be present in some table 
in the schema; 
The database schemas were made up of more than one table, 
and one or more tables were mutated at a time. The payoff 
function considered joins between tables, the number of tables 
accessed, etc.  
Since the operations on the schema were complex than those 
used for indexes on a single table by Fotouhi and Galarce, 
tables had to combine or split. The goal was to have the 
smallest number of tables used in the queries to avoid the cost 
of joins. Once the tables were determined for the set of queries, 
the index genetic algorithm was applied to the tables [34]. 
Kratica, Ljubi´c and To¡si´c [2003] have proposed a genetic 
algorithm for solving the ISP (Index Selection Problem) i.e. the 
problem of minimizing the response time for a given database 
workload by a proper choice of indexes. Their Genetic 
Algorithm is based on binary encoding, data structures for the 
evaluation of the objective function, on the uniform crossover, 
and simple mutation. They have tested the algorithm on the 
class of challenging instances known from the literature and 
demonstrate that the results obtained indicate its efficiency and 
reliability [35]. 
Utesch’s [1997] model attempts to find the solution of the QO 
problem similar to a traveling salesman problem (TSP). He has 
used Postgres Query Optimizer for the research. In this module 
possible query plans are encoded as integer strings, each string 
represents the join order from one relation of the query to the 
next. Parts of the GEQO module are adapted from D. Whitley's 
Genitor algorithm. Specific characteristics of the GEQO 
implementation in Postgres are, usage of a steady state Genetic 
Algorithm (replacement of the least fit individuals in a 
population, not whole-generational replacement) allows fast 
convergence towards improved query plans, this is essential for 
query handling with reasonable time; usage of edge 
recombination crossover which is especially suited to keep 
edge losses low for the solution of the TSP by means of a 
Genetic Algorithm; mutation as genetic operator is deprecated 
so that no repair mechanisms are needed to generate legal TSP 
tours. The GEQO module allows the Postgres query optimizer 

to support large join queries effectively through non-exhaustive 
search [36]. 
Lanzelottel and Patrick Valduriez [1991] have given a solution 
to the extensibility of the query optimizer search strategy. This 
solution is based on the object-oriented modeling of the query 
optimizer, where the search space and the search strategy are 
independently specified. It is illustrated by applying different 
search strategies including the genetic algorithm approach [32]. 
Steinbrunn, Moerkotte and Kemper [1997] have studied 
different algorithms that compute approximate solutions for 
optimizing join orders. They extensively scrutinized optimizers 
from the three classes, heuristic, randomized and genetic 
algorithms. From their study it turns out that randomized and 
genetic algorithms are well suited for optimizing join 
expressions. They generate solutions of high quality within a 
reasonable running time. The benefits of heuristic optimizers, 
namely the short running time, are outweighed by merely 
moderate optimization performance. This study concentrates on 
the generation of low-cost join nesting orders while ignoring 
the specifics of join computing. 
Steinbrunn et al studied several algorithms for the optimization 
of join expressions and inferred that randomized and genetic 
algorithms are much better suited for join optimizations; 
although they require a longer running time, the results are far 
better.  
For adequate solution space, they found that, with the 
exception of the star join graph, the bushy tree solution space is 
preferable in spite of the fact that "pipelining" (avoiding to 
write intermediate results to secondary memory) can be carried 
out mainly by left-deep processing trees.  
Another consideration is the extensibility of randomized and 
genetic algorithms: both can be designed to optimize not 
merely pure join expressions, but complete relational queries. 
In addition, some of them (namely Iterative Improvement and 
genetic algorithms) can be easily modified to make use of 
parallel computer architectures [37]. 
The authors of this paper, motivated by the applicability of 
genetic algorithms in a wide range of problems and in 
optimization in particular, are working on the implementation 
of genetic algorithms to database query optimization. A 
Genetic Algorithm involving representation of joins as 
chromosomes, functions for evaluation of fitness and crossover 
and mutation operators is considered for minimizing the 
response time for a given database query. 
 
5. CONCLUSION 
Genetic Algorithms are good at taking larger, potentially huge 
search spaces and navigating them looking for optimal 
combinations of things and solutions which we might never be 
able to find. The use of genetic algorithms to solve large and 
often complex computational problems has given rise to many 
new applications in a variety of disciplines. They have 
discovered powerful, high quality solutions to difficult practical 
problems in a diverse variety of fields.  
The few examples surveyed in this paper illustrate the diversity 
of approaches and point to some of the considerations that have 
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proved important in making applications successful. The use of 
Genetic Algorithms, for example, in difficult scheduling 
problems, enables somewhat arbitrary constraints and 
objectives to be incorporated relatively easily into a single 
optimization method. With genetic algorithms, the focus lies on 
evolving forms, rather than on creating new solutions. 
The choice of appropriate encoding scheme and fitness 
function determine the success of a genetic algorithm. 
Dembski[2002] has said that the ‘fitness function guides an 
evolutionary algorithm into the target.[38] 
In recent years, relational database systems have become the 
standard in a variety of commercial and scientific applications. 
This has augmented the demand for new, cost-effective 
optimization techniques for minimizing the response time for 
query. With genetic algorithms becoming a widely used and 
accepted method for very difficult optimization problems, their 
application to database query optimization seems apt. Genetic 
algorithms thus seem to offer an extremely effective, general 
purpose, means of dealing with both complexity and scale. 
 
FUTURE SCOPE 
Genetic Algorithms are of major significance to the 
development of the new generation of IT applications. The 
potential which they offer over existing techniques is 
enormous. They find application in biogenetics, computer 
science, engineering, economics, chemistry, manufacturing, 
mathematics, physics and other fields. And the list will 
continue to grow especially if Genetic Algorithms are 
combined with other optimization methods. 
Current query optimization techniques are inadequate to 
support some of the emerging database applications. Genetic 
algorithms however, are ideally suited to the processing, 
classification and control of complex queries for very-large and 
varied data.  
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